/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColor.h" #include "SkColorMatrixFilter.h" #include "SkGradientShader.h" #include "SkImage.h" #include "SkPM4f.h" #include "SkShader.h" #include "Test.h" #include "SkRandom.h" const float kTolerance = 1.0f / (1 << 20); static bool nearly_equal(float a, float b, float tol = kTolerance) { SkASSERT(tol >= 0); return fabsf(a - b) <= tol; } static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) { for (int i = 0; i < 4; ++i) { if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) { return false; } } return true; } DEF_TEST(SkColor4f_FromColor, reporter) { const struct { SkColor fC; SkColor4f fC4; } recs[] = { { SK_ColorBLACK, { 1, 0, 0, 0 } }, { SK_ColorWHITE, { 1, 1, 1, 1 } }, { SK_ColorRED, { 1, 1, 0, 0 } }, { SK_ColorGREEN, { 1, 0, 1, 0 } }, { SK_ColorBLUE, { 1, 0, 0, 1 } }, { 0, { 0, 0, 0, 0 } }, { 0x55AAFF00, { 1/3.0f, 2/3.0f, 1, 0 } }, }; for (const auto& r : recs) { SkColor4f c4 = SkColor4f::FromColor(r.fC); REPORTER_ASSERT(reporter, c4 == r.fC4); } } DEF_TEST(Color4f_premul, reporter) { SkRandom rand; for (int i = 0; i < 1000000; ++i) { // First just test opaque colors, so that the premul should be exact SkColor4f c4 { 1, rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1() }; SkPM4f pm4 = c4.premul(); REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA); REPORTER_ASSERT(reporter, pm4.fVec[SK_R_INDEX] == c4.fA * c4.fR); REPORTER_ASSERT(reporter, pm4.fVec[SK_G_INDEX] == c4.fA * c4.fG); REPORTER_ASSERT(reporter, pm4.fVec[SK_B_INDEX] == c4.fA * c4.fB); // We compare with a tolerance, in case our premul multiply is implemented at slightly // different precision than the test code. c4.fA = rand.nextUScalar1(); pm4 = c4.premul(); REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA); REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_R_INDEX], c4.fA * c4.fR)); REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_G_INDEX], c4.fA * c4.fG)); REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_B_INDEX], c4.fA * c4.fB)); } } ////////////////////////////////////////////////////////////////////////////////////////////////// static SkColorFilter* make_mode_cf() { return SkColorFilter::CreateModeFilter(0xFFBB8855, SkXfermode::kPlus_Mode); } static SkColorFilter* make_mx_cf() { const float mx[] = { 0.5f, 0, 0, 0, 0.1f, 0, 0.5f, 0, 0, 0.2f, 0, 0, 1, 0, -0.1f, 0, 0, 0, 1, 0, }; return SkColorMatrixFilter::Create(mx); } static SkColorFilter* make_compose_cf() { SkAutoTUnref<SkColorFilter> cf0(make_mode_cf()); SkAutoTUnref<SkColorFilter> cf1(make_mx_cf()); return SkColorFilter::CreateComposeFilter(cf0, cf1); } static SkShader* make_color_sh() { return SkShader::CreateColorShader(0xFFBB8855); } static SkShader* make_image_sh() { const SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); const SkPMColor pixels[] { SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), }; SkAutoTUnref<SkImage> image(SkImage::NewRasterCopy(info, pixels, sizeof(SkPMColor) * 2)); return image->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); } static SkShader* make_grad_sh() { const SkPoint pts[] {{ 0, 0 }, { 100, 100 }}; const SkColor colors[] { SK_ColorRED, SK_ColorBLUE }; return SkGradientShader::CreateLinear(pts, colors, nullptr, 2, SkShader::kClamp_TileMode); } static SkShader* make_cf_sh() { SkAutoTUnref<SkColorFilter> filter(make_mx_cf()); SkAutoTUnref<SkShader> shader(make_color_sh()); return shader->newWithColorFilter(filter); } static void compare_spans(const SkPM4f span4f[], const SkPMColor span4b[], int count, skiatest::Reporter* reporter, float tolerance = 1.0f/255) { for (int i = 0; i < count; ++i) { SkPM4f c0 = SkPM4f::FromPMColor(span4b[i]); SkPM4f c1 = span4f[i]; REPORTER_ASSERT(reporter, nearly_equal(c0, c1, tolerance)); } } DEF_TEST(Color4f_shader, reporter) { struct { SkShader* (*fFact)(); bool fSupports4f; float fTolerance; } recs[] = { { make_color_sh, true, 1.0f/255 }, // PMColor 4f gradients are interpolated in 255-multiplied values, so we need a // slightly relaxed tolerance to accommodate the cumulative precision deviation. { make_grad_sh, true, 1.001f/255 }, { make_image_sh, false, 1.0f/255 }, { make_cf_sh, true, 1.0f/255 }, }; SkPaint paint; for (const auto& rec : recs) { uint32_t storage[200]; paint.setShader(rec.fFact())->unref(); // Encourage 4f context selection. At some point we may need // to instantiate two separate contexts for optimal 4b/4f selection. const SkShader::ContextRec contextRec(paint, SkMatrix::I(), nullptr, SkShader::ContextRec::kPM4f_DstType); SkASSERT(paint.getShader()->contextSize(contextRec) <= sizeof(storage)); SkShader::Context* ctx = paint.getShader()->createContext(contextRec, storage); if (rec.fSupports4f) { const int N = 100; SkPM4f buffer4f[N]; ctx->shadeSpan4f(0, 0, buffer4f, N); SkPMColor buffer4b[N]; ctx->shadeSpan(0, 0, buffer4b, N); compare_spans(buffer4f, buffer4b, N, reporter, rec.fTolerance); } ctx->~Context(); } } DEF_TEST(Color4f_colorfilter, reporter) { struct { SkColorFilter* (*fFact)(); bool fSupports4f; } recs[] = { { make_mode_cf, true }, { make_mx_cf, true }, { make_compose_cf, true }, }; // prepare the src const int N = 100; SkPMColor src4b[N]; SkPM4f src4f[N]; SkRandom rand; for (int i = 0; i < N; ++i) { src4b[i] = SkPreMultiplyColor(rand.nextU()); src4f[i] = SkPM4f::FromPMColor(src4b[i]); } // confirm that our srcs are (nearly) equal compare_spans(src4f, src4b, N, reporter); for (const auto& rec : recs) { SkAutoTUnref<SkColorFilter> filter(rec.fFact()); SkPMColor dst4b[N]; filter->filterSpan(src4b, N, dst4b); SkPM4f dst4f[N]; filter->filterSpan4f(src4f, N, dst4f); compare_spans(dst4f, dst4b, N, reporter); } } /////////////////////////////////////////////////////////////////////////////////////////////////// typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst); static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) { const float kTolerance = 1.0f / 255; const SkColor colors[] = { 0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000 }; for (auto s32 : colors) { SkPMColor s_pm32 = SkPreMultiplyColor(s32); SkPM4f s_pm4f = SkColor4f::FromColor(s32).premul(); for (auto d32 : colors) { SkPMColor d_pm32 = SkPreMultiplyColor(d32); SkPM4f d_pm4f = SkColor4f::FromColor(d32).premul(); SkPMColor r32 = proc32(s_pm32, d_pm32); SkPM4f r4f = proc4f(s_pm4f, d_pm4f); SkPM4f r32_4f = SkPM4f::FromPMColor(r32); if (!nearly_equal(r4f, r32_4f, kTolerance)) { return false; } } } return true; } // Check that our Proc and Proc4f return (nearly) the same results // DEF_TEST(Color4f_xfermode_proc4f, reporter) { // TODO: extend xfermodes so that all cases can be tested. // for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) { SkXfermodeProc proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode); SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode); REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f)); } }