/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_quaternion /// @file glm/gtc/quaternion.inl /// @date 2009-05-21 / 2011-06-15 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include "../trigonometric.hpp" #include "../geometric.hpp" #include "../exponential.hpp" #include <limits> namespace glm{ namespace detail { template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR length_t tquat<T, P>::length() const { return 4; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat() : x(0), y(0), z(0), w(1) {} template <typename T, precision P> template <typename U, precision Q> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( tquat<U, Q> const & q ) : x(q.x), y(q.y), z(q.z), w(q.w) {} template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( T const & s, tvec3<T, P> const & v ) : x(v.x), y(v.y), z(v.z), w(s) {} template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( T const & w, T const & x, T const & y, T const & z ) : x(x), y(y), z(z), w(w) {} ////////////////////////////////////////////////////////////// // tquat conversions //template <typename valType> //GLM_FUNC_QUALIFIER tquat<valType>::tquat //( // valType const & pitch, // valType const & yaw, // valType const & roll //) //{ // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); // // this->w = c.x * c.y * c.z + s.x * s.y * s.z; // this->x = s.x * c.y * c.z - c.x * s.y * s.z; // this->y = c.x * s.y * c.z + s.x * c.y * s.z; // this->z = c.x * c.y * s.z - s.x * s.y * c.z; //} template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( detail::tvec3<T, P> const & u, detail::tvec3<T, P> const & v ) { detail::tvec3<T, P> w = cross(u, v); T Dot = detail::compute_dot<detail::tvec3, T, P>::call(u, v); detail::tquat<T, P> q(T(1) + Dot, w.x, w.y, w.z); *this = normalize(q); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( tvec3<T, P> const & eulerAngle ) { tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); this->w = c.x * c.y * c.z + s.x * s.y * s.z; this->x = s.x * c.y * c.z - c.x * s.y * s.z; this->y = c.x * s.y * c.z + s.x * c.y * s.z; this->z = c.x * c.y * s.z - s.x * s.y * c.z; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( tmat3x3<T, P> const & m ) { *this = quat_cast(m); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P>::tquat ( tmat4x4<T, P> const & m ) { *this = quat_cast(m); } ////////////////////////////////////////////////////////////// // tquat<T, P> accesses template <typename T, precision P> GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[] (length_t i) { assert(i >= 0 && i < this->length()); return (&x)[i]; } template <typename T, precision P> GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[] (length_t i) const { assert(i >= 0 && i < this->length()); return (&x)[i]; } }//namespace detail template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> conjugate ( detail::tquat<T, P> const & q ) { return detail::tquat<T, P>(q.w, -q.x, -q.y, -q.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> inverse ( detail::tquat<T, P> const & q ) { return conjugate(q) / dot(q, q); } namespace detail { ////////////////////////////////////////////////////////////// // tquat<valType> operators template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator += ( tquat<T, P> const & q ) { this->w += q.w; this->x += q.x; this->y += q.y; this->z += q.z; return *this; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator *= ( tquat<T, P> const & q ) { tquat<T, P> const p(*this); this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; return *this; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator *= ( T const & s ) { this->w *= s; this->x *= s; this->y *= s; this->z *= s; return *this; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator /= ( T const & s ) { this->w /= s; this->x /= s; this->y /= s; this->z /= s; return *this; } ////////////////////////////////////////////////////////////// // tquat<T, P> external functions template <typename T, precision P> struct compute_dot<tquat, T, P> { static T call(tquat<T, P> const & x, tquat<T, P> const & y) { tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; ////////////////////////////////////////////////////////////// // tquat<T, P> external operators template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator- ( detail::tquat<T, P> const & q ) { return detail::tquat<T, P>(-q.w, -q.x, -q.y, -q.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator+ ( detail::tquat<T, P> const & q, detail::tquat<T, P> const & p ) { return detail::tquat<T, P>(q) += p; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator* ( detail::tquat<T, P> const & q, detail::tquat<T, P> const & p ) { return detail::tquat<T, P>(q) *= p; } // Transformation template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator* ( detail::tquat<T, P> const & q, detail::tvec3<T, P> const & v ) { T Two(2); detail::tvec3<T, P> uv, uuv; detail::tvec3<T, P> QuatVector(q.x, q.y, q.z); uv = glm::cross(QuatVector, v); uuv = glm::cross(QuatVector, uv); uv *= (Two * q.w); uuv *= Two; return v + uv + uuv; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator* ( detail::tvec3<T, P> const & v, detail::tquat<T, P> const & q ) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator* ( detail::tquat<T, P> const & q, detail::tvec4<T, P> const & v ) { return detail::tvec4<T, P>(q * detail::tvec3<T, P>(v), v.w); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator* ( detail::tvec4<T, P> const & v, detail::tquat<T, P> const & q ) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator* ( detail::tquat<T, P> const & q, T const & s ) { return detail::tquat<T, P>( q.w * s, q.x * s, q.y * s, q.z * s); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator* ( T const & s, detail::tquat<T, P> const & q ) { return q * s; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> operator/ ( detail::tquat<T, P> const & q, T const & s ) { return detail::tquat<T, P>( q.w / s, q.x / s, q.y / s, q.z / s); } ////////////////////////////////////// // Boolean operators template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator== ( detail::tquat<T, P> const & q1, detail::tquat<T, P> const & q2 ) { return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); } template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator!= ( detail::tquat<T, P> const & q1, detail::tquat<T, P> const & q2 ) { return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); } }//namespace detail //////////////////////////////////////////////////////// template <typename T, precision P> GLM_FUNC_QUALIFIER T length ( detail::tquat<T, P> const & q ) { return glm::sqrt(dot(q, q)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> normalize ( detail::tquat<T, P> const & q ) { T len = length(q); if(len <= T(0)) // Problem return detail::tquat<T, P>(1, 0, 0, 0); T oneOverLen = T(1) / len; return detail::tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> cross ( detail::tquat<T, P> const & q1, detail::tquat<T, P> const & q2 ) { return detail::tquat<T, P>( q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); } /* // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> mix ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a ) { if(a <= T(0)) return x; if(a >= T(1)) return y; float fCos = dot(x, y); detail::tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; if(fCos < T(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem float k0, k1; if(fCos > T(0.9999)) { k0 = T(1) - a; k1 = T(0) + a; //BUG!!! 1.0f + a; } else { T fSin = sqrt(T(1) - fCos * fCos); T fAngle = atan(fSin, fCos); T fOneOverSin = static_cast<T>(1) / fSin; k0 = sin((T(1) - a) * fAngle) * fOneOverSin; k1 = sin((T(0) + a) * fAngle) * fOneOverSin; } return detail::tquat<T, P>( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> mix2 ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a ) { bool flip = false; if(a <= static_cast<T>(0)) return x; if(a >= static_cast<T>(1)) return y; T cos_t = dot(x, y); if(cos_t < T(0)) { cos_t = -cos_t; flip = true; } T alpha(0), beta(0); if(T(1) - cos_t < 1e-7) beta = static_cast<T>(1) - alpha; else { T theta = acos(cos_t); T sin_t = sin(theta); beta = sin(theta * (T(1) - alpha)) / sin_t; alpha = sin(alpha * theta) / sin_t; } if(flip) alpha = -alpha; return normalize(beta * x + alpha * y); } */ template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> mix ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a ) { T cosTheta = dot(x, y); // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return detail::tquat<T, P>( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), mix(x.z, y.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); } } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> lerp ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a ) { // Lerp is only defined in [0, 1] assert(a >= static_cast<T>(0)); assert(a <= static_cast<T>(1)); return x * (T(1) - a) + (y * a); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> slerp ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a ) { detail::tquat<T, P> z = y; T cosTheta = dot(x, y); // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < T(0)) { z = -y; cosTheta = -cosTheta; } // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator if(cosTheta > T(1) - epsilon<T>()) { // Linear interpolation return detail::tquat<T, P>( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), mix(x.z, y.z, a)); } else { // Essential Mathematics, page 467 T angle = acos(cosTheta); return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); } } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> rotate ( detail::tquat<T, P> const & q, T const & angle, detail::tvec3<T, P> const & v ) { detail::tvec3<T, P> Tmp = v; // Axis of rotation must be normalised T len = glm::length(Tmp); if(abs(len - T(1)) > T(0.001)) { T oneOverLen = static_cast<T>(1) / len; Tmp.x *= oneOverLen; Tmp.y *= oneOverLen; Tmp.z *= oneOverLen; } #ifdef GLM_FORCE_RADIANS T const AngleRad(angle); #else # pragma message("GLM: rotate function taking degrees as a parameter is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") T const AngleRad = radians(angle); #endif T const Sin = sin(AngleRad * T(0.5)); return q * detail::tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); //return gtc::quaternion::cross(q, detail::tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> eulerAngles ( detail::tquat<T, P> const & x ) { return detail::tvec3<T, P>(pitch(x), yaw(x), roll(x)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T roll ( detail::tquat<T, P> const & q ) { #ifdef GLM_FORCE_RADIANS return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); #else # pragma message("GLM: roll function returning degrees is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") return glm::degrees(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); #endif } template <typename T, precision P> GLM_FUNC_QUALIFIER T pitch ( detail::tquat<T, P> const & q ) { #ifdef GLM_FORCE_RADIANS return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); #else # pragma message("GLM: pitch function returning degrees is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") return glm::degrees(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); #endif } template <typename T, precision P> GLM_FUNC_QUALIFIER T yaw ( detail::tquat<T, P> const & q ) { #ifdef GLM_FORCE_RADIANS return asin(T(-2) * (q.x * q.z - q.w * q.y)); #else # pragma message("GLM: yaw function returning degrees is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") return glm::degrees(asin(T(-2) * (q.x * q.z - q.w * q.y))); #endif } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> mat3_cast ( detail::tquat<T, P> const & q ) { detail::tmat3x3<T, P> Result(T(1)); T qxx(q.x * q.x); T qyy(q.y * q.y); T qzz(q.z * q.z); T qxz(q.x * q.z); T qxy(q.x * q.y); T qyz(q.y * q.z); T qwx(q.w * q.x); T qwy(q.w * q.y); T qwz(q.w * q.z); Result[0][0] = 1 - 2 * (qyy + qzz); Result[0][1] = 2 * (qxy + qwz); Result[0][2] = 2 * (qxz - qwy); Result[1][0] = 2 * (qxy - qwz); Result[1][1] = 1 - 2 * (qxx + qzz); Result[1][2] = 2 * (qyz + qwx); Result[2][0] = 2 * (qxz + qwy); Result[2][1] = 2 * (qyz - qwx); Result[2][2] = 1 - 2 * (qxx + qyy); return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> mat4_cast ( detail::tquat<T, P> const & q ) { return detail::tmat4x4<T, P>(mat3_cast(q)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> quat_cast ( detail::tmat3x3<T, P> const & m ) { T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; int biggestIndex = 0; T fourBiggestSquaredMinus1 = fourWSquaredMinus1; if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourXSquaredMinus1; biggestIndex = 1; } if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourYSquaredMinus1; biggestIndex = 2; } if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) { fourBiggestSquaredMinus1 = fourZSquaredMinus1; biggestIndex = 3; } T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); T mult = static_cast<T>(0.25) / biggestVal; detail::tquat<T, P> Result; switch(biggestIndex) { case 0: Result.w = biggestVal; Result.x = (m[1][2] - m[2][1]) * mult; Result.y = (m[2][0] - m[0][2]) * mult; Result.z = (m[0][1] - m[1][0]) * mult; break; case 1: Result.w = (m[1][2] - m[2][1]) * mult; Result.x = biggestVal; Result.y = (m[0][1] + m[1][0]) * mult; Result.z = (m[2][0] + m[0][2]) * mult; break; case 2: Result.w = (m[2][0] - m[0][2]) * mult; Result.x = (m[0][1] + m[1][0]) * mult; Result.y = biggestVal; Result.z = (m[1][2] + m[2][1]) * mult; break; case 3: Result.w = (m[0][1] - m[1][0]) * mult; Result.x = (m[2][0] + m[0][2]) * mult; Result.y = (m[1][2] + m[2][1]) * mult; Result.z = biggestVal; break; default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. assert(false); break; } return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> quat_cast ( detail::tmat4x4<T, P> const & m4 ) { return quat_cast(detail::tmat3x3<T, P>(m4)); } template <typename T, precision P> GLM_FUNC_QUALIFIER T angle ( detail::tquat<T, P> const & x ) { #ifdef GLM_FORCE_RADIANS return acos(x.w) * T(2); #else # pragma message("GLM: angle function returning degrees is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") return glm::degrees(acos(x.w) * T(2)); #endif } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> axis ( detail::tquat<T, P> const & x ) { T tmp1 = static_cast<T>(1) - x.w * x.w; if(tmp1 <= static_cast<T>(0)) return detail::tvec3<T, P>(0, 0, 1); T tmp2 = static_cast<T>(1) / sqrt(tmp1); return detail::tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tquat<T, P> angleAxis ( T const & angle, detail::tvec3<T, P> const & v ) { detail::tquat<T, P> result; #ifdef GLM_FORCE_RADIANS T const a(angle); #else # pragma message("GLM: angleAxis function taking degrees as a parameter is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.") T const a(glm::radians(angle)); #endif T s = glm::sin(a * T(0.5)); result.w = glm::cos(a * T(0.5)); result.x = v.x * s; result.y = v.y * s; result.z = v.z * s; return result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> lessThan ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] < y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> lessThanEqual ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] <= y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> greaterThan ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] > y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> greaterThanEqual ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] >= y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> equal ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] == y[i]; return Result; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<bool, P> notEqual ( detail::tquat<T, P> const & x, detail::tquat<T, P> const & y ) { detail::tvec4<bool, P> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] != y[i]; return Result; } }//namespace glm