/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <GpuMemoryTracker.h> #include "OpenGLRenderer.h" #include "DeferredDisplayList.h" #include "GammaFontRenderer.h" #include "Glop.h" #include "GlopBuilder.h" #include "Patch.h" #include "PathTessellator.h" #include "Properties.h" #include "RenderNode.h" #include "renderstate/MeshState.h" #include "renderstate/RenderState.h" #include "ShadowTessellator.h" #include "SkiaShader.h" #include "Vector.h" #include "VertexBuffer.h" #include "hwui/Canvas.h" #include "utils/GLUtils.h" #include "utils/PaintUtils.h" #include "utils/TraceUtils.h" #include <stdlib.h> #include <stdint.h> #include <sys/types.h> #include <SkColor.h> #include <SkPaintDefaults.h> #include <SkPathOps.h> #include <SkShader.h> #include <SkTypeface.h> #include <utils/Log.h> #include <utils/StopWatch.h> #include <private/hwui/DrawGlInfo.h> #include <ui/Rect.h> #if DEBUG_DETAILED_EVENTS #define EVENT_LOGD(...) eventMarkDEBUG(__VA_ARGS__) #else #define EVENT_LOGD(...) #endif namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// OpenGLRenderer::OpenGLRenderer(RenderState& renderState) : mState(*this) , mCaches(Caches::getInstance()) , mRenderState(renderState) , mFrameStarted(false) , mScissorOptimizationDisabled(false) , mDirty(false) , mLightCenter((Vector3){FLT_MIN, FLT_MIN, FLT_MIN}) , mLightRadius(FLT_MIN) , mAmbientShadowAlpha(0) , mSpotShadowAlpha(0) { } OpenGLRenderer::~OpenGLRenderer() { // The context has already been destroyed at this point, do not call // GL APIs. All GL state should be kept in Caches.h } void OpenGLRenderer::initProperties() { char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) { mScissorOptimizationDisabled = !strcasecmp(property, "true"); INIT_LOGD(" Scissor optimization %s", mScissorOptimizationDisabled ? "disabled" : "enabled"); } else { INIT_LOGD(" Scissor optimization enabled"); } } void OpenGLRenderer::initLight(float lightRadius, uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) { mLightRadius = lightRadius; mAmbientShadowAlpha = ambientShadowAlpha; mSpotShadowAlpha = spotShadowAlpha; } void OpenGLRenderer::setLightCenter(const Vector3& lightCenter) { mLightCenter = lightCenter; } /////////////////////////////////////////////////////////////////////////////// // Setup /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::onViewportInitialized() { glDisable(GL_DITHER); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); } void OpenGLRenderer::setupFrameState(int viewportWidth, int viewportHeight, float left, float top, float right, float bottom, bool opaque) { mCaches.clearGarbage(); mState.initializeSaveStack(viewportWidth, viewportHeight, left, top, right, bottom, mLightCenter); mOpaque = opaque; mTilingClip.set(left, top, right, bottom); } void OpenGLRenderer::startFrame() { if (mFrameStarted) return; mFrameStarted = true; mState.setDirtyClip(true); discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom); mRenderState.setViewport(mState.getWidth(), mState.getHeight()); debugOverdraw(true, true); clear(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom, mOpaque); } void OpenGLRenderer::prepareDirty(int viewportWidth, int viewportHeight, float left, float top, float right, float bottom, bool opaque) { setupFrameState(viewportWidth, viewportHeight, left, top, right, bottom, opaque); // Layer renderers will start the frame immediately // The framebuffer renderer will first defer the display list // for each layer and wait until the first drawing command // to start the frame if (currentSnapshot()->fbo == 0) { mRenderState.blend().syncEnabled(); updateLayers(); } else { startFrame(); } } void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) { // If we know that we are going to redraw the entire framebuffer, // perform a discard to let the driver know we don't need to preserve // the back buffer for this frame. if (mCaches.extensions().hasDiscardFramebuffer() && left <= 0.0f && top <= 0.0f && right >= mState.getWidth() && bottom >= mState.getHeight()) { const bool isFbo = getTargetFbo() == 0; const GLenum attachments[] = { isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0, isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT }; glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments); } } void OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) { if (!opaque) { mRenderState.scissor().setEnabled(true); mRenderState.scissor().set(left, getViewportHeight() - bottom, right - left, bottom - top); glClear(GL_COLOR_BUFFER_BIT); mDirty = true; return; } mRenderState.scissor().reset(); } bool OpenGLRenderer::finish() { renderOverdraw(); mTempPaths.clear(); // When finish() is invoked on FBO 0 we've reached the end // of the current frame if (getTargetFbo() == 0) { mCaches.pathCache.trim(); mCaches.tessellationCache.trim(); } if (!suppressErrorChecks()) { GL_CHECKPOINT(MODERATE); #if DEBUG_MEMORY_USAGE mCaches.dumpMemoryUsage(); GPUMemoryTracker::dump(); #else if (Properties::debugLevel & kDebugMemory) { mCaches.dumpMemoryUsage(); } #endif } mFrameStarted = false; return reportAndClearDirty(); } void OpenGLRenderer::resumeAfterLayer() { mRenderState.setViewport(getViewportWidth(), getViewportHeight()); mRenderState.bindFramebuffer(currentSnapshot()->fbo); debugOverdraw(true, false); mRenderState.scissor().reset(); dirtyClip(); } void OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) { if (mState.currentlyIgnored()) return; Rect clip(mState.currentRenderTargetClip()); clip.snapToPixelBoundaries(); // Since we don't know what the functor will draw, let's dirty // the entire clip region if (hasLayer()) { dirtyLayerUnchecked(clip, getRegion()); } DrawGlInfo info; info.clipLeft = clip.left; info.clipTop = clip.top; info.clipRight = clip.right; info.clipBottom = clip.bottom; info.isLayer = hasLayer(); info.width = getViewportWidth(); info.height = getViewportHeight(); currentTransform()->copyTo(&info.transform[0]); bool prevDirtyClip = mState.getDirtyClip(); // setup GL state for functor if (mState.getDirtyClip()) { setStencilFromClip(); // can issue draws, so must precede enableScissor()/interrupt() } if (mRenderState.scissor().setEnabled(true) || prevDirtyClip) { setScissorFromClip(); } mRenderState.invokeFunctor(functor, DrawGlInfo::kModeDraw, &info); // Scissor may have been modified, reset dirty clip dirtyClip(); mDirty = true; } /////////////////////////////////////////////////////////////////////////////// // Debug /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::eventMarkDEBUG(const char* fmt, ...) const { #if DEBUG_DETAILED_EVENTS const int BUFFER_SIZE = 256; va_list ap; char buf[BUFFER_SIZE]; va_start(ap, fmt); vsnprintf(buf, BUFFER_SIZE, fmt, ap); va_end(ap); eventMark(buf); #endif } void OpenGLRenderer::eventMark(const char* name) const { mCaches.eventMark(0, name); } void OpenGLRenderer::startMark(const char* name) const { mCaches.startMark(0, name); } void OpenGLRenderer::endMark() const { mCaches.endMark(); } void OpenGLRenderer::debugOverdraw(bool enable, bool clear) { mRenderState.debugOverdraw(enable, clear); } void OpenGLRenderer::renderOverdraw() { if (Properties::debugOverdraw && getTargetFbo() == 0) { const Rect* clip = &mTilingClip; mRenderState.scissor().setEnabled(true); mRenderState.scissor().set(clip->left, mState.firstSnapshot()->getViewportHeight() - clip->bottom, clip->right - clip->left, clip->bottom - clip->top); // 1x overdraw mRenderState.stencil().enableDebugTest(2); drawColor(mCaches.getOverdrawColor(1), SkXfermode::kSrcOver_Mode); // 2x overdraw mRenderState.stencil().enableDebugTest(3); drawColor(mCaches.getOverdrawColor(2), SkXfermode::kSrcOver_Mode); // 3x overdraw mRenderState.stencil().enableDebugTest(4); drawColor(mCaches.getOverdrawColor(3), SkXfermode::kSrcOver_Mode); // 4x overdraw and higher mRenderState.stencil().enableDebugTest(4, true); drawColor(mCaches.getOverdrawColor(4), SkXfermode::kSrcOver_Mode); mRenderState.stencil().disable(); } } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) { if (layer->deferredUpdateScheduled && layer->renderer && layer->renderNode.get() && layer->renderNode->isRenderable()) { if (inFrame) { debugOverdraw(false, false); } if (CC_UNLIKELY(inFrame || Properties::drawDeferDisabled)) { layer->render(*this); } else { layer->defer(*this); } if (inFrame) { resumeAfterLayer(); } layer->debugDrawUpdate = Properties::debugLayersUpdates; layer->hasDrawnSinceUpdate = false; return true; } return false; } void OpenGLRenderer::updateLayers() { // If draw deferring is enabled this method will simply defer // the display list of each individual layer. The layers remain // in the layer updates list which will be cleared by flushLayers(). int count = mLayerUpdates.size(); if (count > 0) { if (CC_UNLIKELY(Properties::drawDeferDisabled)) { startMark("Layer Updates"); } else { startMark("Defer Layer Updates"); } // Note: it is very important to update the layers in order for (int i = 0; i < count; i++) { Layer* layer = mLayerUpdates[i].get(); updateLayer(layer, false); } if (CC_UNLIKELY(Properties::drawDeferDisabled)) { mLayerUpdates.clear(); mRenderState.bindFramebuffer(getTargetFbo()); } endMark(); } } void OpenGLRenderer::flushLayers() { int count = mLayerUpdates.size(); if (count > 0) { startMark("Apply Layer Updates"); // Note: it is very important to update the layers in order for (int i = 0; i < count; i++) { mLayerUpdates[i]->flush(); } mLayerUpdates.clear(); mRenderState.bindFramebuffer(getTargetFbo()); endMark(); } } void OpenGLRenderer::pushLayerUpdate(Layer* layer) { if (layer) { // Make sure we don't introduce duplicates. // SortedVector would do this automatically but we need to respect // the insertion order. The linear search is not an issue since // this list is usually very short (typically one item, at most a few) for (int i = mLayerUpdates.size() - 1; i >= 0; i--) { if (mLayerUpdates[i] == layer) { return; } } mLayerUpdates.push_back(layer); } } void OpenGLRenderer::cancelLayerUpdate(Layer* layer) { if (layer) { for (int i = mLayerUpdates.size() - 1; i >= 0; i--) { if (mLayerUpdates[i] == layer) { mLayerUpdates.erase(mLayerUpdates.begin() + i); break; } } } } void OpenGLRenderer::flushLayerUpdates() { ATRACE_NAME("Update HW Layers"); mRenderState.blend().syncEnabled(); updateLayers(); flushLayers(); // Wait for all the layer updates to be executed glFinish(); } void OpenGLRenderer::markLayersAsBuildLayers() { for (size_t i = 0; i < mLayerUpdates.size(); i++) { mLayerUpdates[i]->wasBuildLayered = true; } } /////////////////////////////////////////////////////////////////////////////// // State management /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) { bool restoreViewport = removed.flags & Snapshot::kFlagIsFboLayer; bool restoreClip = removed.flags & Snapshot::kFlagClipSet; bool restoreLayer = removed.flags & Snapshot::kFlagIsLayer; if (restoreViewport) { mRenderState.setViewport(getViewportWidth(), getViewportHeight()); } if (restoreClip) { dirtyClip(); } if (restoreLayer) { endMark(); // Savelayer ATRACE_END(); // SaveLayer startMark("ComposeLayer"); composeLayer(removed, restored); endMark(); } } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom, const SkPaint* paint, int flags, const SkPath* convexMask) { // force matrix/clip isolation for layer flags |= SaveFlags::MatrixClip; const int count = mState.saveSnapshot(flags); if (!mState.currentlyIgnored()) { createLayer(left, top, right, bottom, paint, flags, convexMask); } return count; } void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) { const Rect untransformedBounds(bounds); currentTransform()->mapRect(bounds); // Layers only make sense if they are in the framebuffer's bounds bounds.doIntersect(mState.currentRenderTargetClip()); if (!bounds.isEmpty()) { // We cannot work with sub-pixels in this case bounds.snapToPixelBoundaries(); // When the layer is not an FBO, we may use glCopyTexImage so we // need to make sure the layer does not extend outside the bounds // of the framebuffer const Snapshot& previous = *(currentSnapshot()->previous); Rect previousViewport(0, 0, previous.getViewportWidth(), previous.getViewportHeight()); bounds.doIntersect(previousViewport); if (!bounds.isEmpty() && fboLayer) { clip.set(bounds); mat4 inverse; inverse.loadInverse(*currentTransform()); inverse.mapRect(clip); clip.snapToPixelBoundaries(); clip.doIntersect(untransformedBounds); if (!clip.isEmpty()) { clip.translate(-untransformedBounds.left, -untransformedBounds.top); bounds.set(untransformedBounds); } } } } void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip, bool fboLayer, int alpha) { if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize || bounds.getHeight() > mCaches.maxTextureSize || (fboLayer && clip.isEmpty())) { writableSnapshot()->empty = fboLayer; } else { writableSnapshot()->invisible = writableSnapshot()->invisible || (alpha <= 0 && fboLayer); } } int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom, const SkPaint* paint, int flags) { const int count = mState.saveSnapshot(flags); if (!mState.currentlyIgnored() && (flags & SaveFlags::ClipToLayer)) { // initialize the snapshot as though it almost represents an FBO layer so deferred draw // operations will be able to store and restore the current clip and transform info, and // quick rejection will be correct (for display lists) Rect bounds(left, top, right, bottom); Rect clip; calculateLayerBoundsAndClip(bounds, clip, true); updateSnapshotIgnoreForLayer(bounds, clip, true, PaintUtils::getAlphaDirect(paint)); if (!mState.currentlyIgnored()) { writableSnapshot()->resetTransform(-bounds.left, -bounds.top, 0.0f); writableSnapshot()->resetClip(clip.left, clip.top, clip.right, clip.bottom); writableSnapshot()->initializeViewport(bounds.getWidth(), bounds.getHeight()); writableSnapshot()->roundRectClipState = nullptr; } } return count; } /** * Layers are viewed by Skia are slightly different than layers in image editing * programs (for instance.) When a layer is created, previously created layers * and the frame buffer still receive every drawing command. For instance, if a * layer is created and a shape intersecting the bounds of the layers and the * framebuffer is draw, the shape will be drawn on both (unless the layer was * created with the SaveFlags::ClipToLayer flag.) * * A way to implement layers is to create an FBO for each layer, backed by an RGBA * texture. Unfortunately, this is inefficient as it requires every primitive to * be drawn n + 1 times, where n is the number of active layers. In practice this * means, for every primitive: * - Switch active frame buffer * - Change viewport, clip and projection matrix * - Issue the drawing * * Switching rendering target n + 1 times per drawn primitive is extremely costly. * To avoid this, layers are implemented in a different way here, at least in the * general case. FBOs are used, as an optimization, when the "clip to layer" flag * is set. When this flag is set we can redirect all drawing operations into a * single FBO. * * This implementation relies on the frame buffer being at least RGBA 8888. When * a layer is created, only a texture is created, not an FBO. The content of the * frame buffer contained within the layer's bounds is copied into this texture * using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame * buffer and drawing continues as normal. This technique therefore treats the * frame buffer as a scratch buffer for the layers. * * To compose the layers back onto the frame buffer, each layer texture * (containing the original frame buffer data) is drawn as a simple quad over * the frame buffer. The trick is that the quad is set as the composition * destination in the blending equation, and the frame buffer becomes the source * of the composition. * * Drawing layers with an alpha value requires an extra step before composition. * An empty quad is drawn over the layer's region in the frame buffer. This quad * is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the * quad is used to multiply the colors in the frame buffer. This is achieved by * changing the GL blend functions for the GL_FUNC_ADD blend equation to * GL_ZERO, GL_SRC_ALPHA. * * Because glCopyTexImage2D() can be slow, an alternative implementation might * be use to draw a single clipped layer. The implementation described above * is correct in every case. * * (1) The frame buffer is actually not cleared right away. To allow the GPU * to potentially optimize series of calls to glCopyTexImage2D, the frame * buffer is left untouched until the first drawing operation. Only when * something actually gets drawn are the layers regions cleared. */ bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom, const SkPaint* paint, int flags, const SkPath* convexMask) { LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top); LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize()); const bool fboLayer = flags & SaveFlags::ClipToLayer; // Window coordinates of the layer Rect clip; Rect bounds(left, top, right, bottom); calculateLayerBoundsAndClip(bounds, clip, fboLayer); updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, PaintUtils::getAlphaDirect(paint)); // Bail out if we won't draw in this snapshot if (mState.currentlyIgnored()) { return false; } mCaches.textureState().activateTexture(0); Layer* layer = mCaches.layerCache.get(mRenderState, bounds.getWidth(), bounds.getHeight()); if (!layer) { return false; } layer->setPaint(paint); layer->layer.set(bounds); layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()), bounds.getWidth() / float(layer->getWidth()), 0.0f); layer->setBlend(true); layer->setDirty(false); layer->setConvexMask(convexMask); // note: the mask must be cleared before returning to the cache // Save the layer in the snapshot writableSnapshot()->flags |= Snapshot::kFlagIsLayer; writableSnapshot()->layer = layer; ATRACE_FORMAT_BEGIN("%ssaveLayer %ux%u", fboLayer ? "" : "unclipped ", layer->getWidth(), layer->getHeight()); startMark("SaveLayer"); if (fboLayer) { return createFboLayer(layer, bounds, clip); } else { // Copy the framebuffer into the layer layer->bindTexture(); if (!bounds.isEmpty()) { if (layer->isEmpty()) { // Workaround for some GL drivers. When reading pixels lying outside // of the window we should get undefined values for those pixels. // Unfortunately some drivers will turn the entire target texture black // when reading outside of the window. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->getWidth(), layer->getHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); layer->setEmpty(false); } glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left, getViewportHeight() - bounds.bottom, bounds.getWidth(), bounds.getHeight()); // Enqueue the buffer coordinates to clear the corresponding region later mLayers.push_back(Rect(bounds)); } } return true; } bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip) { layer->clipRect.set(clip); layer->setFbo(mRenderState.createFramebuffer()); writableSnapshot()->region = &writableSnapshot()->layer->region; writableSnapshot()->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer; writableSnapshot()->fbo = layer->getFbo(); writableSnapshot()->resetTransform(-bounds.left, -bounds.top, 0.0f); writableSnapshot()->resetClip(clip.left, clip.top, clip.right, clip.bottom); writableSnapshot()->initializeViewport(bounds.getWidth(), bounds.getHeight()); writableSnapshot()->roundRectClipState = nullptr; debugOverdraw(false, false); // Bind texture to FBO mRenderState.bindFramebuffer(layer->getFbo()); layer->bindTexture(); // Initialize the texture if needed if (layer->isEmpty()) { layer->allocateTexture(); layer->setEmpty(false); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, layer->getTextureId(), 0); // Clear the FBO, expand the clear region by 1 to get nice bilinear filtering mRenderState.scissor().setEnabled(true); mRenderState.scissor().set(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f, clip.getWidth() + 2.0f, clip.getHeight() + 2.0f); glClear(GL_COLOR_BUFFER_BIT); dirtyClip(); // Change the ortho projection mRenderState.setViewport(bounds.getWidth(), bounds.getHeight()); return true; } /** * Read the documentation of createLayer() before doing anything in this method. */ void OpenGLRenderer::composeLayer(const Snapshot& removed, const Snapshot& restored) { if (!removed.layer) { ALOGE("Attempting to compose a layer that does not exist"); return; } Layer* layer = removed.layer; const Rect& rect = layer->layer; const bool fboLayer = removed.flags & Snapshot::kFlagIsFboLayer; bool clipRequired = false; mState.calculateQuickRejectForScissor(rect.left, rect.top, rect.right, rect.bottom, &clipRequired, nullptr, false); // safely ignore return, should never be rejected mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired); if (fboLayer) { // Detach the texture from the FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); layer->removeFbo(false); // Unbind current FBO and restore previous one mRenderState.bindFramebuffer(restored.fbo); debugOverdraw(true, false); } if (!fboLayer && layer->getAlpha() < 255) { SkPaint layerPaint; layerPaint.setAlpha(layer->getAlpha()); layerPaint.setXfermodeMode(SkXfermode::kDstIn_Mode); layerPaint.setColorFilter(layer->getColorFilter()); drawColorRect(rect.left, rect.top, rect.right, rect.bottom, &layerPaint, true); // Required below, composeLayerRect() will divide by 255 layer->setAlpha(255); } mRenderState.meshState().unbindMeshBuffer(); mCaches.textureState().activateTexture(0); // When the layer is stored in an FBO, we can save a bit of fillrate by // drawing only the dirty region if (fboLayer) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *restored.transform); composeLayerRegion(layer, rect); } else if (!rect.isEmpty()) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom); save(0); // the layer contains screen buffer content that shouldn't be alpha modulated // (and any necessary alpha modulation was handled drawing into the layer) writableSnapshot()->alpha = 1.0f; composeLayerRectSwapped(layer, rect); restore(); } dirtyClip(); // Failing to add the layer to the cache should happen only if the layer is too large layer->setConvexMask(nullptr); if (!mCaches.layerCache.put(layer)) { LAYER_LOGD("Deleting layer"); layer->decStrong(nullptr); } } void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) { const bool tryToSnap = !layer->getForceFilter() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight(); Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUvQuad(nullptr, Rect(0, 1, 1, 0)) // TODO: simplify with VBO .setFillTextureLayer(*layer, getLayerAlpha(layer)) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRectOptionalSnap(tryToSnap, rect) .build(); renderGlop(glop); } void OpenGLRenderer::composeLayerRectSwapped(Layer* layer, const Rect& rect) { Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUvQuad(nullptr, layer->texCoords) .setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::Swap) .setTransform(*currentSnapshot(), TransformFlags::MeshIgnoresCanvasTransform) .setModelViewMapUnitToRect(rect) .build(); renderGlop(glop); } void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect) { if (layer->isTextureLayer()) { EVENT_LOGD("composeTextureLayerRect"); drawTextureLayer(layer, rect); } else { EVENT_LOGD("composeHardwareLayerRect"); const bool tryToSnap = layer->getWidth() == static_cast<uint32_t>(rect.getWidth()) && layer->getHeight() == static_cast<uint32_t>(rect.getHeight()); Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUvQuad(nullptr, layer->texCoords) .setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRectOptionalSnap(tryToSnap, rect) .build(); renderGlop(glop); } } /** * Issues the command X, and if we're composing a save layer to the fbo or drawing a newly updated * hardware layer with overdraw debug on, draws again to the stencil only, so that these draw * operations are correctly counted twice for overdraw. NOTE: assumes composeLayerRegion only used * by saveLayer's restore */ #define DRAW_DOUBLE_STENCIL_IF(COND, DRAW_COMMAND) { \ DRAW_COMMAND; \ if (CC_UNLIKELY(Properties::debugOverdraw && getTargetFbo() == 0 && COND)) { \ glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); \ DRAW_COMMAND; \ glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); \ } \ } #define DRAW_DOUBLE_STENCIL(DRAW_COMMAND) DRAW_DOUBLE_STENCIL_IF(true, DRAW_COMMAND) // This class is purely for inspection. It inherits from SkShader, but Skia does not know how to // use it. The OpenGLRenderer will look at it to find its Layer and whether it is opaque. class LayerShader : public SkShader { public: LayerShader(Layer* layer, const SkMatrix* localMatrix) : INHERITED(localMatrix) , mLayer(layer) { } virtual bool asACustomShader(void** data) const override { if (data) { *data = static_cast<void*>(mLayer); } return true; } virtual bool isOpaque() const override { return !mLayer->isBlend(); } protected: virtual void shadeSpan(int x, int y, SkPMColor[], int count) { LOG_ALWAYS_FATAL("LayerShader should never be drawn with raster backend."); } virtual void flatten(SkWriteBuffer&) const override { LOG_ALWAYS_FATAL("LayerShader should never be flattened."); } virtual Factory getFactory() const override { LOG_ALWAYS_FATAL("LayerShader should never be created from a stream."); return nullptr; } private: // Unowned. Layer* mLayer; typedef SkShader INHERITED; }; void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) { if (CC_UNLIKELY(layer->region.isEmpty())) return; // nothing to draw if (layer->getConvexMask()) { save(SaveFlags::MatrixClip); // clip to the area of the layer the mask can be larger clipRect(rect.left, rect.top, rect.right, rect.bottom, SkRegion::kIntersect_Op); SkPaint paint; paint.setAntiAlias(true); paint.setColor(SkColorSetARGB(int(getLayerAlpha(layer) * 255), 0, 0, 0)); // create LayerShader to map SaveLayer content into subsequent draw SkMatrix shaderMatrix; shaderMatrix.setTranslate(rect.left, rect.bottom); shaderMatrix.preScale(1, -1); LayerShader layerShader(layer, &shaderMatrix); paint.setShader(&layerShader); // Since the drawing primitive is defined in local drawing space, // we don't need to modify the draw matrix const SkPath* maskPath = layer->getConvexMask(); DRAW_DOUBLE_STENCIL(drawConvexPath(*maskPath, &paint)); paint.setShader(nullptr); restore(); return; } if (layer->region.isRect()) { layer->setRegionAsRect(); DRAW_DOUBLE_STENCIL(composeLayerRect(layer, layer->regionRect)); layer->region.clear(); return; } EVENT_LOGD("composeLayerRegion"); // standard Region based draw size_t count; const android::Rect* rects; Region safeRegion; if (CC_LIKELY(hasRectToRectTransform())) { rects = layer->region.getArray(&count); } else { safeRegion = Region::createTJunctionFreeRegion(layer->region); rects = safeRegion.getArray(&count); } const float texX = 1.0f / float(layer->getWidth()); const float texY = 1.0f / float(layer->getHeight()); const float height = rect.getHeight(); TextureVertex quadVertices[count * 4]; TextureVertex* mesh = &quadVertices[0]; for (size_t i = 0; i < count; i++) { const android::Rect* r = &rects[i]; const float u1 = r->left * texX; const float v1 = (height - r->top) * texY; const float u2 = r->right * texX; const float v2 = (height - r->bottom) * texY; // TODO: Reject quads outside of the clip TextureVertex::set(mesh++, r->left, r->top, u1, v1); TextureVertex::set(mesh++, r->right, r->top, u2, v1); TextureVertex::set(mesh++, r->left, r->bottom, u1, v2); TextureVertex::set(mesh++, r->right, r->bottom, u2, v2); } Rect modelRect = Rect(rect.getWidth(), rect.getHeight()); Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedIndexedQuads(&quadVertices[0], count * 6) .setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewOffsetRectSnap(rect.left, rect.top, modelRect) .build(); DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, renderGlop(glop)); #if DEBUG_LAYERS_AS_REGIONS drawRegionRectsDebug(layer->region); #endif layer->region.clear(); } #if DEBUG_LAYERS_AS_REGIONS void OpenGLRenderer::drawRegionRectsDebug(const Region& region) { size_t count; const android::Rect* rects = region.getArray(&count); uint32_t colors[] = { 0x7fff0000, 0x7f00ff00, 0x7f0000ff, 0x7fff00ff, }; int offset = 0; int32_t top = rects[0].top; for (size_t i = 0; i < count; i++) { if (top != rects[i].top) { offset ^= 0x2; top = rects[i].top; } SkPaint paint; paint.setColor(colors[offset + (i & 0x1)]); Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom); drawColorRect(r.left, r.top, r.right, r.bottom, paint); } } #endif void OpenGLRenderer::drawRegionRects(const SkRegion& region, const SkPaint& paint, bool dirty) { Vector<float> rects; SkRegion::Iterator it(region); while (!it.done()) { const SkIRect& r = it.rect(); rects.push(r.fLeft); rects.push(r.fTop); rects.push(r.fRight); rects.push(r.fBottom); it.next(); } drawColorRects(rects.array(), rects.size(), &paint, true, dirty, false); } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom, const Matrix4& transform) { if (hasLayer()) { Rect bounds(left, top, right, bottom); transform.mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom) { if (hasLayer()) { Rect bounds(left, top, right, bottom); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) { bounds.doIntersect(mState.currentRenderTargetClip()); if (!bounds.isEmpty()) { bounds.snapToPixelBoundaries(); android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom); if (!dirty.isEmpty()) { region->orSelf(dirty); } } } void OpenGLRenderer::clearLayerRegions() { const size_t quadCount = mLayers.size(); if (quadCount == 0) return; if (!mState.currentlyIgnored()) { EVENT_LOGD("clearLayerRegions"); // Doing several glScissor/glClear here can negatively impact // GPUs with a tiler architecture, instead we draw quads with // the Clear blending mode // The list contains bounds that have already been clipped // against their initial clip rect, and the current clip // is likely different so we need to disable clipping here bool scissorChanged = mRenderState.scissor().setEnabled(false); Vertex mesh[quadCount * 4]; Vertex* vertex = mesh; for (uint32_t i = 0; i < quadCount; i++) { const Rect& bounds = mLayers[i]; Vertex::set(vertex++, bounds.left, bounds.top); Vertex::set(vertex++, bounds.right, bounds.top); Vertex::set(vertex++, bounds.left, bounds.bottom); Vertex::set(vertex++, bounds.right, bounds.bottom); } // We must clear the list of dirty rects before we // call clearLayerRegions() in renderGlop to prevent // stencil setup from doing the same thing again mLayers.clear(); const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(nullptr) // clear ignores clip state .setMeshIndexedQuads(&mesh[0], quadCount) .setFillClear() .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRect(0, 0, Rect(currentSnapshot()->getRenderTargetClip())) .build(); renderGlop(glop, GlopRenderType::LayerClear); if (scissorChanged) mRenderState.scissor().setEnabled(true); } else { mLayers.clear(); } } /////////////////////////////////////////////////////////////////////////////// // State Deferral /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) { const Rect& currentClip = mState.currentRenderTargetClip(); const mat4* currentMatrix = currentTransform(); if (stateDeferFlags & kStateDeferFlag_Draw) { // state has bounds initialized in local coordinates if (!state.mBounds.isEmpty()) { currentMatrix->mapRect(state.mBounds); Rect clippedBounds(state.mBounds); // NOTE: if we ever want to use this clipping info to drive whether the scissor // is used, it should more closely duplicate the quickReject logic (in how it uses // snapToPixelBoundaries) clippedBounds.doIntersect(currentClip); if (clippedBounds.isEmpty()) { // quick rejected return true; } state.mClipSideFlags = kClipSide_None; if (!currentClip.contains(state.mBounds)) { int& flags = state.mClipSideFlags; // op partially clipped, so record which sides are clipped for clip-aware merging if (currentClip.left > state.mBounds.left) flags |= kClipSide_Left; if (currentClip.top > state.mBounds.top) flags |= kClipSide_Top; if (currentClip.right < state.mBounds.right) flags |= kClipSide_Right; if (currentClip.bottom < state.mBounds.bottom) flags |= kClipSide_Bottom; } state.mBounds.set(clippedBounds); } else { // Empty bounds implies size unknown. Label op as conservatively clipped to disable // overdraw avoidance (since we don't know what it overlaps) state.mClipSideFlags = kClipSide_ConservativeFull; state.mBounds.set(currentClip); } } state.mClipValid = (stateDeferFlags & kStateDeferFlag_Clip); if (state.mClipValid) { state.mClip.set(currentClip); } // Transform and alpha always deferred, since they are used by state operations // (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything) state.mMatrix = *currentMatrix; state.mAlpha = currentSnapshot()->alpha; // always store/restore, since these are just pointers state.mRoundRectClipState = currentSnapshot()->roundRectClipState; #if !HWUI_NEW_OPS state.mProjectionPathMask = currentSnapshot()->projectionPathMask; #endif return false; } void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state, bool skipClipRestore) { setGlobalMatrix(state.mMatrix); writableSnapshot()->alpha = state.mAlpha; writableSnapshot()->roundRectClipState = state.mRoundRectClipState; #if !HWUI_NEW_OPS writableSnapshot()->projectionPathMask = state.mProjectionPathMask; #endif if (state.mClipValid && !skipClipRestore) { writableSnapshot()->setClip(state.mClip.left, state.mClip.top, state.mClip.right, state.mClip.bottom); dirtyClip(); } } /** * Merged multidraw (such as in drawText and drawBitmaps rely on the fact that no clipping is done * in the draw path. Instead, clipping is done ahead of time - either as a single clip rect (when at * least one op is clipped), or disabled entirely (because no merged op is clipped) * * This method should be called when restoreDisplayState() won't be restoring the clip */ void OpenGLRenderer::setupMergedMultiDraw(const Rect* clipRect) { if (clipRect != nullptr) { writableSnapshot()->setClip(clipRect->left, clipRect->top, clipRect->right, clipRect->bottom); } else { writableSnapshot()->setClip(0, 0, mState.getWidth(), mState.getHeight()); } dirtyClip(); bool enableScissor = (clipRect != nullptr) || mScissorOptimizationDisabled; mRenderState.scissor().setEnabled(enableScissor); } /////////////////////////////////////////////////////////////////////////////// // Clipping /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setScissorFromClip() { Rect clip(mState.currentRenderTargetClip()); clip.snapToPixelBoundaries(); if (mRenderState.scissor().set(clip.left, getViewportHeight() - clip.bottom, clip.getWidth(), clip.getHeight())) { mState.setDirtyClip(false); } } void OpenGLRenderer::ensureStencilBuffer() { // Thanks to the mismatch between EGL and OpenGL ES FBO we // cannot attach a stencil buffer to fbo0 dynamically. Let's // just hope we have one when hasLayer() returns false. if (hasLayer()) { attachStencilBufferToLayer(currentSnapshot()->layer); } } void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) { // The layer's FBO is already bound when we reach this stage if (!layer->getStencilRenderBuffer()) { RenderBuffer* buffer = mCaches.renderBufferCache.get( Stencil::getLayerStencilFormat(), layer->getWidth(), layer->getHeight()); layer->setStencilRenderBuffer(buffer); } } static void handlePoint(std::vector<Vertex>& rectangleVertices, const Matrix4& transform, float x, float y) { Vertex v; v.x = x; v.y = y; transform.mapPoint(v.x, v.y); rectangleVertices.push_back(v); } static void handlePointNoTransform(std::vector<Vertex>& rectangleVertices, float x, float y) { Vertex v; v.x = x; v.y = y; rectangleVertices.push_back(v); } void OpenGLRenderer::drawRectangleList(const RectangleList& rectangleList) { int quadCount = rectangleList.getTransformedRectanglesCount(); std::vector<Vertex> rectangleVertices(quadCount * 4); Rect scissorBox = rectangleList.calculateBounds(); scissorBox.snapToPixelBoundaries(); for (int i = 0; i < quadCount; ++i) { const TransformedRectangle& tr(rectangleList.getTransformedRectangle(i)); const Matrix4& transform = tr.getTransform(); Rect bounds = tr.getBounds(); if (transform.rectToRect()) { transform.mapRect(bounds); bounds.doIntersect(scissorBox); if (!bounds.isEmpty()) { handlePointNoTransform(rectangleVertices, bounds.left, bounds.top); handlePointNoTransform(rectangleVertices, bounds.right, bounds.top); handlePointNoTransform(rectangleVertices, bounds.left, bounds.bottom); handlePointNoTransform(rectangleVertices, bounds.right, bounds.bottom); } } else { handlePoint(rectangleVertices, transform, bounds.left, bounds.top); handlePoint(rectangleVertices, transform, bounds.right, bounds.top); handlePoint(rectangleVertices, transform, bounds.left, bounds.bottom); handlePoint(rectangleVertices, transform, bounds.right, bounds.bottom); } } mRenderState.scissor().set(scissorBox.left, getViewportHeight() - scissorBox.bottom, scissorBox.getWidth(), scissorBox.getHeight()); const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform; Glop glop; Vertex* vertices = &rectangleVertices[0]; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshIndexedQuads(vertices, rectangleVertices.size() / 4) .setFillBlack() .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRect(0, 0, scissorBox) .build(); renderGlop(glop); } void OpenGLRenderer::setStencilFromClip() { if (!Properties::debugOverdraw) { if (!currentSnapshot()->clipIsSimple()) { int incrementThreshold; EVENT_LOGD("setStencilFromClip - enabling"); // NOTE: The order here is important, we must set dirtyClip to false // before any draw call to avoid calling back into this method mState.setDirtyClip(false); ensureStencilBuffer(); const ClipArea& clipArea = currentSnapshot()->getClipArea(); bool isRectangleList = clipArea.isRectangleList(); if (isRectangleList) { incrementThreshold = clipArea.getRectangleList().getTransformedRectanglesCount(); } else { incrementThreshold = 0; } mRenderState.stencil().enableWrite(incrementThreshold); // Clean and update the stencil, but first make sure we restrict drawing // to the region's bounds bool resetScissor = mRenderState.scissor().setEnabled(true); if (resetScissor) { // The scissor was not set so we now need to update it setScissorFromClip(); } mRenderState.stencil().clear(); // stash and disable the outline clip state, since stencil doesn't account for outline bool storedSkipOutlineClip = mSkipOutlineClip; mSkipOutlineClip = true; SkPaint paint; paint.setColor(SK_ColorBLACK); paint.setXfermodeMode(SkXfermode::kSrc_Mode); if (isRectangleList) { drawRectangleList(clipArea.getRectangleList()); } else { // NOTE: We could use the region contour path to generate a smaller mesh // Since we are using the stencil we could use the red book path // drawing technique. It might increase bandwidth usage though. // The last parameter is important: we are not drawing in the color buffer // so we don't want to dirty the current layer, if any drawRegionRects(clipArea.getClipRegion(), paint, false); } if (resetScissor) mRenderState.scissor().setEnabled(false); mSkipOutlineClip = storedSkipOutlineClip; mRenderState.stencil().enableTest(incrementThreshold); // Draw the region used to generate the stencil if the appropriate debug // mode is enabled // TODO: Implement for rectangle list clip areas if (Properties::debugStencilClip == StencilClipDebug::ShowRegion && !clipArea.isRectangleList()) { paint.setColor(0x7f0000ff); paint.setXfermodeMode(SkXfermode::kSrcOver_Mode); drawRegionRects(currentSnapshot()->getClipRegion(), paint); } } else { EVENT_LOGD("setStencilFromClip - disabling"); mRenderState.stencil().disable(); } } } /** * Returns false and sets scissor enable based upon bounds if drawing won't be clipped out. * * @param paint if not null, the bounds will be expanded to account for stroke depending on paint * style, and tessellated AA ramp */ bool OpenGLRenderer::quickRejectSetupScissor(float left, float top, float right, float bottom, const SkPaint* paint) { bool snapOut = paint && paint->isAntiAlias(); if (paint && paint->getStyle() != SkPaint::kFill_Style) { float outset = paint->getStrokeWidth() * 0.5f; left -= outset; top -= outset; right += outset; bottom += outset; } bool clipRequired = false; bool roundRectClipRequired = false; if (mState.calculateQuickRejectForScissor(left, top, right, bottom, &clipRequired, &roundRectClipRequired, snapOut)) { return true; } // not quick rejected, so enable the scissor if clipRequired mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired); mSkipOutlineClip = !roundRectClipRequired; return false; } void OpenGLRenderer::debugClip() { #if DEBUG_CLIP_REGIONS if (!currentSnapshot()->clipRegion->isEmpty()) { SkPaint paint; paint.setColor(0x7f00ff00); drawRegionRects(*(currentSnapshot()->clipRegion, paint); } #endif } void OpenGLRenderer::renderGlop(const Glop& glop, GlopRenderType type) { // TODO: It would be best if we could do this before quickRejectSetupScissor() // changes the scissor test state if (type != GlopRenderType::LayerClear) { // Regular draws need to clear the dirty area on the layer before they start drawing on top // of it. If this draw *is* a layer clear, it skips the clear step (since it would // infinitely recurse) clearLayerRegions(); } if (mState.getDirtyClip()) { if (mRenderState.scissor().isEnabled()) { setScissorFromClip(); } setStencilFromClip(); } mRenderState.render(glop, currentSnapshot()->getOrthoMatrix()); if (type == GlopRenderType::Standard && !mRenderState.stencil().isWriteEnabled()) { // TODO: specify more clearly when a draw should dirty the layer. // is writing to the stencil the only time we should ignore this? #if !HWUI_NEW_OPS dirtyLayer(glop.bounds.left, glop.bounds.top, glop.bounds.right, glop.bounds.bottom); #endif mDirty = true; } } /////////////////////////////////////////////////////////////////////////////// // Drawing /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::drawRenderNode(RenderNode* renderNode, Rect& dirty, int32_t replayFlags) { // All the usual checks and setup operations (quickReject, setupDraw, etc.) // will be performed by the display list itself if (renderNode && renderNode->isRenderable()) { // compute 3d ordering renderNode->computeOrdering(); if (CC_UNLIKELY(Properties::drawDeferDisabled)) { startFrame(); ReplayStateStruct replayStruct(*this, dirty, replayFlags); renderNode->replay(replayStruct, 0); return; } DeferredDisplayList deferredList(mState.currentRenderTargetClip()); DeferStateStruct deferStruct(deferredList, *this, replayFlags); renderNode->defer(deferStruct, 0); flushLayers(); startFrame(); deferredList.flush(*this, dirty); } else { // Even if there is no drawing command(Ex: invisible), // it still needs startFrame to clear buffer and start tiling. startFrame(); } } /** * Important note: this method is intended to draw batches of bitmaps and * will not set the scissor enable or dirty the current layer, if any. * The caller is responsible for properly dirtying the current layer. */ void OpenGLRenderer::drawBitmaps(const SkBitmap* bitmap, AssetAtlas::Entry* entry, int bitmapCount, TextureVertex* vertices, bool pureTranslate, const Rect& bounds, const SkPaint* paint) { Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); // TODO: remove layer dirty in multi-draw callers // TODO: snap doesn't need to touch transform, only texture filter. bool snap = pureTranslate; const float x = floorf(bounds.left + 0.5f); const float y = floorf(bounds.top + 0.5f); const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType) ? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None; const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedMesh(vertices, bitmapCount * 6) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRectOptionalSnap(snap, x, y, Rect(bounds.getWidth(), bounds.getHeight())) .build(); renderGlop(glop, GlopRenderType::Multi); } void OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, const SkPaint* paint) { if (quickRejectSetupScissor(0, 0, bitmap->width(), bitmap->height())) { return; } mCaches.textureState().activateTexture(0); Texture* texture = getTexture(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType) ? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUnitQuad(texture->uvMapper) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRectSnap(Rect(texture->width(), texture->height())) .build(); renderGlop(glop); } void OpenGLRenderer::drawBitmapMesh(const SkBitmap* bitmap, int meshWidth, int meshHeight, const float* vertices, const int* colors, const SkPaint* paint) { if (!vertices || mState.currentlyIgnored()) { return; } float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; const uint32_t elementCount = meshWidth * meshHeight * 6; std::unique_ptr<ColorTextureVertex[]> mesh(new ColorTextureVertex[elementCount]); ColorTextureVertex* vertex = &mesh[0]; std::unique_ptr<int[]> tempColors; if (!colors) { uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1); tempColors.reset(new int[colorsCount]); memset(tempColors.get(), 0xff, colorsCount * sizeof(int)); colors = tempColors.get(); } Texture* texture = mRenderState.assetAtlas().getEntryTexture(bitmap->pixelRef()); const UvMapper& mapper(getMapper(texture)); for (int32_t y = 0; y < meshHeight; y++) { for (int32_t x = 0; x < meshWidth; x++) { uint32_t i = (y * (meshWidth + 1) + x) * 2; float u1 = float(x) / meshWidth; float u2 = float(x + 1) / meshWidth; float v1 = float(y) / meshHeight; float v2 = float(y + 1) / meshHeight; mapper.map(u1, v1, u2, v2); int ax = i + (meshWidth + 1) * 2; int ay = ax + 1; int bx = i; int by = bx + 1; int cx = i + 2; int cy = cx + 1; int dx = i + (meshWidth + 1) * 2 + 2; int dy = dx + 1; ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]); left = std::min(left, std::min(vertices[ax], std::min(vertices[bx], vertices[cx]))); top = std::min(top, std::min(vertices[ay], std::min(vertices[by], vertices[cy]))); right = std::max(right, std::max(vertices[ax], std::max(vertices[bx], vertices[cx]))); bottom = std::max(bottom, std::max(vertices[ay], std::max(vertices[by], vertices[cy]))); } } if (quickRejectSetupScissor(left, top, right, bottom)) { return; } if (!texture) { texture = mCaches.textureCache.get(bitmap); if (!texture) { return; } } const AutoTexture autoCleanup(texture); /* * TODO: handle alpha_8 textures correctly by applying paint color, but *not* * shader in that case to mimic the behavior in SkiaCanvas::drawBitmapMesh. */ const int textureFillFlags = TextureFillFlags::None; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshColoredTexturedMesh(mesh.get(), elementCount) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewOffsetRect(0, 0, Rect(left, top, right, bottom)) .build(); renderGlop(glop); } void OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, Rect src, Rect dst, const SkPaint* paint) { if (quickRejectSetupScissor(dst)) { return; } Texture* texture = getTexture(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); Rect uv(std::max(0.0f, src.left / texture->width()), std::max(0.0f, src.top / texture->height()), std::min(1.0f, src.right / texture->width()), std::min(1.0f, src.bottom / texture->height())); const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType) ? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None; const bool tryToSnap = MathUtils::areEqual(src.getWidth(), dst.getWidth()) && MathUtils::areEqual(src.getHeight(), dst.getHeight()); Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUvQuad(texture->uvMapper, uv) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRectOptionalSnap(tryToSnap, dst) .build(); renderGlop(glop); } void OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Patch* mesh, AssetAtlas::Entry* entry, float left, float top, float right, float bottom, const SkPaint* paint) { if (!mesh || !mesh->verticesCount || quickRejectSetupScissor(left, top, right, bottom)) { return; } Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); // 9 patches are built for stretching - always filter int textureFillFlags = TextureFillFlags::ForceFilter; if (bitmap->colorType() == kAlpha_8_SkColorType) { textureFillFlags |= TextureFillFlags::IsAlphaMaskTexture; } Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshPatchQuads(*mesh) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewOffsetRectSnap(left, top, Rect(right - left, bottom - top)) // TODO: get minimal bounds from patch .build(); renderGlop(glop); } /** * Important note: this method is intended to draw batches of 9-patch objects and * will not set the scissor enable or dirty the current layer, if any. * The caller is responsible for properly dirtying the current layer. */ void OpenGLRenderer::drawPatches(const SkBitmap* bitmap, AssetAtlas::Entry* entry, TextureVertex* vertices, uint32_t elementCount, const SkPaint* paint) { mCaches.textureState().activateTexture(0); Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); // TODO: get correct bounds from caller const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform; // 9 patches are built for stretching - always filter int textureFillFlags = TextureFillFlags::ForceFilter; if (bitmap->colorType() == kAlpha_8_SkColorType) { textureFillFlags |= TextureFillFlags::IsAlphaMaskTexture; } Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedIndexedQuads(vertices, elementCount) .setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRect(0, 0, Rect()) .build(); renderGlop(glop, GlopRenderType::Multi); } void OpenGLRenderer::drawVertexBuffer(float translateX, float translateY, const VertexBuffer& vertexBuffer, const SkPaint* paint, int displayFlags) { // not missing call to quickReject/dirtyLayer, always done at a higher level if (!vertexBuffer.getVertexCount()) { // no vertices to draw return; } bool shadowInterp = displayFlags & kVertexBuffer_ShadowInterp; const int transformFlags = TransformFlags::OffsetByFudgeFactor; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshVertexBuffer(vertexBuffer) .setFillPaint(*paint, currentSnapshot()->alpha, shadowInterp) .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRect(translateX, translateY, vertexBuffer.getBounds()) .build(); renderGlop(glop); } /** * Renders a convex path via tessellation. For AA paths, this function uses a similar approach to * that of AA lines in the drawLines() function. We expand the convex path by a half pixel in * screen space in all directions. However, instead of using a fragment shader to compute the * translucency of the color from its position, we simply use a varying parameter to define how far * a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used. * * Doesn't yet support joins, caps, or path effects. */ void OpenGLRenderer::drawConvexPath(const SkPath& path, const SkPaint* paint) { VertexBuffer vertexBuffer; // TODO: try clipping large paths to viewport PathTessellator::tessellatePath(path, paint, *currentTransform(), vertexBuffer); drawVertexBuffer(vertexBuffer, paint); } /** * We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha * and additional geometry for defining an alpha slope perimeter. * * Using GL_LINES can be difficult because the rasterization rules for those lines produces some * unexpected results, and may vary between hardware devices. Previously we used a varying-base * in-shader alpha region, but found it to be taxing on some GPUs. * * TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce * memory transfer by removing need for degenerate vertices. */ void OpenGLRenderer::drawLines(const float* points, int count, const SkPaint* paint) { if (mState.currentlyIgnored() || count < 4) return; count &= ~0x3; // round down to nearest four VertexBuffer buffer; PathTessellator::tessellateLines(points, count, paint, *currentTransform(), buffer); const Rect& bounds = buffer.getBounds(); if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) { return; } int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset; drawVertexBuffer(buffer, paint, displayFlags); } void OpenGLRenderer::drawPoints(const float* points, int count, const SkPaint* paint) { if (mState.currentlyIgnored() || count < 2) return; count &= ~0x1; // round down to nearest two VertexBuffer buffer; PathTessellator::tessellatePoints(points, count, paint, *currentTransform(), buffer); const Rect& bounds = buffer.getBounds(); if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) { return; } int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset; drawVertexBuffer(buffer, paint, displayFlags); mDirty = true; } void OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) { // No need to check against the clip, we fill the clip region if (mState.currentlyIgnored()) return; Rect clip(mState.currentRenderTargetClip()); clip.snapToPixelBoundaries(); SkPaint paint; paint.setColor(color); paint.setXfermodeMode(mode); drawColorRect(clip.left, clip.top, clip.right, clip.bottom, &paint, true); mDirty = true; } void OpenGLRenderer::drawShape(float left, float top, PathTexture* texture, const SkPaint* paint) { if (!texture) return; const AutoTexture autoCleanup(texture); const float x = left + texture->left - texture->offset; const float y = top + texture->top - texture->offset; drawPathTexture(texture, x, y, paint); mDirty = true; } void OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom, float rx, float ry, const SkPaint* p) { if (mState.currentlyIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || PaintUtils::paintWillNotDraw(*p)) { return; } if (p->getPathEffect() != nullptr) { mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.getRoundRect( right - left, bottom - top, rx, ry, p); drawShape(left, top, texture, p); } else { const VertexBuffer* vertexBuffer = mCaches.tessellationCache.getRoundRect( *currentTransform(), *p, right - left, bottom - top, rx, ry); drawVertexBuffer(left, top, *vertexBuffer, p); } } void OpenGLRenderer::drawCircle(float x, float y, float radius, const SkPaint* p) { if (mState.currentlyIgnored() || quickRejectSetupScissor(x - radius, y - radius, x + radius, y + radius, p) || PaintUtils::paintWillNotDraw(*p)) { return; } if (p->getPathEffect() != nullptr) { mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.getCircle(radius, p); drawShape(x - radius, y - radius, texture, p); return; } SkPath path; if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { path.addCircle(x, y, radius + p->getStrokeWidth() / 2); } else { path.addCircle(x, y, radius); } #if !HWUI_NEW_OPS if (CC_UNLIKELY(currentSnapshot()->projectionPathMask != nullptr)) { // mask ripples with projection mask SkPath maskPath = *(currentSnapshot()->projectionPathMask->projectionMask); Matrix4 screenSpaceTransform; currentSnapshot()->buildScreenSpaceTransform(&screenSpaceTransform); Matrix4 totalTransform; totalTransform.loadInverse(screenSpaceTransform); totalTransform.multiply(currentSnapshot()->projectionPathMask->projectionMaskTransform); SkMatrix skTotalTransform; totalTransform.copyTo(skTotalTransform); maskPath.transform(skTotalTransform); // Mask the ripple path by the projection mask, now that it's // in local space. Note that this can create CCW paths. Op(path, maskPath, kIntersect_SkPathOp, &path); } #endif drawConvexPath(path, p); } void OpenGLRenderer::drawOval(float left, float top, float right, float bottom, const SkPaint* p) { if (mState.currentlyIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || PaintUtils::paintWillNotDraw(*p)) { return; } if (p->getPathEffect() != nullptr) { mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.getOval(right - left, bottom - top, p); drawShape(left, top, texture, p); } else { SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addOval(rect); drawConvexPath(path, p); } } void OpenGLRenderer::drawArc(float left, float top, float right, float bottom, float startAngle, float sweepAngle, bool useCenter, const SkPaint* p) { if (mState.currentlyIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || PaintUtils::paintWillNotDraw(*p)) { return; } // TODO: support fills (accounting for concavity if useCenter && sweepAngle > 180) if (p->getStyle() != SkPaint::kStroke_Style || p->getPathEffect() != nullptr || useCenter) { mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.getArc(right - left, bottom - top, startAngle, sweepAngle, useCenter, p); drawShape(left, top, texture, p); return; } SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } SkPath path; if (useCenter) { path.moveTo(rect.centerX(), rect.centerY()); } path.arcTo(rect, startAngle, sweepAngle, !useCenter); if (useCenter) { path.close(); } drawConvexPath(path, p); } void OpenGLRenderer::drawRect(float left, float top, float right, float bottom, const SkPaint* p) { if (mState.currentlyIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || PaintUtils::paintWillNotDraw(*p)) { return; } if (p->getStyle() != SkPaint::kFill_Style) { // only fill style is supported by drawConvexPath, since others have to handle joins static_assert(SkPaintDefaults_MiterLimit == 4.0f, "Miter limit has changed"); if (p->getPathEffect() != nullptr || p->getStrokeJoin() != SkPaint::kMiter_Join || p->getStrokeMiter() != SkPaintDefaults_MiterLimit) { mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.getRect(right - left, bottom - top, p); drawShape(left, top, texture, p); } else { SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addRect(rect); drawConvexPath(path, p); } } else { if (p->isAntiAlias() && !currentTransform()->isSimple()) { SkPath path; path.addRect(left, top, right, bottom); drawConvexPath(path, p); } else { drawColorRect(left, top, right, bottom, p); mDirty = true; } } } void OpenGLRenderer::drawTextShadow(const SkPaint* paint, const glyph_t* glyphs, int count, const float* positions, FontRenderer& fontRenderer, int alpha, float x, float y) { mCaches.textureState().activateTexture(0); PaintUtils::TextShadow textShadow; if (!PaintUtils::getTextShadow(paint, &textShadow)) { LOG_ALWAYS_FATAL("failed to query shadow attributes"); } // NOTE: The drop shadow will not perform gamma correction // if shader-based correction is enabled mCaches.dropShadowCache.setFontRenderer(fontRenderer); ShadowTexture* texture = mCaches.dropShadowCache.get( paint, glyphs, count, textShadow.radius, positions); // If the drop shadow exceeds the max texture size or couldn't be // allocated, skip drawing if (!texture) return; const AutoTexture autoCleanup(texture); const float sx = x - texture->left + textShadow.dx; const float sy = y - texture->top + textShadow.dy; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUnitQuad(nullptr) .setFillShadowTexturePaint(*texture, textShadow.color, *paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRect(Rect(sx, sy, sx + texture->width(), sy + texture->height())) .build(); renderGlop(glop); } // TODO: remove this, once mState.currentlyIgnored captures snapshot alpha bool OpenGLRenderer::canSkipText(const SkPaint* paint) const { float alpha = (PaintUtils::hasTextShadow(paint) ? 1.0f : paint->getAlpha()) * currentSnapshot()->alpha; return MathUtils::isZero(alpha) && PaintUtils::getXfermode(paint->getXfermode()) == SkXfermode::kSrcOver_Mode; } bool OpenGLRenderer::findBestFontTransform(const mat4& transform, SkMatrix* outMatrix) const { if (CC_LIKELY(transform.isPureTranslate())) { outMatrix->setIdentity(); return false; } else if (CC_UNLIKELY(transform.isPerspective())) { outMatrix->setIdentity(); return true; } /** * Input is a non-perspective, scaling transform. Generate a scale-only transform, * with values rounded to the nearest int. */ float sx, sy; transform.decomposeScale(sx, sy); outMatrix->setScale( roundf(std::max(1.0f, sx)), roundf(std::max(1.0f, sy))); return true; } int OpenGLRenderer::getSaveCount() const { return mState.getSaveCount(); } int OpenGLRenderer::save(int flags) { return mState.save(flags); } void OpenGLRenderer::restore() { mState.restore(); } void OpenGLRenderer::restoreToCount(int saveCount) { mState.restoreToCount(saveCount); } void OpenGLRenderer::translate(float dx, float dy, float dz) { mState.translate(dx, dy, dz); } void OpenGLRenderer::rotate(float degrees) { mState.rotate(degrees); } void OpenGLRenderer::scale(float sx, float sy) { mState.scale(sx, sy); } void OpenGLRenderer::skew(float sx, float sy) { mState.skew(sx, sy); } void OpenGLRenderer::setLocalMatrix(const Matrix4& matrix) { mState.setMatrix(mBaseTransform); mState.concatMatrix(matrix); } void OpenGLRenderer::setLocalMatrix(const SkMatrix& matrix) { mState.setMatrix(mBaseTransform); mState.concatMatrix(matrix); } void OpenGLRenderer::concatMatrix(const Matrix4& matrix) { mState.concatMatrix(matrix); } bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) { return mState.clipRect(left, top, right, bottom, op); } bool OpenGLRenderer::clipPath(const SkPath* path, SkRegion::Op op) { return mState.clipPath(path, op); } bool OpenGLRenderer::clipRegion(const SkRegion* region, SkRegion::Op op) { return mState.clipRegion(region, op); } void OpenGLRenderer::setClippingOutline(LinearAllocator& allocator, const Outline* outline) { mState.setClippingOutline(allocator, outline); } void OpenGLRenderer::setClippingRoundRect(LinearAllocator& allocator, const Rect& rect, float radius, bool highPriority) { mState.setClippingRoundRect(allocator, rect, radius, highPriority); } void OpenGLRenderer::setProjectionPathMask(LinearAllocator& allocator, const SkPath* path) { mState.setProjectionPathMask(allocator, path); } void OpenGLRenderer::drawText(const glyph_t* glyphs, int bytesCount, int count, float x, float y, const float* positions, const SkPaint* paint, float totalAdvance, const Rect& bounds, DrawOpMode drawOpMode) { if (drawOpMode == DrawOpMode::kImmediate) { // The checks for corner-case ignorable text and quick rejection is only done for immediate // drawing as ops from DeferredDisplayList are already filtered for these if (glyphs == nullptr || count == 0 || mState.currentlyIgnored() || canSkipText(paint) || quickRejectSetupScissor(bounds)) { return; } } const float oldX = x; const float oldY = y; const mat4& transform = *currentTransform(); const bool pureTranslate = transform.isPureTranslate(); if (CC_LIKELY(pureTranslate)) { x = floorf(x + transform.getTranslateX() + 0.5f); y = floorf(y + transform.getTranslateY() + 0.5f); } int alpha = PaintUtils::getAlphaDirect(paint) * currentSnapshot()->alpha; SkXfermode::Mode mode = PaintUtils::getXfermodeDirect(paint); FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(); if (CC_UNLIKELY(PaintUtils::hasTextShadow(paint))) { fontRenderer.setFont(paint, SkMatrix::I()); drawTextShadow(paint, glyphs, count, positions, fontRenderer, alpha, oldX, oldY); } const bool hasActiveLayer = hasLayer(); // We only pass a partial transform to the font renderer. That partial // matrix defines how glyphs are rasterized. Typically we want glyphs // to be rasterized at their final size on screen, which means the partial // matrix needs to take the scale factor into account. // When a partial matrix is used to transform glyphs during rasterization, // the mesh is generated with the inverse transform (in the case of scale, // the mesh is generated at 1.0 / scale for instance.) This allows us to // apply the full transform matrix at draw time in the vertex shader. // Applying the full matrix in the shader is the easiest way to handle // rotation and perspective and allows us to always generated quads in the // font renderer which greatly simplifies the code, clipping in particular. SkMatrix fontTransform; bool linearFilter = findBestFontTransform(transform, &fontTransform) || fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; fontRenderer.setFont(paint, fontTransform); fontRenderer.setTextureFiltering(linearFilter); // TODO: Implement better clipping for scaled/rotated text const Rect* clip = !pureTranslate ? nullptr : &mState.currentRenderTargetClip(); Rect layerBounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); bool status; #if HWUI_NEW_OPS LOG_ALWAYS_FATAL("unsupported"); TextDrawFunctor functor(nullptr, nullptr, nullptr, x, y, pureTranslate, alpha, mode, paint); #else TextDrawFunctor functor(this, x, y, pureTranslate, alpha, mode, paint); #endif // don't call issuedrawcommand, do it at end of batch bool forceFinish = (drawOpMode != DrawOpMode::kDefer); if (CC_UNLIKELY(paint->getTextAlign() != SkPaint::kLeft_Align)) { SkPaint paintCopy(*paint); paintCopy.setTextAlign(SkPaint::kLeft_Align); status = fontRenderer.renderPosText(&paintCopy, clip, glyphs, count, x, y, positions, hasActiveLayer ? &layerBounds : nullptr, &functor, forceFinish); } else { status = fontRenderer.renderPosText(paint, clip, glyphs, count, x, y, positions, hasActiveLayer ? &layerBounds : nullptr, &functor, forceFinish); } if ((status || drawOpMode != DrawOpMode::kImmediate) && hasActiveLayer) { if (!pureTranslate) { transform.mapRect(layerBounds); } dirtyLayerUnchecked(layerBounds, getRegion()); } mDirty = true; } void OpenGLRenderer::drawTextOnPath(const glyph_t* glyphs, int bytesCount, int count, const SkPath* path, float hOffset, float vOffset, const SkPaint* paint) { if (glyphs == nullptr || count == 0 || mState.currentlyIgnored() || canSkipText(paint)) { return; } // TODO: avoid scissor by calculating maximum bounds using path bounds + font metrics mRenderState.scissor().setEnabled(true); FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(); fontRenderer.setFont(paint, SkMatrix::I()); fontRenderer.setTextureFiltering(true); int alpha = PaintUtils::getAlphaDirect(paint) * currentSnapshot()->alpha; SkXfermode::Mode mode = PaintUtils::getXfermodeDirect(paint); #if HWUI_NEW_OPS LOG_ALWAYS_FATAL("unsupported"); TextDrawFunctor functor(nullptr, nullptr, nullptr, 0.0f, 0.0f, false, alpha, mode, paint); #else TextDrawFunctor functor(this, 0.0f, 0.0f, false, alpha, mode, paint); #endif const Rect* clip = &writableSnapshot()->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); if (fontRenderer.renderTextOnPath(paint, clip, glyphs, count, path, hOffset, vOffset, hasLayer() ? &bounds : nullptr, &functor)) { dirtyLayer(bounds.left, bounds.top, bounds.right, bounds.bottom, *currentTransform()); mDirty = true; } } void OpenGLRenderer::drawPath(const SkPath* path, const SkPaint* paint) { if (mState.currentlyIgnored()) return; mCaches.textureState().activateTexture(0); PathTexture* texture = mCaches.pathCache.get(path, paint); if (!texture) return; const float x = texture->left - texture->offset; const float y = texture->top - texture->offset; drawPathTexture(texture, x, y, paint); if (texture->cleanup) { mCaches.pathCache.remove(path, paint); } mDirty = true; } void OpenGLRenderer::drawLayer(Layer* layer) { if (!layer) { return; } mat4* transform = nullptr; if (layer->isTextureLayer()) { transform = &layer->getTransform(); if (!transform->isIdentity()) { save(SaveFlags::Matrix); concatMatrix(*transform); } } bool clipRequired = false; const bool rejected = mState.calculateQuickRejectForScissor( 0, 0, layer->layer.getWidth(), layer->layer.getHeight(), &clipRequired, nullptr, false); if (rejected) { if (transform && !transform->isIdentity()) { restore(); } return; } EVENT_LOGD("drawLayer," RECT_STRING ", clipRequired %d", x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), clipRequired); updateLayer(layer, true); mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired); mCaches.textureState().activateTexture(0); if (CC_LIKELY(!layer->region.isEmpty())) { if (layer->region.isRect()) { DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, composeLayerRect(layer, layer->regionRect)); } else if (layer->mesh) { Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedIndexedQuads(layer->mesh, layer->meshElementCount) .setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewOffsetRectSnap(0, 0, Rect(layer->layer.getWidth(), layer->layer.getHeight())) .build(); DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, renderGlop(glop)); #if DEBUG_LAYERS_AS_REGIONS drawRegionRectsDebug(layer->region); #endif } if (layer->debugDrawUpdate) { layer->debugDrawUpdate = false; SkPaint paint; paint.setColor(0x7f00ff00); drawColorRect(0, 0, layer->layer.getWidth(), layer->layer.getHeight(), &paint); } } layer->hasDrawnSinceUpdate = true; if (transform && !transform->isIdentity()) { restore(); } mDirty = true; } /////////////////////////////////////////////////////////////////////////////// // Draw filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setDrawFilter(SkDrawFilter* filter) { // We should never get here since we apply the draw filter when stashing // the paints in the DisplayList. LOG_ALWAYS_FATAL("OpenGLRenderer does not directly support DrawFilters"); } /////////////////////////////////////////////////////////////////////////////// // Drawing implementation /////////////////////////////////////////////////////////////////////////////// Texture* OpenGLRenderer::getTexture(const SkBitmap* bitmap) { Texture* texture = mRenderState.assetAtlas().getEntryTexture(bitmap->pixelRef()); if (!texture) { return mCaches.textureCache.get(bitmap); } return texture; } void OpenGLRenderer::drawPathTexture(PathTexture* texture, float x, float y, const SkPaint* paint) { if (quickRejectSetupScissor(x, y, x + texture->width(), y + texture->height())) { return; } Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshTexturedUnitQuad(nullptr) .setFillPathTexturePaint(*texture, *paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), TransformFlags::None) .setModelViewMapUnitToRect(Rect(x, y, x + texture->width(), y + texture->height())) .build(); renderGlop(glop); } void OpenGLRenderer::drawRects(const float* rects, int count, const SkPaint* paint) { if (mState.currentlyIgnored()) { return; } drawColorRects(rects, count, paint, false, true, true); } void OpenGLRenderer::drawShadow(float casterAlpha, const VertexBuffer* ambientShadowVertexBuffer, const VertexBuffer* spotShadowVertexBuffer) { if (mState.currentlyIgnored()) return; // TODO: use quickRejectWithScissor. For now, always force enable scissor. mRenderState.scissor().setEnabled(true); SkPaint paint; paint.setAntiAlias(true); // want to use AlphaVertex // The caller has made sure casterAlpha > 0. float ambientShadowAlpha = mAmbientShadowAlpha; if (CC_UNLIKELY(Properties::overrideAmbientShadowStrength >= 0)) { ambientShadowAlpha = Properties::overrideAmbientShadowStrength; } if (ambientShadowVertexBuffer && ambientShadowAlpha > 0) { paint.setARGB(casterAlpha * ambientShadowAlpha, 0, 0, 0); drawVertexBuffer(*ambientShadowVertexBuffer, &paint, kVertexBuffer_ShadowInterp); } float spotShadowAlpha = mSpotShadowAlpha; if (CC_UNLIKELY(Properties::overrideSpotShadowStrength >= 0)) { spotShadowAlpha = Properties::overrideSpotShadowStrength; } if (spotShadowVertexBuffer && spotShadowAlpha > 0) { paint.setARGB(casterAlpha * spotShadowAlpha, 0, 0, 0); drawVertexBuffer(*spotShadowVertexBuffer, &paint, kVertexBuffer_ShadowInterp); } mDirty=true; } void OpenGLRenderer::drawColorRects(const float* rects, int count, const SkPaint* paint, bool ignoreTransform, bool dirty, bool clip) { if (count == 0) { return; } float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; Vertex mesh[count]; Vertex* vertex = mesh; for (int index = 0; index < count; index += 4) { float l = rects[index + 0]; float t = rects[index + 1]; float r = rects[index + 2]; float b = rects[index + 3]; Vertex::set(vertex++, l, t); Vertex::set(vertex++, r, t); Vertex::set(vertex++, l, b); Vertex::set(vertex++, r, b); left = std::min(left, l); top = std::min(top, t); right = std::max(right, r); bottom = std::max(bottom, b); } if (clip && quickRejectSetupScissor(left, top, right, bottom)) { return; } const int transformFlags = ignoreTransform ? TransformFlags::MeshIgnoresCanvasTransform : TransformFlags::None; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshIndexedQuads(&mesh[0], count / 4) .setFillPaint(*paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), transformFlags) .setModelViewOffsetRect(0, 0, Rect(left, top, right, bottom)) .build(); renderGlop(glop); } void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom, const SkPaint* paint, bool ignoreTransform) { const int transformFlags = ignoreTransform ? TransformFlags::MeshIgnoresCanvasTransform : TransformFlags::None; Glop glop; GlopBuilder(mRenderState, mCaches, &glop) .setRoundRectClipState(currentSnapshot()->roundRectClipState) .setMeshUnitQuad() .setFillPaint(*paint, currentSnapshot()->alpha) .setTransform(*currentSnapshot(), transformFlags) .setModelViewMapUnitToRect(Rect(left, top, right, bottom)) .build(); renderGlop(glop); } float OpenGLRenderer::getLayerAlpha(const Layer* layer) const { return (layer->getAlpha() / 255.0f) * currentSnapshot()->alpha; } }; // namespace uirenderer }; // namespace android