// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/platform/time.h" #if V8_OS_POSIX #include <fcntl.h> // for O_RDONLY #include <sys/time.h> #include <unistd.h> #endif #if V8_OS_MACOSX #include <mach/mach_time.h> #endif #include <cstring> #include <ostream> #if V8_OS_WIN #include "src/base/atomicops.h" #include "src/base/lazy-instance.h" #include "src/base/win32-headers.h" #endif #include "src/base/cpu.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" namespace v8 { namespace base { TimeDelta TimeDelta::FromDays(int days) { return TimeDelta(days * Time::kMicrosecondsPerDay); } TimeDelta TimeDelta::FromHours(int hours) { return TimeDelta(hours * Time::kMicrosecondsPerHour); } TimeDelta TimeDelta::FromMinutes(int minutes) { return TimeDelta(minutes * Time::kMicrosecondsPerMinute); } TimeDelta TimeDelta::FromSeconds(int64_t seconds) { return TimeDelta(seconds * Time::kMicrosecondsPerSecond); } TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); } TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); } int TimeDelta::InDays() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); } int TimeDelta::InHours() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); } int TimeDelta::InMinutes() const { return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); } double TimeDelta::InSecondsF() const { return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; } int64_t TimeDelta::InSeconds() const { return delta_ / Time::kMicrosecondsPerSecond; } double TimeDelta::InMillisecondsF() const { return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMilliseconds() const { return delta_ / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InNanoseconds() const { return delta_ * Time::kNanosecondsPerMicrosecond; } #if V8_OS_MACOSX TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct mach_timespec TimeDelta::ToMachTimespec() const { struct mach_timespec ts; DCHECK(delta_ >= 0); ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_MACOSX #if V8_OS_POSIX TimeDelta TimeDelta::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct timespec TimeDelta::ToTimespec() const { struct timespec ts; ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_POSIX #if V8_OS_WIN // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. To avoid any drift, we // periodically resync the internal clock to the system clock. class Clock final { public: Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} Time Now() { // Time between resampling the un-granular clock for this API (1 minute). const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); LockGuard<Mutex> lock_guard(&mutex_); // Determine current time and ticks. TimeTicks ticks = GetSystemTicks(); Time time = GetSystemTime(); // Check if we need to synchronize with the system clock due to a backwards // time change or the amount of time elapsed. TimeDelta elapsed = ticks - initial_ticks_; if (time < initial_time_ || elapsed > kMaxElapsedTime) { initial_ticks_ = ticks; initial_time_ = time; return time; } return initial_time_ + elapsed; } Time NowFromSystemTime() { LockGuard<Mutex> lock_guard(&mutex_); initial_ticks_ = GetSystemTicks(); initial_time_ = GetSystemTime(); return initial_time_; } private: static TimeTicks GetSystemTicks() { return TimeTicks::Now(); } static Time GetSystemTime() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return Time::FromFiletime(ft); } TimeTicks initial_ticks_; Time initial_time_; Mutex mutex_; }; static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>, ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER; Time Time::Now() { return clock.Pointer()->Now(); } Time Time::NowFromSystemTime() { return clock.Pointer()->NowFromSystemTime(); } // Time between windows epoch and standard epoch. static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); Time Time::FromFiletime(FILETIME ft) { if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { return Time(); } if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { return Max(); } int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; return Time(us - kTimeToEpochInMicroseconds); } FILETIME Time::ToFiletime() const { DCHECK(us_ >= 0); FILETIME ft; if (IsNull()) { ft.dwLowDateTime = 0; ft.dwHighDateTime = 0; return ft; } if (IsMax()) { ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); return ft; } uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; ft.dwLowDateTime = static_cast<DWORD>(us); ft.dwHighDateTime = static_cast<DWORD>(us >> 32); return ft; } #elif V8_OS_POSIX Time Time::Now() { struct timeval tv; int result = gettimeofday(&tv, NULL); DCHECK_EQ(0, result); USE(result); return FromTimeval(tv); } Time Time::NowFromSystemTime() { return Now(); } Time Time::FromTimespec(struct timespec ts) { DCHECK(ts.tv_nsec >= 0); DCHECK(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT if (ts.tv_nsec == 0 && ts.tv_sec == 0) { return Time(); } if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT ts.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(ts.tv_sec * kMicrosecondsPerSecond + ts.tv_nsec / kNanosecondsPerMicrosecond); } struct timespec Time::ToTimespec() const { struct timespec ts; if (IsNull()) { ts.tv_sec = 0; ts.tv_nsec = 0; return ts; } if (IsMax()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT return ts; } ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond; return ts; } Time Time::FromTimeval(struct timeval tv) { DCHECK(tv.tv_usec >= 0); DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); if (tv.tv_usec == 0 && tv.tv_sec == 0) { return Time(); } if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && tv.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); } struct timeval Time::ToTimeval() const { struct timeval tv; if (IsNull()) { tv.tv_sec = 0; tv.tv_usec = 0; return tv; } if (IsMax()) { tv.tv_sec = std::numeric_limits<time_t>::max(); tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); return tv; } tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); tv.tv_usec = us_ % kMicrosecondsPerSecond; return tv; } #endif // V8_OS_WIN Time Time::FromJsTime(double ms_since_epoch) { // The epoch is a valid time, so this constructor doesn't interpret // 0 as the null time. if (ms_since_epoch == std::numeric_limits<double>::max()) { return Max(); } return Time( static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); } double Time::ToJsTime() const { if (IsNull()) { // Preserve 0 so the invalid result doesn't depend on the platform. return 0; } if (IsMax()) { // Preserve max without offset to prevent overflow. return std::numeric_limits<double>::max(); } return static_cast<double>(us_) / kMicrosecondsPerMillisecond; } std::ostream& operator<<(std::ostream& os, const Time& time) { return os << time.ToJsTime(); } #if V8_OS_WIN class TickClock { public: virtual ~TickClock() {} virtual int64_t Now() = 0; virtual bool IsHighResolution() = 0; }; // Overview of time counters: // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, the CPU counter is unreliable and should not // be used in production. Its biggest issue is that it is per processor and it // is not synchronized between processors. Also, on some computers, the counters // will change frequency due to thermal and power changes, and stop in some // states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (100 nanoseconds) time stamp but is comparatively more expensive // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. // (with some help from ACPI). // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx // in the worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent result on a multiprocessor computer, but it is unreliable in // reality due to bugs in BIOS or HAL on some, especially old computers. // With recent updates on HAL and newer BIOS, QPC is getting more reliable but // it should be used with caution. // // (3) System time. The system time provides a low-resolution (typically 10ms // to 55 milliseconds) time stamp but is comparatively less expensive to // retrieve and more reliable. class HighResolutionTickClock final : public TickClock { public: explicit HighResolutionTickClock(int64_t ticks_per_second) : ticks_per_second_(ticks_per_second) { DCHECK_LT(0, ticks_per_second); } virtual ~HighResolutionTickClock() {} int64_t Now() override { LARGE_INTEGER now; BOOL result = QueryPerformanceCounter(&now); DCHECK(result); USE(result); // Intentionally calculate microseconds in a round about manner to avoid // overflow and precision issues. Think twice before simplifying! int64_t whole_seconds = now.QuadPart / ticks_per_second_; int64_t leftover_ticks = now.QuadPart % ticks_per_second_; int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow() // will never return 0. return ticks + 1; } bool IsHighResolution() override { return true; } private: int64_t ticks_per_second_; }; class RolloverProtectedTickClock final : public TickClock { public: RolloverProtectedTickClock() : rollover_(0) {} virtual ~RolloverProtectedTickClock() {} int64_t Now() override { // We use timeGetTime() to implement TimeTicks::Now(), which rolls over // every ~49.7 days. We try to track rollover ourselves, which works if // TimeTicks::Now() is called at least every 24 days. // Note that we do not use GetTickCount() here, since timeGetTime() gives // more predictable delta values, as described here: // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx // timeGetTime() provides 1ms granularity when combined with // timeBeginPeriod(). If the host application for V8 wants fast timers, it // can use timeBeginPeriod() to increase the resolution. // We use a lock-free version because the sampler thread calls it // while having the rest of the world stopped, that could cause a deadlock. base::Atomic32 rollover = base::Acquire_Load(&rollover_); uint32_t now = static_cast<uint32_t>(timeGetTime()); if ((now >> 31) != static_cast<uint32_t>(rollover & 1)) { base::Release_CompareAndSwap(&rollover_, rollover, rollover + 1); ++rollover; } uint64_t ms = (static_cast<uint64_t>(rollover) << 31) | now; return static_cast<int64_t>(ms * Time::kMicrosecondsPerMillisecond); } bool IsHighResolution() override { return false; } private: base::Atomic32 rollover_; }; static LazyStaticInstance<RolloverProtectedTickClock, DefaultConstructTrait<RolloverProtectedTickClock>, ThreadSafeInitOnceTrait>::type tick_clock = LAZY_STATIC_INSTANCE_INITIALIZER; struct CreateHighResTickClockTrait { static TickClock* Create() { // Check if the installed hardware supports a high-resolution performance // counter, and if not fallback to the low-resolution tick clock. LARGE_INTEGER ticks_per_second; if (!QueryPerformanceFrequency(&ticks_per_second)) { return tick_clock.Pointer(); } // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter // is unreliable, fallback to the low-resolution tick clock. CPU cpu; if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { return tick_clock.Pointer(); } return new HighResolutionTickClock(ticks_per_second.QuadPart); } }; static LazyDynamicInstance<TickClock, CreateHighResTickClockTrait, ThreadSafeInitOnceTrait>::type high_res_tick_clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER; TimeTicks TimeTicks::Now() { // Make sure we never return 0 here. TimeTicks ticks(tick_clock.Pointer()->Now()); DCHECK(!ticks.IsNull()); return ticks; } TimeTicks TimeTicks::HighResolutionNow() { // Make sure we never return 0 here. TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); DCHECK(!ticks.IsNull()); return ticks; } // static bool TimeTicks::IsHighResolutionClockWorking() { return high_res_tick_clock.Pointer()->IsHighResolution(); } // static TimeTicks TimeTicks::KernelTimestampNow() { return TimeTicks(0); } // static bool TimeTicks::KernelTimestampAvailable() { return false; } #else // V8_OS_WIN TimeTicks TimeTicks::Now() { return HighResolutionNow(); } TimeTicks TimeTicks::HighResolutionNow() { int64_t ticks; #if V8_OS_MACOSX static struct mach_timebase_info info; if (info.denom == 0) { kern_return_t result = mach_timebase_info(&info); DCHECK_EQ(KERN_SUCCESS, result); USE(result); } ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * info.numer / info.denom); #elif V8_OS_SOLARIS ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_POSIX struct timespec ts; int result = clock_gettime(CLOCK_MONOTONIC, &ts); DCHECK_EQ(0, result); USE(result); ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); #endif // V8_OS_MACOSX // Make sure we never return 0 here. return TimeTicks(ticks + 1); } // static bool TimeTicks::IsHighResolutionClockWorking() { return true; } #if V8_OS_LINUX class KernelTimestampClock { public: KernelTimestampClock() : clock_fd_(-1), clock_id_(kClockInvalid) { clock_fd_ = open(kTraceClockDevice, O_RDONLY); if (clock_fd_ == -1) { return; } clock_id_ = get_clockid(clock_fd_); } virtual ~KernelTimestampClock() { if (clock_fd_ != -1) { close(clock_fd_); } } int64_t Now() { if (clock_id_ == kClockInvalid) { return 0; } struct timespec ts; clock_gettime(clock_id_, &ts); return ((int64_t)ts.tv_sec * kNsecPerSec) + ts.tv_nsec; } bool Available() { return clock_id_ != kClockInvalid; } private: static const clockid_t kClockInvalid = -1; static const char kTraceClockDevice[]; static const uint64_t kNsecPerSec = 1000000000; int clock_fd_; clockid_t clock_id_; static int get_clockid(int fd) { return ((~(clockid_t)(fd) << 3) | 3); } }; // Timestamp module name const char KernelTimestampClock::kTraceClockDevice[] = "/dev/trace_clock"; #else class KernelTimestampClock { public: KernelTimestampClock() {} int64_t Now() { return 0; } bool Available() { return false; } }; #endif // V8_OS_LINUX static LazyStaticInstance<KernelTimestampClock, DefaultConstructTrait<KernelTimestampClock>, ThreadSafeInitOnceTrait>::type kernel_tick_clock = LAZY_STATIC_INSTANCE_INITIALIZER; // static TimeTicks TimeTicks::KernelTimestampNow() { return TimeTicks(kernel_tick_clock.Pointer()->Now()); } // static bool TimeTicks::KernelTimestampAvailable() { return kernel_tick_clock.Pointer()->Available(); } #endif // V8_OS_WIN } // namespace base } // namespace v8