/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtx_dual_quaternion /// @file glm/gtx/dual_quaternion.inl /// @date 2013-02-10 / 2013-02-13 /// @author Maksim Vorobiev (msomeone@gmail.com) /////////////////////////////////////////////////////////////////////////////////// #include "../geometric.hpp" #include <limits> namespace glm{ namespace detail { template <typename T, precision P> GLM_FUNC_QUALIFIER GLM_CONSTEXPR int tdualquat<T, P>::length() const { return 8; } template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat() : real(tquat<T, P>()), dual(tquat<T, P>(T(0), T(0), T(0), T(0))) {} template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat ( tquat<T, P> const & r ) : real(r), dual(tquat<T, P>(T(0), T(0), T(0), T(0))) {} template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat ( tquat<T, P> const & r, tquat<T, P> const & d ) : real(r), dual(d) {} template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat ( tquat<T, P> const & q, tvec3<T, P> const& p ) : real(q), dual( T(-0.5) * ( p.x*q.x + p.y*q.y + p.z*q.z), T(+0.5) * ( p.x*q.w + p.y*q.z - p.z*q.y), T(+0.5) * (-p.x*q.z + p.y*q.w + p.z*q.x), T(+0.5) * ( p.x*q.y - p.y*q.x + p.z*q.w)) {} ////////////////////////////////////////////////////////////// // tdualquat conversions template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat ( tmat2x4<T, P> const & m ) { *this = dualquat_cast(m); } template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat ( tmat3x4<T, P> const & m ) { *this = dualquat_cast(m); } ////////////////////////////////////////////////////////////// // tdualquat<T, P> accesses template <typename T, precision P> GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type & tdualquat<T, P>::operator [] (int i) { assert(i >= 0 && i < this->length()); return (&real)[i]; } template <typename T, precision P> GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type const & tdualquat<T, P>::operator [] (int i) const { assert(i >= 0 && i < this->length()); return (&real)[i]; } ////////////////////////////////////////////////////////////// // tdualquat<valType> operators template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator *= ( T const & s ) { this->real *= s; this->dual *= s; return *this; } template <typename T, precision P> GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator /= ( T const & s ) { this->real /= s; this->dual /= s; return *this; } ////////////////////////////////////////////////////////////// // tquat<valType> external operators template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator- ( detail::tdualquat<T, P> const & q ) { return detail::tdualquat<T, P>(-q.real,-q.dual); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator+ ( detail::tdualquat<T, P> const & q, detail::tdualquat<T, P> const & p ) { return detail::tdualquat<T, P>(q.real + p.real,q.dual + p.dual); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator* ( detail::tdualquat<T, P> const & p, detail::tdualquat<T, P> const & o ) { return detail::tdualquat<T, P>(p.real * o.real,p.real * o.dual + p.dual * o.real); } // Transformation template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator* ( detail::tdualquat<T, P> const & q, detail::tvec3<T, P> const & v ) { detail::tvec3<T, P> const real_v3(q.real.x,q.real.y,q.real.z); detail::tvec3<T, P> const dual_v3(q.dual.x,q.dual.y,q.dual.z); return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * T(2) + v; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator* ( detail::tvec3<T, P> const & v, detail::tdualquat<T, P> const & q ) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator* ( detail::tdualquat<T, P> const & q, detail::tvec4<T, P> const & v ) { return detail::tvec4<T, P>(q * detail::tvec3<T, P>(v), v.w); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator* ( detail::tvec4<T, P> const & v, detail::tdualquat<T, P> const & q ) { return glm::inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator* ( detail::tdualquat<T, P> const & q, T const & s ) { return detail::tdualquat<T, P>(q.real * s, q.dual * s); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator* ( T const & s, detail::tdualquat<T, P> const & q ) { return q * s; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator/ ( detail::tdualquat<T, P> const & q, T const & s ) { return detail::tdualquat<T, P>(q.real / s, q.dual / s); } ////////////////////////////////////// // Boolean operators template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator== ( detail::tdualquat<T, P> const & q1, detail::tdualquat<T, P> const & q2 ) { return (q1.real == q2.real) && (q1.dual == q2.dual); } template <typename T, precision P> GLM_FUNC_QUALIFIER bool operator!= ( detail::tdualquat<T, P> const & q1, detail::tdualquat<T, P> const & q2 ) { return (q1.real != q2.dual) || (q1.real != q2.dual); } }//namespace detail //////////////////////////////////////////////////////// template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> normalize ( detail::tdualquat<T, P> const & q ) { return q / length(q.real); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> lerp ( detail::tdualquat<T, P> const & x, detail::tdualquat<T, P> const & y, T const & a ) { // Dual Quaternion Linear blend aka DLB: // Lerp is only defined in [0, 1] assert(a >= static_cast<T>(0)); assert(a <= static_cast<T>(1)); T const k = dot(x.real,y.real) < static_cast<T>(0) ? -a : a; T const one(1); return detail::tdualquat<T, P>(x * (one - a) + y * k); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> inverse ( detail::tdualquat<T, P> const & q ) { const glm::detail::tquat<T, P> real = conjugate(q.real); const glm::detail::tquat<T, P> dual = conjugate(q.dual); return detail::tdualquat<T, P>(real, dual + (real * (-2.0f * dot(real,dual)))); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tmat2x4<T, P> mat2x4_cast ( detail::tdualquat<T, P> const & x ) { return detail::tmat2x4<T, P>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w ); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tmat3x4<T, P> mat3x4_cast ( detail::tdualquat<T, P> const & x ) { detail::tquat<T, P> r = x.real / length2(x.real); detail::tquat<T, P> const rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z); r *= static_cast<T>(2); T const xy = r.x * x.real.y; T const xz = r.x * x.real.z; T const yz = r.y * x.real.z; T const wx = r.w * x.real.x; T const wy = r.w * x.real.y; T const wz = r.w * x.real.z; detail::tvec4<T, P> const a( rr.w + rr.x - rr.y - rr.z, xy - wz, xz + wy, -(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y)); detail::tvec4<T, P> const b( xy + wz, rr.w + rr.y - rr.x - rr.z, yz - wx, -(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x)); detail::tvec4<T, P> const c( xz - wy, yz + wx, rr.w + rr.z - rr.x - rr.y, -(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w)); return detail::tmat3x4<T, P>(a, b, c); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> dualquat_cast ( detail::tmat2x4<T, P> const & x ) { return detail::tdualquat<T, P>( detail::tquat<T, P>( x[0].w, x[0].x, x[0].y, x[0].z ), detail::tquat<T, P>( x[1].w, x[1].x, x[1].y, x[1].z )); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tdualquat<T, P> dualquat_cast ( detail::tmat3x4<T, P> const & x ) { detail::tquat<T, P> real; T const trace = x[0].x + x[1].y + x[2].z; if(trace > T(0)) { T const r = sqrt(T(1) + trace); T const invr = static_cast<T>(0.5) / r; real.w = static_cast<T>(0.5) * r; real.x = (x[2].y - x[1].z) * invr; real.y = (x[0].z - x[2].x) * invr; real.z = (x[1].x - x[0].y) * invr; } else if(x[0].x > x[1].y && x[0].x > x[2].z) { T const r = sqrt(T(1) + x[0].x - x[1].y - x[2].z); T const invr = static_cast<T>(0.5) / r; real.x = static_cast<T>(0.5)*r; real.y = (x[1].x + x[0].y) * invr; real.z = (x[0].z + x[2].x) * invr; real.w = (x[2].y - x[1].z) * invr; } else if(x[1].y > x[2].z) { T const r = sqrt(T(1) + x[1].y - x[0].x - x[2].z); T const invr = static_cast<T>(0.5) / r; real.x = (x[1].x + x[0].y) * invr; real.y = static_cast<T>(0.5) * r; real.z = (x[2].y + x[1].z) * invr; real.w = (x[0].z - x[2].x) * invr; } else { T const r = sqrt(T(1) + x[2].z - x[0].x - x[1].y); T const invr = static_cast<T>(0.5) / r; real.x = (x[0].z + x[2].x) * invr; real.y = (x[2].y + x[1].z) * invr; real.z = static_cast<T>(0.5) * r; real.w = (x[1].x - x[0].y) * invr; } detail::tquat<T, P> dual; dual.x = T(0.5) * ( x[0].w * real.w + x[1].w * real.z - x[2].w * real.y); dual.y = T(0.5) * (-x[0].w * real.z + x[1].w * real.w + x[2].w * real.x); dual.z = T(0.5) * ( x[0].w * real.y - x[1].w * real.x + x[2].w * real.w); dual.w = -T(0.5) * ( x[0].w * real.x + x[1].w * real.y + x[2].w * real.z); return detail::tdualquat<T, P>(real, dual); } }//namespace glm