/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #if SK_SUPPORT_GPU #include "GrCaps.h" #include "GrContext.h" #include "SkCanvas.h" #include "SkSurface.h" // using anonymous namespace because these functions are used as template params. namespace { /** convert 0..1 srgb value to 0..1 linear */ float srgb_to_linear(float srgb) { if (srgb <= 0.04045f) { return srgb / 12.92f; } else { return powf((srgb + 0.055f) / 1.055f, 2.4f); } } /** convert 0..1 linear value to 0..1 srgb */ float linear_to_srgb(float linear) { if (linear <= 0.0031308) { return linear * 12.92f; } else { return 1.055f * powf(linear, 1.f / 2.4f) - 0.055f; } } } /** tests a conversion with an error tolerance */ template <float (*CONVERT)(float)> static bool check_conversion(uint32_t input, uint32_t output, float error) { // alpha should always be exactly preserved. if ((input & 0xff000000) != (output & 0xff000000)) { return false; } for (int c = 0; c < 3; ++c) { uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); float lower = SkTMax(0.f, (float) inputComponent - error); float upper = SkTMin(255.f, (float) inputComponent + error); lower = CONVERT(lower / 255.f); upper = CONVERT(upper / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); if (outputComponent < SkScalarFloorToInt(lower * 255.f) || outputComponent > SkScalarCeilToInt(upper * 255.f)) { return false; } } return true; } /** tests a forward and backward conversion with an error tolerance */ template <float (*FORWARD)(float), float (*BACKWARD)(float)> static bool check_double_conversion(uint32_t input, uint32_t output, float error) { // alpha should always be exactly preserved. if ((input & 0xff000000) != (output & 0xff000000)) { return false; } for (int c = 0; c < 3; ++c) { uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); float lower = SkTMax(0.f, (float) inputComponent - error); float upper = SkTMin(255.f, (float) inputComponent + error); lower = FORWARD(lower / 255.f); upper = FORWARD(upper / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); uint8_t upperComponent = SkScalarCeilToInt(upper * 255.f); uint8_t lowerComponent = SkScalarFloorToInt(lower * 255.f); lower = SkTMax(0.f, (float) lowerComponent - error); upper = SkTMin(255.f, (float) upperComponent + error); lower = BACKWARD(lowerComponent / 255.f); upper = BACKWARD(upperComponent / 255.f); SkASSERT(lower >= 0.f && lower <= 255.f); SkASSERT(upper >= 0.f && upper <= 255.f); upperComponent = SkScalarCeilToInt(upper * 255.f); lowerComponent = SkScalarFloorToInt(lower * 255.f); uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); if (outputComponent < lowerComponent || outputComponent > upperComponent) { return false; } } return true; } static bool check_srgb_to_linear_conversion(uint32_t srgb, uint32_t linear, float error) { return check_conversion<srgb_to_linear>(srgb, linear, error); } static bool check_linear_to_srgb_conversion(uint32_t linear, uint32_t srgb, float error) { return check_conversion<linear_to_srgb>(linear, srgb, error); } static bool check_linear_to_srgb_to_linear_conversion(uint32_t input, uint32_t output, float error) { return check_double_conversion<linear_to_srgb, srgb_to_linear>(input, output, error); } static bool check_srgb_to_linear_to_srgb_conversion(uint32_t input, uint32_t output, float error) { return check_double_conversion<srgb_to_linear, linear_to_srgb>(input, output, error); } typedef bool (*CheckFn) (uint32_t orig, uint32_t actual, float error); void read_and_check_pixels(skiatest::Reporter* reporter, GrTexture* texture, uint32_t* origData, GrPixelConfig readConfig, CheckFn checker, float error, const char* subtestName) { int w = texture->width(); int h = texture->height(); SkAutoTMalloc<uint32_t> readData(w * h); memset(readData.get(), 0, sizeof(uint32_t) * w * h); if (!texture->readPixels(0, 0, w, h, readConfig, readData.get())) { ERRORF(reporter, "Could not read pixels for %s.", subtestName); return; } for (int j = 0; j < h; ++j) { for (int i = 0; i < w; ++i) { uint32_t orig = origData[j * w + i]; uint32_t read = readData[j * w + i]; if (!checker(orig, read, error)) { ERRORF(reporter, "Expected 0x%08x, read back as 0x%08x in %s at %d, %d).", orig, read, subtestName, i, j); return; } } } } // TODO: Add tests for copySurface between srgb/linear textures. Add tests for unpremul/premul // conversion during read/write along with srgb/linear conversions. DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SRGBReadWritePixels, reporter, context) { #if defined(GOOGLE3) // Stack frame size is limited in GOOGLE3. static const int kW = 63; static const int kH = 63; #else static const int kW = 255; static const int kH = 255; #endif uint32_t origData[kW * kH]; for (int j = 0; j < kH; ++j) { for (int i = 0; i < kW; ++i) { origData[j * kW + i] = (j << 24) | (i << 16) | (i << 8) | i; } } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = kW; desc.fHeight = kH; desc.fConfig = kSRGBA_8888_GrPixelConfig; if (context->caps()->isConfigRenderable(desc.fConfig, false) && context->caps()->isConfigTexturable(desc.fConfig)) { SkAutoTUnref<GrTexture> tex(context->textureProvider()->createTexture( desc, SkBudgeted::kNo)); if (!tex) { ERRORF(reporter, "Could not create SRGBA texture."); return; } float error = context->caps()->shaderCaps()->floatPrecisionVaries() ? 1.2f : 0.5f; // Write srgba data and read as srgba and then as rgba if (tex->writePixels(0, 0, kW, kH, kSRGBA_8888_GrPixelConfig, origData)) { // For the all-srgba case, we allow a small error only for devices that have // precision variation because the srgba data gets converted to linear and back in // the shader. float smallError = context->caps()->shaderCaps()->floatPrecisionVaries() ? 1.f : 0.0f; read_and_check_pixels(reporter, tex, origData, kSRGBA_8888_GrPixelConfig, check_srgb_to_linear_to_srgb_conversion, smallError, "write/read srgba to srgba texture"); read_and_check_pixels(reporter, tex, origData, kRGBA_8888_GrPixelConfig, check_srgb_to_linear_conversion, error, "write srgba/read rgba with srgba texture"); } else { ERRORF(reporter, "Could not write srgba data to srgba texture."); } // Now verify that we can write linear data if (tex->writePixels(0, 0, kW, kH, kRGBA_8888_GrPixelConfig, origData)) { // We allow more error on GPUs with lower precision shader variables. read_and_check_pixels(reporter, tex, origData, kSRGBA_8888_GrPixelConfig, check_linear_to_srgb_conversion, error, "write rgba/read srgba with srgba texture"); read_and_check_pixels(reporter, tex, origData, kRGBA_8888_GrPixelConfig, check_linear_to_srgb_to_linear_conversion, error, "write/read rgba with srgba texture"); } else { ERRORF(reporter, "Could not write rgba data to srgba texture."); } desc.fConfig = kRGBA_8888_GrPixelConfig; tex.reset(context->textureProvider()->createTexture(desc, SkBudgeted::kNo)); if (!tex) { ERRORF(reporter, "Could not create RGBA texture."); return; } // Write srgba data to a rgba texture and read back as srgba and rgba if (tex->writePixels(0, 0, kW, kH, kSRGBA_8888_GrPixelConfig, origData)) { read_and_check_pixels(reporter, tex, origData, kSRGBA_8888_GrPixelConfig, check_srgb_to_linear_to_srgb_conversion, error, "write/read srgba to rgba texture"); read_and_check_pixels(reporter, tex, origData, kRGBA_8888_GrPixelConfig, check_srgb_to_linear_conversion, error, "write srgba/read rgba to rgba texture"); } else { ERRORF(reporter, "Could not write srgba data to rgba texture."); } // Write rgba data to a rgba texture and read back as srgba if (tex->writePixels(0, 0, kW, kH, kRGBA_8888_GrPixelConfig, origData)) { read_and_check_pixels(reporter, tex, origData, kSRGBA_8888_GrPixelConfig, check_linear_to_srgb_conversion, 1.2f, "write rgba/read srgba to rgba texture"); } else { ERRORF(reporter, "Could not write rgba data to rgba texture."); } } } #endif