/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkRandom.h" #include "SkReader32.h" #include "SkWriter32.h" #include "Test.h" static void check_contents(skiatest::Reporter* reporter, const SkWriter32& writer, const void* expected, size_t size) { SkAutoSMalloc<256> storage(size); REPORTER_ASSERT(reporter, writer.bytesWritten() == size); writer.flatten(storage.get()); REPORTER_ASSERT(reporter, !memcmp(storage.get(), expected, size)); } static void test_reserve(skiatest::Reporter* reporter) { // There used to be a bug where we'd assert your first reservation had to // fit in external storage if you used it. This would crash in debug mode. uint8_t storage[4]; SkWriter32 writer(storage, sizeof(storage)); writer.reserve(40); } static void test_string_null(skiatest::Reporter* reporter) { uint8_t storage[8]; SkWriter32 writer(storage, sizeof(storage)); // Can we write nullptr? writer.writeString(nullptr); const int32_t expected[] = { 0x0, 0x0 }; check_contents(reporter, writer, expected, sizeof(expected)); } static void test_rewind(skiatest::Reporter* reporter) { SkSWriter32<32> writer; int32_t array[3] = { 1, 2, 4 }; REPORTER_ASSERT(reporter, 0 == writer.bytesWritten()); for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) { writer.writeInt(array[i]); } check_contents(reporter, writer, array, sizeof(array)); writer.rewindToOffset(2*sizeof(int32_t)); REPORTER_ASSERT(reporter, sizeof(array) - 4 == writer.bytesWritten()); writer.writeInt(3); REPORTER_ASSERT(reporter, sizeof(array) == writer.bytesWritten()); array[2] = 3; check_contents(reporter, writer, array, sizeof(array)); // test rewinding past allocated chunks. This used to crash because we // didn't truncate our link-list after freeing trailing blocks { SkWriter32 writer; for (int i = 0; i < 100; ++i) { writer.writeInt(i); } REPORTER_ASSERT(reporter, 100*4 == writer.bytesWritten()); for (int j = 100*4; j >= 0; j -= 16) { writer.rewindToOffset(j); } REPORTER_ASSERT(reporter, writer.bytesWritten() < 16); } } static void test_ptr(skiatest::Reporter* reporter) { SkSWriter32<32> writer; void* p0 = reporter; void* p1 = &writer; // try writing ptrs where at least one of them may be at a non-multiple of // 8 boundary, to confirm this works on 64bit machines. writer.writePtr(p0); writer.write8(0x33); writer.writePtr(p1); writer.write8(0x66); size_t size = writer.bytesWritten(); REPORTER_ASSERT(reporter, 2 * sizeof(void*) + 2 * sizeof(int32_t)); char buffer[32]; SkASSERT(sizeof(buffer) >= size); writer.flatten(buffer); SkReader32 reader(buffer, size); REPORTER_ASSERT(reporter, reader.readPtr() == p0); REPORTER_ASSERT(reporter, reader.readInt() == 0x33); REPORTER_ASSERT(reporter, reader.readPtr() == p1); REPORTER_ASSERT(reporter, reader.readInt() == 0x66); } static void test1(skiatest::Reporter* reporter, SkWriter32* writer) { const uint32_t data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { REPORTER_ASSERT(reporter, i*4 == writer->bytesWritten()); writer->write32(data[i]); REPORTER_ASSERT(reporter, data[i] == writer->readTAt<uint32_t>(i * 4)); } char buffer[sizeof(data)]; REPORTER_ASSERT(reporter, sizeof(buffer) == writer->bytesWritten()); writer->flatten(buffer); REPORTER_ASSERT(reporter, !memcmp(data, buffer, sizeof(buffer))); } static void test2(skiatest::Reporter* reporter, SkWriter32* writer) { static const char gStr[] = "abcdefghimjklmnopqrstuvwxyz"; size_t i; size_t len = 0; for (i = 0; i <= 26; ++i) { len += SkWriter32::WriteStringSize(gStr, i); writer->writeString(gStr, i); } REPORTER_ASSERT(reporter, writer->bytesWritten() == len); SkAutoMalloc storage(len); writer->flatten(storage.get()); SkReader32 reader; reader.setMemory(storage.get(), len); for (i = 0; i <= 26; ++i) { REPORTER_ASSERT(reporter, !reader.eof()); const char* str = reader.readString(&len); REPORTER_ASSERT(reporter, i == len); REPORTER_ASSERT(reporter, strlen(str) == len); REPORTER_ASSERT(reporter, !memcmp(str, gStr, len)); // Ensure that the align4 of the string is padded with zeroes. size_t alignedSize = SkAlign4(len + 1); for (size_t j = len; j < alignedSize; j++) { REPORTER_ASSERT(reporter, 0 == str[j]); } } REPORTER_ASSERT(reporter, reader.eof()); } static void testWritePad(skiatest::Reporter* reporter, SkWriter32* writer) { // Create some random data to write. const size_t dataSize = 10; SkAutoTMalloc<uint32_t> originalData(dataSize); { SkRandom rand(0); for (size_t i = 0; i < dataSize; i++) { originalData[(int) i] = rand.nextU(); } // Write the random data to the writer at different lengths for // different alignments. for (size_t len = 0; len < dataSize; len++) { writer->writePad(originalData.get(), len); } } size_t totalBytes = writer->bytesWritten(); SkAutoMalloc readStorage(totalBytes); writer->flatten(readStorage.get()); SkReader32 reader; reader.setMemory(readStorage.get(), totalBytes); for (size_t len = 0; len < dataSize; len++) { const char* readPtr = static_cast<const char*>(reader.skip(len)); // Ensure that the data read is the same as what was written. REPORTER_ASSERT(reporter, memcmp(readPtr, originalData.get(), len) == 0); // Ensure that the rest is padded with zeroes. const char* stop = readPtr + SkAlign4(len); readPtr += len; while (readPtr < stop) { REPORTER_ASSERT(reporter, *readPtr++ == 0); } } } static void testOverwriteT(skiatest::Reporter* reporter, SkWriter32* writer) { const size_t padding = 64; const uint32_t uint1 = 0x12345678; const uint32_t uint2 = 0x98765432; const SkScalar scalar1 = 1234.5678f; const SkScalar scalar2 = 9876.5432f; const SkRect rect1 = SkRect::MakeXYWH(1, 2, 3, 4); const SkRect rect2 = SkRect::MakeXYWH(5, 6, 7, 8); for (size_t i = 0; i < (padding / 4); ++i) { writer->write32(0); } writer->write32(uint1); writer->writeRect(rect1); writer->writeScalar(scalar1); for (size_t i = 0; i < (padding / 4); ++i) { writer->write32(0); } REPORTER_ASSERT(reporter, writer->readTAt<uint32_t>(padding) == uint1); REPORTER_ASSERT(reporter, writer->readTAt<SkRect>(padding + sizeof(uint32_t)) == rect1); REPORTER_ASSERT(reporter, writer->readTAt<SkScalar>( padding + sizeof(uint32_t) + sizeof(SkRect)) == scalar1); writer->overwriteTAt(padding, uint2); writer->overwriteTAt(padding + sizeof(uint32_t), rect2); writer->overwriteTAt(padding + sizeof(uint32_t) + sizeof(SkRect), scalar2); REPORTER_ASSERT(reporter, writer->readTAt<uint32_t>(padding) == uint2); REPORTER_ASSERT(reporter, writer->readTAt<SkRect>(padding + sizeof(uint32_t)) == rect2); REPORTER_ASSERT(reporter, writer->readTAt<SkScalar>( padding + sizeof(uint32_t) + sizeof(SkRect)) == scalar2); } DEF_TEST(Writer32_dynamic, reporter) { SkWriter32 writer; test1(reporter, &writer); writer.reset(); test2(reporter, &writer); writer.reset(); testWritePad(reporter, &writer); writer.reset(); testOverwriteT(reporter, &writer); } DEF_TEST(Writer32_contiguous, reporter) { uint32_t storage[256]; SkWriter32 writer; writer.reset(storage, sizeof(storage)); // This write is small enough to fit in storage, so it's contiguous. test1(reporter, &writer); REPORTER_ASSERT(reporter, writer.contiguousArray() != nullptr); // Everything other aspect of contiguous/non-contiguous is an // implementation detail, not part of the public contract for // SkWriter32, and so not tested here. } DEF_TEST(Writer32_small, reporter) { SkSWriter32<8 * sizeof(intptr_t)> writer; test1(reporter, &writer); writer.reset(); // should just rewind our storage test2(reporter, &writer); writer.reset(); testWritePad(reporter, &writer); writer.reset(); testOverwriteT(reporter, &writer); } DEF_TEST(Writer32_large, reporter) { SkSWriter32<1024 * sizeof(intptr_t)> writer; test1(reporter, &writer); writer.reset(); // should just rewind our storage test2(reporter, &writer); writer.reset(); testWritePad(reporter, &writer); writer.reset(); testOverwriteT(reporter, &writer); } DEF_TEST(Writer32_misc, reporter) { test_reserve(reporter); test_string_null(reporter); test_ptr(reporter); test_rewind(reporter); }