/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "FrameBuilder.h" #include "LayerUpdateQueue.h" #include "RenderNode.h" #include "VectorDrawable.h" #include "renderstate/OffscreenBufferPool.h" #include "hwui/Canvas.h" #include "utils/FatVector.h" #include "utils/PaintUtils.h" #include "utils/TraceUtils.h" #include <SkPathOps.h> #include <utils/TypeHelpers.h> namespace android { namespace uirenderer { FrameBuilder::FrameBuilder(const SkRect& clip, uint32_t viewportWidth, uint32_t viewportHeight, const LightGeometry& lightGeometry, Caches& caches) : mStdAllocator(mAllocator) , mLayerBuilders(mStdAllocator) , mLayerStack(mStdAllocator) , mCanvasState(*this) , mCaches(caches) , mLightRadius(lightGeometry.radius) , mDrawFbo0(true) { // Prepare to defer Fbo0 auto fbo0 = mAllocator.create<LayerBuilder>(viewportWidth, viewportHeight, Rect(clip)); mLayerBuilders.push_back(fbo0); mLayerStack.push_back(0); mCanvasState.initializeSaveStack(viewportWidth, viewportHeight, clip.fLeft, clip.fTop, clip.fRight, clip.fBottom, lightGeometry.center); } FrameBuilder::FrameBuilder(const LayerUpdateQueue& layers, const LightGeometry& lightGeometry, Caches& caches) : mStdAllocator(mAllocator) , mLayerBuilders(mStdAllocator) , mLayerStack(mStdAllocator) , mCanvasState(*this) , mCaches(caches) , mLightRadius(lightGeometry.radius) , mDrawFbo0(false) { // TODO: remove, with each layer on its own save stack // Prepare to defer Fbo0 (which will be empty) auto fbo0 = mAllocator.create<LayerBuilder>(1, 1, Rect(1, 1)); mLayerBuilders.push_back(fbo0); mLayerStack.push_back(0); mCanvasState.initializeSaveStack(1, 1, 0, 0, 1, 1, lightGeometry.center); deferLayers(layers); } void FrameBuilder::deferLayers(const LayerUpdateQueue& layers) { // Render all layers to be updated, in order. Defer in reverse order, so that they'll be // updated in the order they're passed in (mLayerBuilders are issued to Renderer in reverse) for (int i = layers.entries().size() - 1; i >= 0; i--) { RenderNode* layerNode = layers.entries()[i].renderNode; // only schedule repaint if node still on layer - possible it may have been // removed during a dropped frame, but layers may still remain scheduled so // as not to lose info on what portion is damaged OffscreenBuffer* layer = layerNode->getLayer(); if (CC_LIKELY(layer)) { ATRACE_FORMAT("Optimize HW Layer DisplayList %s %ux%u", layerNode->getName(), layerNode->getWidth(), layerNode->getHeight()); Rect layerDamage = layers.entries()[i].damage; // TODO: ensure layer damage can't be larger than layer layerDamage.doIntersect(0, 0, layer->viewportWidth, layer->viewportHeight); layerNode->computeOrdering(); // map current light center into RenderNode's coordinate space Vector3 lightCenter = mCanvasState.currentSnapshot()->getRelativeLightCenter(); layer->inverseTransformInWindow.mapPoint3d(lightCenter); saveForLayer(layerNode->getWidth(), layerNode->getHeight(), 0, 0, layerDamage, lightCenter, nullptr, layerNode); if (layerNode->getDisplayList()) { deferNodeOps(*layerNode); } restoreForLayer(); } } } void FrameBuilder::deferRenderNode(RenderNode& renderNode) { renderNode.computeOrdering(); mCanvasState.save(SaveFlags::MatrixClip); deferNodePropsAndOps(renderNode); mCanvasState.restore(); } void FrameBuilder::deferRenderNode(float tx, float ty, Rect clipRect, RenderNode& renderNode) { renderNode.computeOrdering(); mCanvasState.save(SaveFlags::MatrixClip); mCanvasState.translate(tx, ty); mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom, SkRegion::kIntersect_Op); deferNodePropsAndOps(renderNode); mCanvasState.restore(); } static Rect nodeBounds(RenderNode& node) { auto& props = node.properties(); return Rect(props.getLeft(), props.getTop(), props.getRight(), props.getBottom()); } void FrameBuilder::deferRenderNodeScene(const std::vector< sp<RenderNode> >& nodes, const Rect& contentDrawBounds) { if (nodes.size() < 1) return; if (nodes.size() == 1) { if (!nodes[0]->nothingToDraw()) { deferRenderNode(*nodes[0]); } return; } // It there are multiple render nodes, they are laid out as follows: // #0 - backdrop (content + caption) // #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop) // #2 - additional overlay nodes // Usually the backdrop cannot be seen since it will be entirely covered by the content. While // resizing however it might become partially visible. The following render loop will crop the // backdrop against the content and draw the remaining part of it. It will then draw the content // cropped to the backdrop (since that indicates a shrinking of the window). // // Additional nodes will be drawn on top with no particular clipping semantics. // Usually the contents bounds should be mContentDrawBounds - however - we will // move it towards the fixed edge to give it a more stable appearance (for the moment). // If there is no content bounds we ignore the layering as stated above and start with 2. // Backdrop bounds in render target space const Rect backdrop = nodeBounds(*nodes[0]); // Bounds that content will fill in render target space (note content node bounds may be bigger) Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight()); content.translate(backdrop.left, backdrop.top); if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) { // Content doesn't entirely overlap backdrop, so fill around content (right/bottom) // Note: in the future, if content doesn't snap to backdrop's left/top, this may need to // also fill left/top. Currently, both 2up and freeform position content at the top/left of // the backdrop, so this isn't necessary. if (content.right < backdrop.right) { // draw backdrop to right side of content deferRenderNode(0, 0, Rect(content.right, backdrop.top, backdrop.right, backdrop.bottom), *nodes[0]); } if (content.bottom < backdrop.bottom) { // draw backdrop to bottom of content // Note: bottom fill uses content left/right, to avoid overdrawing left/right fill deferRenderNode(0, 0, Rect(content.left, content.bottom, content.right, backdrop.bottom), *nodes[0]); } } if (!backdrop.isEmpty()) { // content node translation to catch up with backdrop float dx = contentDrawBounds.left - backdrop.left; float dy = contentDrawBounds.top - backdrop.top; Rect contentLocalClip = backdrop; contentLocalClip.translate(dx, dy); deferRenderNode(-dx, -dy, contentLocalClip, *nodes[1]); } else { deferRenderNode(*nodes[1]); } // remaining overlay nodes, simply defer for (size_t index = 2; index < nodes.size(); index++) { if (!nodes[index]->nothingToDraw()) { deferRenderNode(*nodes[index]); } } } void FrameBuilder::onViewportInitialized() {} void FrameBuilder::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {} void FrameBuilder::deferNodePropsAndOps(RenderNode& node) { const RenderProperties& properties = node.properties(); const Outline& outline = properties.getOutline(); if (properties.getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty()) || properties.getScaleX() == 0 || properties.getScaleY() == 0) { return; // rejected } if (properties.getLeft() != 0 || properties.getTop() != 0) { mCanvasState.translate(properties.getLeft(), properties.getTop()); } if (properties.getStaticMatrix()) { mCanvasState.concatMatrix(*properties.getStaticMatrix()); } else if (properties.getAnimationMatrix()) { mCanvasState.concatMatrix(*properties.getAnimationMatrix()); } if (properties.hasTransformMatrix()) { if (properties.isTransformTranslateOnly()) { mCanvasState.translate(properties.getTranslationX(), properties.getTranslationY()); } else { mCanvasState.concatMatrix(*properties.getTransformMatrix()); } } const int width = properties.getWidth(); const int height = properties.getHeight(); Rect saveLayerBounds; // will be set to non-empty if saveLayer needed const bool isLayer = properties.effectiveLayerType() != LayerType::None; int clipFlags = properties.getClippingFlags(); if (properties.getAlpha() < 1) { if (isLayer) { clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer } if (CC_LIKELY(isLayer || !properties.getHasOverlappingRendering())) { // simply scale rendering content's alpha mCanvasState.scaleAlpha(properties.getAlpha()); } else { // schedule saveLayer by initializing saveLayerBounds saveLayerBounds.set(0, 0, width, height); if (clipFlags) { properties.getClippingRectForFlags(clipFlags, &saveLayerBounds); clipFlags = 0; // all clipping done by savelayer } } if (CC_UNLIKELY(ATRACE_ENABLED() && properties.promotedToLayer())) { // pretend alpha always causes savelayer to warn about // performance problem affecting old versions ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", node.getName(), width, height); } } if (clipFlags) { Rect clipRect; properties.getClippingRectForFlags(clipFlags, &clipRect); mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom, SkRegion::kIntersect_Op); } if (properties.getRevealClip().willClip()) { Rect bounds; properties.getRevealClip().getBounds(&bounds); mCanvasState.setClippingRoundRect(mAllocator, bounds, properties.getRevealClip().getRadius()); } else if (properties.getOutline().willClip()) { mCanvasState.setClippingOutline(mAllocator, &(properties.getOutline())); } bool quickRejected = mCanvasState.currentSnapshot()->getRenderTargetClip().isEmpty() || (properties.getClipToBounds() && mCanvasState.quickRejectConservative(0, 0, width, height)); if (!quickRejected) { // not rejected, so defer render as either Layer, or direct (possibly wrapped in saveLayer) if (node.getLayer()) { // HW layer LayerOp* drawLayerOp = mAllocator.create_trivial<LayerOp>(node); BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); if (bakedOpState) { // Node's layer already deferred, schedule it to render into parent layer currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); } } else if (CC_UNLIKELY(!saveLayerBounds.isEmpty())) { // draw DisplayList contents within temporary, since persisted layer could not be used. // (temp layers are clipped to viewport, since they don't persist offscreen content) SkPaint saveLayerPaint; saveLayerPaint.setAlpha(properties.getAlpha()); deferBeginLayerOp(*mAllocator.create_trivial<BeginLayerOp>( saveLayerBounds, Matrix4::identity(), nullptr, // no record-time clip - need only respect defer-time one &saveLayerPaint)); deferNodeOps(node); deferEndLayerOp(*mAllocator.create_trivial<EndLayerOp>()); } else { deferNodeOps(node); } } } typedef key_value_pair_t<float, const RenderNodeOp*> ZRenderNodeOpPair; template <typename V> static void buildZSortedChildList(V* zTranslatedNodes, const DisplayList& displayList, const DisplayList::Chunk& chunk) { if (chunk.beginChildIndex == chunk.endChildIndex) return; for (size_t i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) { RenderNodeOp* childOp = displayList.getChildren()[i]; RenderNode* child = childOp->renderNode; float childZ = child->properties().getZ(); if (!MathUtils::isZero(childZ) && chunk.reorderChildren) { zTranslatedNodes->push_back(ZRenderNodeOpPair(childZ, childOp)); childOp->skipInOrderDraw = true; } else if (!child->properties().getProjectBackwards()) { // regular, in order drawing DisplayList childOp->skipInOrderDraw = false; } } // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order) std::stable_sort(zTranslatedNodes->begin(), zTranslatedNodes->end()); } template <typename V> static size_t findNonNegativeIndex(const V& zTranslatedNodes) { for (size_t i = 0; i < zTranslatedNodes.size(); i++) { if (zTranslatedNodes[i].key >= 0.0f) return i; } return zTranslatedNodes.size(); } template <typename V> void FrameBuilder::defer3dChildren(const ClipBase* reorderClip, ChildrenSelectMode mode, const V& zTranslatedNodes) { const int size = zTranslatedNodes.size(); if (size == 0 || (mode == ChildrenSelectMode::Negative&& zTranslatedNodes[0].key > 0.0f) || (mode == ChildrenSelectMode::Positive && zTranslatedNodes[size - 1].key < 0.0f)) { // no 3d children to draw return; } /** * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters * with very similar Z heights to draw together. * * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are * underneath both, and neither's shadow is drawn on top of the other. */ const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); size_t drawIndex, shadowIndex, endIndex; if (mode == ChildrenSelectMode::Negative) { drawIndex = 0; endIndex = nonNegativeIndex; shadowIndex = endIndex; // draw no shadows } else { drawIndex = nonNegativeIndex; endIndex = size; shadowIndex = drawIndex; // potentially draw shadow for each pos Z child } float lastCasterZ = 0.0f; while (shadowIndex < endIndex || drawIndex < endIndex) { if (shadowIndex < endIndex) { const RenderNodeOp* casterNodeOp = zTranslatedNodes[shadowIndex].value; const float casterZ = zTranslatedNodes[shadowIndex].key; // attempt to render the shadow if the caster about to be drawn is its caster, // OR if its caster's Z value is similar to the previous potential caster if (shadowIndex == drawIndex || casterZ - lastCasterZ < 0.1f) { deferShadow(reorderClip, *casterNodeOp); lastCasterZ = casterZ; // must do this even if current caster not casting a shadow shadowIndex++; continue; } } const RenderNodeOp* childOp = zTranslatedNodes[drawIndex].value; deferRenderNodeOpImpl(*childOp); drawIndex++; } } void FrameBuilder::deferShadow(const ClipBase* reorderClip, const RenderNodeOp& casterNodeOp) { auto& node = *casterNodeOp.renderNode; auto& properties = node.properties(); if (properties.getAlpha() <= 0.0f || properties.getOutline().getAlpha() <= 0.0f || !properties.getOutline().getPath() || properties.getScaleX() == 0 || properties.getScaleY() == 0) { // no shadow to draw return; } const SkPath* casterOutlinePath = properties.getOutline().getPath(); const SkPath* revealClipPath = properties.getRevealClip().getPath(); if (revealClipPath && revealClipPath->isEmpty()) return; float casterAlpha = properties.getAlpha() * properties.getOutline().getAlpha(); // holds temporary SkPath to store the result of intersections SkPath* frameAllocatedPath = nullptr; const SkPath* casterPath = casterOutlinePath; // intersect the shadow-casting path with the reveal, if present if (revealClipPath) { frameAllocatedPath = createFrameAllocatedPath(); Op(*casterPath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath); casterPath = frameAllocatedPath; } // intersect the shadow-casting path with the clipBounds, if present if (properties.getClippingFlags() & CLIP_TO_CLIP_BOUNDS) { if (!frameAllocatedPath) { frameAllocatedPath = createFrameAllocatedPath(); } Rect clipBounds; properties.getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds); SkPath clipBoundsPath; clipBoundsPath.addRect(clipBounds.left, clipBounds.top, clipBounds.right, clipBounds.bottom); Op(*casterPath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath); casterPath = frameAllocatedPath; } // apply reorder clip to shadow, so it respects clip at beginning of reorderable chunk int restoreTo = mCanvasState.save(SaveFlags::MatrixClip); mCanvasState.writableSnapshot()->applyClip(reorderClip, *mCanvasState.currentSnapshot()->transform); if (CC_LIKELY(!mCanvasState.getRenderTargetClipBounds().isEmpty())) { Matrix4 shadowMatrixXY(casterNodeOp.localMatrix); Matrix4 shadowMatrixZ(casterNodeOp.localMatrix); node.applyViewPropertyTransforms(shadowMatrixXY, false); node.applyViewPropertyTransforms(shadowMatrixZ, true); sp<TessellationCache::ShadowTask> task = mCaches.tessellationCache.getShadowTask( mCanvasState.currentTransform(), mCanvasState.getLocalClipBounds(), casterAlpha >= 1.0f, casterPath, &shadowMatrixXY, &shadowMatrixZ, mCanvasState.currentSnapshot()->getRelativeLightCenter(), mLightRadius); ShadowOp* shadowOp = mAllocator.create<ShadowOp>(task, casterAlpha); BakedOpState* bakedOpState = BakedOpState::tryShadowOpConstruct( mAllocator, *mCanvasState.writableSnapshot(), shadowOp); if (CC_LIKELY(bakedOpState)) { currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Shadow); } } mCanvasState.restoreToCount(restoreTo); } void FrameBuilder::deferProjectedChildren(const RenderNode& renderNode) { int count = mCanvasState.save(SaveFlags::MatrixClip); const SkPath* projectionReceiverOutline = renderNode.properties().getOutline().getPath(); SkPath transformedMaskPath; // on stack, since BakedOpState makes a deep copy if (projectionReceiverOutline) { // transform the mask for this projector into render target space // TODO: consider combining both transforms by stashing transform instead of applying SkMatrix skCurrentTransform; mCanvasState.currentTransform()->copyTo(skCurrentTransform); projectionReceiverOutline->transform( skCurrentTransform, &transformedMaskPath); mCanvasState.setProjectionPathMask(mAllocator, &transformedMaskPath); } for (size_t i = 0; i < renderNode.mProjectedNodes.size(); i++) { RenderNodeOp* childOp = renderNode.mProjectedNodes[i]; RenderNode& childNode = *childOp->renderNode; // Draw child if it has content, but ignore state in childOp - matrix already applied to // transformFromCompositingAncestor, and record-time clip is ignored when projecting if (!childNode.nothingToDraw()) { int restoreTo = mCanvasState.save(SaveFlags::MatrixClip); // Apply transform between ancestor and projected descendant mCanvasState.concatMatrix(childOp->transformFromCompositingAncestor); deferNodePropsAndOps(childNode); mCanvasState.restoreToCount(restoreTo); } } mCanvasState.restoreToCount(count); } /** * Used to define a list of lambdas referencing private FrameBuilder::onXX::defer() methods. * * This allows opIds embedded in the RecordedOps to be used for dispatching to these lambdas. * E.g. a BitmapOp op then would be dispatched to FrameBuilder::onBitmapOp(const BitmapOp&) */ #define OP_RECEIVER(Type) \ [](FrameBuilder& frameBuilder, const RecordedOp& op) { frameBuilder.defer##Type(static_cast<const Type&>(op)); }, void FrameBuilder::deferNodeOps(const RenderNode& renderNode) { typedef void (*OpDispatcher) (FrameBuilder& frameBuilder, const RecordedOp& op); static OpDispatcher receivers[] = BUILD_DEFERRABLE_OP_LUT(OP_RECEIVER); // can't be null, since DL=null node rejection happens before deferNodePropsAndOps const DisplayList& displayList = *(renderNode.getDisplayList()); for (auto& chunk : displayList.getChunks()) { FatVector<ZRenderNodeOpPair, 16> zTranslatedNodes; buildZSortedChildList(&zTranslatedNodes, displayList, chunk); defer3dChildren(chunk.reorderClip, ChildrenSelectMode::Negative, zTranslatedNodes); for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) { const RecordedOp* op = displayList.getOps()[opIndex]; receivers[op->opId](*this, *op); if (CC_UNLIKELY(!renderNode.mProjectedNodes.empty() && displayList.projectionReceiveIndex >= 0 && static_cast<int>(opIndex) == displayList.projectionReceiveIndex)) { deferProjectedChildren(renderNode); } } defer3dChildren(chunk.reorderClip, ChildrenSelectMode::Positive, zTranslatedNodes); } } void FrameBuilder::deferRenderNodeOpImpl(const RenderNodeOp& op) { if (op.renderNode->nothingToDraw()) return; int count = mCanvasState.save(SaveFlags::MatrixClip); // apply state from RecordedOp (clip first, since op's clip is transformed by current matrix) mCanvasState.writableSnapshot()->applyClip(op.localClip, *mCanvasState.currentSnapshot()->transform); mCanvasState.concatMatrix(op.localMatrix); // then apply state from node properties, and defer ops deferNodePropsAndOps(*op.renderNode); mCanvasState.restoreToCount(count); } void FrameBuilder::deferRenderNodeOp(const RenderNodeOp& op) { if (!op.skipInOrderDraw) { deferRenderNodeOpImpl(op); } } /** * Defers an unmergeable, strokeable op, accounting correctly * for paint's style on the bounds being computed. */ BakedOpState* FrameBuilder::deferStrokeableOp(const RecordedOp& op, batchid_t batchId, BakedOpState::StrokeBehavior strokeBehavior) { // Note: here we account for stroke when baking the op BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct( mAllocator, *mCanvasState.writableSnapshot(), op, strokeBehavior); if (!bakedState) return nullptr; // quick rejected if (op.opId == RecordedOpId::RectOp && op.paint->getStyle() != SkPaint::kStroke_Style) { bakedState->setupOpacity(op.paint); } currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId); return bakedState; } /** * Returns batch id for tessellatable shapes, based on paint. Checks to see if path effect/AA will * be used, since they trigger significantly different rendering paths. * * Note: not used for lines/points, since they don't currently support path effects. */ static batchid_t tessBatchId(const RecordedOp& op) { const SkPaint& paint = *(op.paint); return paint.getPathEffect() ? OpBatchType::AlphaMaskTexture : (paint.isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices); } void FrameBuilder::deferArcOp(const ArcOp& op) { deferStrokeableOp(op, tessBatchId(op)); } static bool hasMergeableClip(const BakedOpState& state) { return state.computedState.clipState || state.computedState.clipState->mode == ClipMode::Rectangle; } void FrameBuilder::deferBitmapOp(const BitmapOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected if (op.bitmap->isOpaque()) { bakedState->setupOpacity(op.paint); } // Don't merge non-simply transformed or neg scale ops, SET_TEXTURE doesn't handle rotation // Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in // MergingDrawBatch::canMergeWith() if (bakedState->computedState.transform.isSimple() && bakedState->computedState.transform.positiveScale() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && op.bitmap->colorType() != kAlpha_8_SkColorType && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.bitmap->getGenerationID()); // TODO: AssetAtlas in mergeId currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::Bitmap, mergeId); } else { currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } } void FrameBuilder::deferBitmapMeshOp(const BitmapMeshOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } void FrameBuilder::deferBitmapRectOp(const BitmapRectOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } void FrameBuilder::deferVectorDrawableOp(const VectorDrawableOp& op) { const SkBitmap& bitmap = op.vectorDrawable->getBitmapUpdateIfDirty(); SkPaint* paint = op.vectorDrawable->getPaint(); const BitmapRectOp* resolvedOp = mAllocator.create_trivial<BitmapRectOp>(op.unmappedBounds, op.localMatrix, op.localClip, paint, &bitmap, Rect(bitmap.width(), bitmap.height())); deferBitmapRectOp(*resolvedOp); } void FrameBuilder::deferCirclePropsOp(const CirclePropsOp& op) { // allocate a temporary oval op (with mAllocator, so it persists until render), so the // renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple. float x = *(op.x); float y = *(op.y); float radius = *(op.radius); Rect unmappedBounds(x - radius, y - radius, x + radius, y + radius); const OvalOp* resolvedOp = mAllocator.create_trivial<OvalOp>( unmappedBounds, op.localMatrix, op.localClip, op.paint); deferOvalOp(*resolvedOp); } void FrameBuilder::deferColorOp(const ColorOp& op) { BakedOpState* bakedState = tryBakeUnboundedOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices); } void FrameBuilder::deferFunctorOp(const FunctorOp& op) { BakedOpState* bakedState = tryBakeUnboundedOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Functor); } void FrameBuilder::deferLinesOp(const LinesOp& op) { batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices; deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced); } void FrameBuilder::deferOvalOp(const OvalOp& op) { deferStrokeableOp(op, tessBatchId(op)); } void FrameBuilder::deferPatchOp(const PatchOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected if (bakedState->computedState.transform.isPureTranslate() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.bitmap->getGenerationID()); // TODO: AssetAtlas in mergeId // Only use the MergedPatch batchId when merged, so Bitmap+Patch don't try to merge together currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::MergedPatch, mergeId); } else { // Use Bitmap batchId since Bitmap+Patch use same shader currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } } void FrameBuilder::deferPathOp(const PathOp& op) { auto state = deferStrokeableOp(op, OpBatchType::AlphaMaskTexture); if (CC_LIKELY(state)) { mCaches.pathCache.precache(op.path, op.paint); } } void FrameBuilder::deferPointsOp(const PointsOp& op) { batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices; deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced); } void FrameBuilder::deferRectOp(const RectOp& op) { deferStrokeableOp(op, tessBatchId(op)); } void FrameBuilder::deferRoundRectOp(const RoundRectOp& op) { auto state = deferStrokeableOp(op, tessBatchId(op)); if (CC_LIKELY(state && !op.paint->getPathEffect())) { // TODO: consider storing tessellation task in BakedOpState mCaches.tessellationCache.precacheRoundRect(state->computedState.transform, *(op.paint), op.unmappedBounds.getWidth(), op.unmappedBounds.getHeight(), op.rx, op.ry); } } void FrameBuilder::deferRoundRectPropsOp(const RoundRectPropsOp& op) { // allocate a temporary round rect op (with mAllocator, so it persists until render), so the // renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple. const RoundRectOp* resolvedOp = mAllocator.create_trivial<RoundRectOp>( Rect(*(op.left), *(op.top), *(op.right), *(op.bottom)), op.localMatrix, op.localClip, op.paint, *op.rx, *op.ry); deferRoundRectOp(*resolvedOp); } void FrameBuilder::deferSimpleRectsOp(const SimpleRectsOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices); } static batchid_t textBatchId(const SkPaint& paint) { // TODO: better handling of shader (since we won't care about color then) return paint.getColor() == SK_ColorBLACK ? OpBatchType::Text : OpBatchType::ColorText; } void FrameBuilder::deferTextOp(const TextOp& op) { BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct( mAllocator, *mCanvasState.writableSnapshot(), op, BakedOpState::StrokeBehavior::StyleDefined); if (!bakedState) return; // quick rejected batchid_t batchId = textBatchId(*(op.paint)); if (bakedState->computedState.transform.isPureTranslate() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.paint->getColor()); currentLayer().deferMergeableOp(mAllocator, bakedState, batchId, mergeId); } else { currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId); } FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(); auto& totalTransform = bakedState->computedState.transform; if (totalTransform.isPureTranslate() || totalTransform.isPerspective()) { fontRenderer.precache(op.paint, op.glyphs, op.glyphCount, SkMatrix::I()); } else { // Partial transform case, see BakedOpDispatcher::renderTextOp float sx, sy; totalTransform.decomposeScale(sx, sy); fontRenderer.precache(op.paint, op.glyphs, op.glyphCount, SkMatrix::MakeScale( roundf(std::max(1.0f, sx)), roundf(std::max(1.0f, sy)))); } } void FrameBuilder::deferTextOnPathOp(const TextOnPathOp& op) { BakedOpState* bakedState = tryBakeUnboundedOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, textBatchId(*(op.paint))); mCaches.fontRenderer.getFontRenderer().precache( op.paint, op.glyphs, op.glyphCount, SkMatrix::I()); } void FrameBuilder::deferTextureLayerOp(const TextureLayerOp& op) { if (CC_UNLIKELY(!op.layer->isRenderable())) return; const TextureLayerOp* textureLayerOp = &op; // Now safe to access transform (which was potentially unready at record time) if (!op.layer->getTransform().isIdentity()) { // non-identity transform present, so 'inject it' into op by copying + replacing matrix Matrix4 combinedMatrix(op.localMatrix); combinedMatrix.multiply(op.layer->getTransform()); textureLayerOp = mAllocator.create<TextureLayerOp>(op, combinedMatrix); } BakedOpState* bakedState = tryBakeOpState(*textureLayerOp); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::TextureLayer); } void FrameBuilder::saveForLayer(uint32_t layerWidth, uint32_t layerHeight, float contentTranslateX, float contentTranslateY, const Rect& repaintRect, const Vector3& lightCenter, const BeginLayerOp* beginLayerOp, RenderNode* renderNode) { mCanvasState.save(SaveFlags::MatrixClip); mCanvasState.writableSnapshot()->initializeViewport(layerWidth, layerHeight); mCanvasState.writableSnapshot()->roundRectClipState = nullptr; mCanvasState.writableSnapshot()->setRelativeLightCenter(lightCenter); mCanvasState.writableSnapshot()->transform->loadTranslate( contentTranslateX, contentTranslateY, 0); mCanvasState.writableSnapshot()->setClip( repaintRect.left, repaintRect.top, repaintRect.right, repaintRect.bottom); // create a new layer repaint, and push its index on the stack mLayerStack.push_back(mLayerBuilders.size()); auto newFbo = mAllocator.create<LayerBuilder>(layerWidth, layerHeight, repaintRect, beginLayerOp, renderNode); mLayerBuilders.push_back(newFbo); } void FrameBuilder::restoreForLayer() { // restore canvas, and pop finished layer off of the stack mCanvasState.restore(); mLayerStack.pop_back(); } // TODO: defer time rejection (when bounds become empty) + tests // Option - just skip layers with no bounds at playback + defer? void FrameBuilder::deferBeginLayerOp(const BeginLayerOp& op) { uint32_t layerWidth = (uint32_t) op.unmappedBounds.getWidth(); uint32_t layerHeight = (uint32_t) op.unmappedBounds.getHeight(); auto previous = mCanvasState.currentSnapshot(); Vector3 lightCenter = previous->getRelativeLightCenter(); // Combine all transforms used to present saveLayer content: // parent content transform * canvas transform * bounds offset Matrix4 contentTransform(*(previous->transform)); contentTransform.multiply(op.localMatrix); contentTransform.translate(op.unmappedBounds.left, op.unmappedBounds.top); Matrix4 inverseContentTransform; inverseContentTransform.loadInverse(contentTransform); // map the light center into layer-relative space inverseContentTransform.mapPoint3d(lightCenter); // Clip bounds of temporary layer to parent's clip rect, so: Rect saveLayerBounds(layerWidth, layerHeight); // 1) transform Rect(width, height) into parent's space // note: left/top offsets put in contentTransform above contentTransform.mapRect(saveLayerBounds); // 2) intersect with parent's clip saveLayerBounds.doIntersect(previous->getRenderTargetClip()); // 3) and transform back inverseContentTransform.mapRect(saveLayerBounds); saveLayerBounds.doIntersect(Rect(layerWidth, layerHeight)); saveLayerBounds.roundOut(); // if bounds are reduced, will clip the layer's area by reducing required bounds... layerWidth = saveLayerBounds.getWidth(); layerHeight = saveLayerBounds.getHeight(); // ...and shifting drawing content to account for left/top side clipping float contentTranslateX = -saveLayerBounds.left; float contentTranslateY = -saveLayerBounds.top; saveForLayer(layerWidth, layerHeight, contentTranslateX, contentTranslateY, Rect(layerWidth, layerHeight), lightCenter, &op, nullptr); } void FrameBuilder::deferEndLayerOp(const EndLayerOp& /* ignored */) { const BeginLayerOp& beginLayerOp = *currentLayer().beginLayerOp; int finishedLayerIndex = mLayerStack.back(); restoreForLayer(); // saveLayer will clip & translate the draw contents, so we need // to translate the drawLayer by how much the contents was translated // TODO: Unify this with beginLayerOp so we don't have to calculate this // twice uint32_t layerWidth = (uint32_t) beginLayerOp.unmappedBounds.getWidth(); uint32_t layerHeight = (uint32_t) beginLayerOp.unmappedBounds.getHeight(); auto previous = mCanvasState.currentSnapshot(); Vector3 lightCenter = previous->getRelativeLightCenter(); // Combine all transforms used to present saveLayer content: // parent content transform * canvas transform * bounds offset Matrix4 contentTransform(*(previous->transform)); contentTransform.multiply(beginLayerOp.localMatrix); contentTransform.translate(beginLayerOp.unmappedBounds.left, beginLayerOp.unmappedBounds.top); Matrix4 inverseContentTransform; inverseContentTransform.loadInverse(contentTransform); // map the light center into layer-relative space inverseContentTransform.mapPoint3d(lightCenter); // Clip bounds of temporary layer to parent's clip rect, so: Rect saveLayerBounds(layerWidth, layerHeight); // 1) transform Rect(width, height) into parent's space // note: left/top offsets put in contentTransform above contentTransform.mapRect(saveLayerBounds); // 2) intersect with parent's clip saveLayerBounds.doIntersect(previous->getRenderTargetClip()); // 3) and transform back inverseContentTransform.mapRect(saveLayerBounds); saveLayerBounds.doIntersect(Rect(layerWidth, layerHeight)); saveLayerBounds.roundOut(); Matrix4 localMatrix(beginLayerOp.localMatrix); localMatrix.translate(saveLayerBounds.left, saveLayerBounds.top); // record the draw operation into the previous layer's list of draw commands // uses state from the associated beginLayerOp, since it has all the state needed for drawing LayerOp* drawLayerOp = mAllocator.create_trivial<LayerOp>( beginLayerOp.unmappedBounds, localMatrix, beginLayerOp.localClip, beginLayerOp.paint, &(mLayerBuilders[finishedLayerIndex]->offscreenBuffer)); BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); if (bakedOpState) { // Layer will be drawn into parent layer (which is now current, since we popped mLayerStack) currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); } else { // Layer won't be drawn - delete its drawing batches to prevent it from doing any work // TODO: need to prevent any render work from being done // - create layerop earlier for reject purposes? mLayerBuilders[finishedLayerIndex]->clear(); return; } } void FrameBuilder::deferBeginUnclippedLayerOp(const BeginUnclippedLayerOp& op) { Matrix4 boundsTransform(*(mCanvasState.currentSnapshot()->transform)); boundsTransform.multiply(op.localMatrix); Rect dstRect(op.unmappedBounds); boundsTransform.mapRect(dstRect); dstRect.roundOut(); dstRect.doIntersect(mCanvasState.currentSnapshot()->getRenderTargetClip()); if (dstRect.isEmpty()) { // Unclipped layer rejected - push a null op, so next EndUnclippedLayerOp is ignored currentLayer().activeUnclippedSaveLayers.push_back(nullptr); } else { // Allocate a holding position for the layer object (copyTo will produce, copyFrom will consume) OffscreenBuffer** layerHandle = mAllocator.create<OffscreenBuffer*>(nullptr); /** * First, defer an operation to copy out the content from the rendertarget into a layer. */ auto copyToOp = mAllocator.create_trivial<CopyToLayerOp>(op, layerHandle); BakedOpState* bakedState = BakedOpState::directConstruct(mAllocator, &(currentLayer().repaintClip), dstRect, *copyToOp); currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::CopyToLayer); /** * Defer a clear rect, so that clears from multiple unclipped layers can be drawn * both 1) simultaneously, and 2) as long after the copyToLayer executes as possible */ currentLayer().deferLayerClear(dstRect); /** * And stash an operation to copy that layer back under the rendertarget until * a balanced EndUnclippedLayerOp is seen */ auto copyFromOp = mAllocator.create_trivial<CopyFromLayerOp>(op, layerHandle); bakedState = BakedOpState::directConstruct(mAllocator, &(currentLayer().repaintClip), dstRect, *copyFromOp); currentLayer().activeUnclippedSaveLayers.push_back(bakedState); } } void FrameBuilder::deferEndUnclippedLayerOp(const EndUnclippedLayerOp& /* ignored */) { LOG_ALWAYS_FATAL_IF(currentLayer().activeUnclippedSaveLayers.empty(), "no layer to end!"); BakedOpState* copyFromLayerOp = currentLayer().activeUnclippedSaveLayers.back(); currentLayer().activeUnclippedSaveLayers.pop_back(); if (copyFromLayerOp) { currentLayer().deferUnmergeableOp(mAllocator, copyFromLayerOp, OpBatchType::CopyFromLayer); } } void FrameBuilder::finishDefer() { mCaches.fontRenderer.endPrecaching(); } } // namespace uirenderer } // namespace android