/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "VectorDrawable.h" #include "PathParser.h" #include "SkColorFilter.h" #include "SkImageInfo.h" #include "SkShader.h" #include <utils/Log.h> #include "utils/Macros.h" #include "utils/VectorDrawableUtils.h" #include <math.h> #include <string.h> namespace android { namespace uirenderer { namespace VectorDrawable { const int Tree::MAX_CACHED_BITMAP_SIZE = 2048; void Path::draw(SkCanvas* outCanvas, const SkMatrix& groupStackedMatrix, float scaleX, float scaleY, bool useStagingData) { float matrixScale = getMatrixScale(groupStackedMatrix); if (matrixScale == 0) { // When either x or y is scaled to 0, we don't need to draw anything. return; } SkMatrix pathMatrix(groupStackedMatrix); pathMatrix.postScale(scaleX, scaleY); //TODO: try apply the path matrix to the canvas instead of creating a new path. SkPath renderPath; renderPath.reset(); if (useStagingData) { SkPath tmpPath; getStagingPath(&tmpPath); renderPath.addPath(tmpPath, pathMatrix); } else { renderPath.addPath(getUpdatedPath(), pathMatrix); } float minScale = fmin(scaleX, scaleY); float strokeScale = minScale * matrixScale; drawPath(outCanvas, renderPath, strokeScale, pathMatrix, useStagingData); } void Path::dump() { ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size()); } float Path::getMatrixScale(const SkMatrix& groupStackedMatrix) { // Given unit vectors A = (0, 1) and B = (1, 0). // After matrix mapping, we got A' and B'. Let theta = the angel b/t A' and B'. // Therefore, the final scale we want is min(|A'| * sin(theta), |B'| * sin(theta)), // which is (|A'| * |B'| * sin(theta)) / max (|A'|, |B'|); // If max (|A'|, |B'|) = 0, that means either x or y has a scale of 0. // // For non-skew case, which is most of the cases, matrix scale is computing exactly the // scale on x and y axis, and take the minimal of these two. // For skew case, an unit square will mapped to a parallelogram. And this function will // return the minimal height of the 2 bases. SkVector skVectors[2]; skVectors[0].set(0, 1); skVectors[1].set(1, 0); groupStackedMatrix.mapVectors(skVectors, 2); float scaleX = hypotf(skVectors[0].fX, skVectors[0].fY); float scaleY = hypotf(skVectors[1].fX, skVectors[1].fY); float crossProduct = skVectors[0].cross(skVectors[1]); float maxScale = fmax(scaleX, scaleY); float matrixScale = 0; if (maxScale > 0) { matrixScale = fabs(crossProduct) / maxScale; } return matrixScale; } // Called from UI thread during the initial setup/theme change. Path::Path(const char* pathStr, size_t strLength) { PathParser::ParseResult result; Data data; PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength); mStagingProperties.setData(data); } Path::Path(const Path& path) : Node(path) { mStagingProperties.syncProperties(path.mStagingProperties); } const SkPath& Path::getUpdatedPath() { if (mSkPathDirty) { mSkPath.reset(); VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData()); mSkPathDirty = false; } return mSkPath; } void Path::getStagingPath(SkPath* outPath) { outPath->reset(); VectorDrawableUtils::verbsToPath(outPath, mStagingProperties.getData()); } void Path::syncProperties() { if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; } FullPath::FullPath(const FullPath& path) : Path(path) { mStagingProperties.syncProperties(path.mStagingProperties); } static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd, float trimPathOffset) { if (trimPathStart == 0.0f && trimPathEnd == 1.0f) { *outPath = inPath; return; } outPath->reset(); if (trimPathStart == trimPathEnd) { // Trimmed path should be empty. return; } SkPathMeasure measure(inPath, false); float len = SkScalarToFloat(measure.getLength()); float start = len * fmod((trimPathStart + trimPathOffset), 1.0f); float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f); if (start > end) { measure.getSegment(start, len, outPath, true); if (end > 0) { measure.getSegment(0, end, outPath, true); } } else { measure.getSegment(start, end, outPath, true); } } const SkPath& FullPath::getUpdatedPath() { if (!mSkPathDirty && !mProperties.mTrimDirty) { return mTrimmedSkPath; } Path::getUpdatedPath(); if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) { mProperties.mTrimDirty = false; applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(), mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset()); return mTrimmedSkPath; } else { return mSkPath; } } void FullPath::getStagingPath(SkPath* outPath) { Path::getStagingPath(outPath); SkPath inPath = *outPath; applyTrim(outPath, inPath, mStagingProperties.getTrimPathStart(), mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset()); } void FullPath::dump() { Path::dump(); ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f", mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(), mProperties.getFillColor(), mProperties.getFillAlpha()); } inline SkColor applyAlpha(SkColor color, float alpha) { int alphaBytes = SkColorGetA(color); return SkColorSetA(color, alphaBytes * alpha); } void FullPath::drawPath(SkCanvas* outCanvas, SkPath& renderPath, float strokeScale, const SkMatrix& matrix, bool useStagingData){ const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; // Draw path's fill, if fill color or gradient is valid bool needsFill = false; SkPaint paint; if (properties.getFillGradient() != nullptr) { paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha())); SkShader* newShader = properties.getFillGradient()->newWithLocalMatrix(matrix); paint.setShader(newShader); needsFill = true; } else if (properties.getFillColor() != SK_ColorTRANSPARENT) { paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha())); needsFill = true; } if (needsFill) { paint.setStyle(SkPaint::Style::kFill_Style); paint.setAntiAlias(true); SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType()); renderPath.setFillType(ft); outCanvas->drawPath(renderPath, paint); } // Draw path's stroke, if stroke color or Gradient is valid bool needsStroke = false; if (properties.getStrokeGradient() != nullptr) { paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha())); SkShader* newShader = properties.getStrokeGradient()->newWithLocalMatrix(matrix); paint.setShader(newShader); needsStroke = true; } else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) { paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha())); needsStroke = true; } if (needsStroke) { paint.setStyle(SkPaint::Style::kStroke_Style); paint.setAntiAlias(true); paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin())); paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap())); paint.setStrokeMiter(properties.getStrokeMiterLimit()); paint.setStrokeWidth(properties.getStrokeWidth() * strokeScale); outCanvas->drawPath(renderPath, paint); } } void FullPath::syncProperties() { Path::syncProperties(); if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { // Update staging property with property values from animation. mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; } REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields); static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t"); static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t"); bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const { int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields); if (length != propertyDataSize) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyDataSize, length); return false; } PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); *out = mPrimitiveFields; return true; } void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) { Property currentProperty = static_cast<Property>(propertyId); if (currentProperty == Property::strokeColor) { setStrokeColor(value); } else if (currentProperty == Property::fillColor) { setFillColor(value); } else { LOG_ALWAYS_FATAL("Error setting color property on FullPath: No valid property" " with id: %d", propertyId); } } void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) { Property property = static_cast<Property>(propertyId); switch (property) { case Property::strokeWidth: setStrokeWidth(value); break; case Property::strokeAlpha: setStrokeAlpha(value); break; case Property::fillAlpha: setFillAlpha(value); break; case Property::trimPathStart: setTrimPathStart(value); break; case Property::trimPathEnd: setTrimPathEnd(value); break; case Property::trimPathOffset: setTrimPathOffset(value); break; default: LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId); break; } } void ClipPath::drawPath(SkCanvas* outCanvas, SkPath& renderPath, float strokeScale, const SkMatrix& matrix, bool useStagingData){ outCanvas->clipPath(renderPath, SkRegion::kIntersect_Op); } Group::Group(const Group& group) : Node(group) { mStagingProperties.syncProperties(group.mStagingProperties); } void Group::draw(SkCanvas* outCanvas, const SkMatrix& currentMatrix, float scaleX, float scaleY, bool useStagingData) { // TODO: Try apply the matrix to the canvas instead of passing it down the tree // Calculate current group's matrix by preConcat the parent's and // and the current one on the top of the stack. // Basically the Mfinal = Mviewport * M0 * M1 * M2; // Mi the local matrix at level i of the group tree. SkMatrix stackedMatrix; const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties; getLocalMatrix(&stackedMatrix, prop); stackedMatrix.postConcat(currentMatrix); // Save the current clip information, which is local to this group. outCanvas->save(); // Draw the group tree in the same order as the XML file. for (auto& child : mChildren) { child->draw(outCanvas, stackedMatrix, scaleX, scaleY, useStagingData); } // Restore the previous clip information. outCanvas->restore(); } void Group::dump() { ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size()); ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(), mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY()); for (size_t i = 0; i < mChildren.size(); i++) { mChildren[i]->dump(); } } void Group::syncProperties() { // Copy over the dirty staging properties if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; for (auto& child : mChildren) { child->syncProperties(); } } void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) { outMatrix->reset(); // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of // translating to pivot for rotating and scaling, then translating back. outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY()); outMatrix->postScale(properties.getScaleX(), properties.getScaleY()); outMatrix->postRotate(properties.getRotation(), 0, 0); outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(), properties.getTranslateY() + properties.getPivotY()); } void Group::addChild(Node* child) { mChildren.emplace_back(child); if (mPropertyChangedListener != nullptr) { child->setPropertyChangedListener(mPropertyChangedListener); } } bool Group::GroupProperties::copyProperties(float* outProperties, int length) const { int propertyCount = static_cast<int>(Property::count); if (length != propertyCount) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyCount, length); return false; } PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); *out = mPrimitiveFields; return true; } // TODO: Consider animating the properties as float pointers // Called on render thread float Group::GroupProperties::getPropertyValue(int propertyId) const { Property currentProperty = static_cast<Property>(propertyId); switch (currentProperty) { case Property::rotate: return getRotation(); case Property::pivotX: return getPivotX(); case Property::pivotY: return getPivotY(); case Property::scaleX: return getScaleX(); case Property::scaleY: return getScaleY(); case Property::translateX: return getTranslateX(); case Property::translateY: return getTranslateY(); default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); return 0; } } // Called on render thread void Group::GroupProperties::setPropertyValue(int propertyId, float value) { Property currentProperty = static_cast<Property>(propertyId); switch (currentProperty) { case Property::rotate: setRotation(value); break; case Property::pivotX: setPivotX(value); break; case Property::pivotY: setPivotY(value); break; case Property::scaleX: setScaleX(value); break; case Property::scaleY: setScaleY(value); break; case Property::translateX: setTranslateX(value); break; case Property::translateY: setTranslateY(value); break; default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); } } bool Group::isValidProperty(int propertyId) { return GroupProperties::isValidProperty(propertyId); } bool Group::GroupProperties::isValidProperty(int propertyId) { return propertyId >= 0 && propertyId < static_cast<int>(Property::count); } int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds, bool needsMirroring, bool canReuseCache) { // The imageView can scale the canvas in different ways, in order to // avoid blurry scaling, we have to draw into a bitmap with exact pixel // size first. This bitmap size is determined by the bounds and the // canvas scale. SkMatrix canvasMatrix; outCanvas->getMatrix(&canvasMatrix); float canvasScaleX = 1.0f; float canvasScaleY = 1.0f; if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) { // Only use the scale value when there's no skew or rotation in the canvas matrix. // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors. canvasScaleX = fabs(canvasMatrix.getScaleX()); canvasScaleY = fabs(canvasMatrix.getScaleY()); } int scaledWidth = (int) (bounds.width() * canvasScaleX); int scaledHeight = (int) (bounds.height() * canvasScaleY); scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth); scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight); if (scaledWidth <= 0 || scaledHeight <= 0) { return 0; } mStagingProperties.setScaledSize(scaledWidth, scaledHeight); int saveCount = outCanvas->save(SaveFlags::MatrixClip); outCanvas->translate(bounds.fLeft, bounds.fTop); // Handle RTL mirroring. if (needsMirroring) { outCanvas->translate(bounds.width(), 0); outCanvas->scale(-1.0f, 1.0f); } mStagingProperties.setColorFilter(colorFilter); // At this point, canvas has been translated to the right position. // And we use this bound for the destination rect for the drawBitmap, so // we offset to (0, 0); SkRect tmpBounds = bounds; tmpBounds.offsetTo(0, 0); mStagingProperties.setBounds(tmpBounds); outCanvas->drawVectorDrawable(this); outCanvas->restoreToCount(saveCount); return scaledWidth * scaledHeight; } void Tree::drawStaging(Canvas* outCanvas) { bool redrawNeeded = allocateBitmapIfNeeded(&mStagingCache.bitmap, mStagingProperties.getScaledWidth(), mStagingProperties.getScaledHeight()); // draw bitmap cache if (redrawNeeded || mStagingCache.dirty) { updateBitmapCache(&mStagingCache.bitmap, true); mStagingCache.dirty = false; } SkPaint tmpPaint; SkPaint* paint = updatePaint(&tmpPaint, &mStagingProperties); outCanvas->drawBitmap(mStagingCache.bitmap, 0, 0, mStagingCache.bitmap.width(), mStagingCache.bitmap.height(), mStagingProperties.getBounds().left(), mStagingProperties.getBounds().top(), mStagingProperties.getBounds().right(), mStagingProperties.getBounds().bottom(), paint); } SkPaint* Tree::getPaint() { return updatePaint(&mPaint, &mProperties); } // Update the given paint with alpha and color filter. Return nullptr if no color filter is // specified and root alpha is 1. Otherwise, return updated paint. SkPaint* Tree::updatePaint(SkPaint* outPaint, TreeProperties* prop) { if (prop->getRootAlpha() == 1.0f && prop->getColorFilter() == nullptr) { return nullptr; } else { outPaint->setColorFilter(prop->getColorFilter()); outPaint->setFilterQuality(kLow_SkFilterQuality); outPaint->setAlpha(prop->getRootAlpha() * 255); return outPaint; } } const SkBitmap& Tree::getBitmapUpdateIfDirty() { bool redrawNeeded = allocateBitmapIfNeeded(&mCache.bitmap, mProperties.getScaledWidth(), mProperties.getScaledHeight()); if (redrawNeeded || mCache.dirty) { updateBitmapCache(&mCache.bitmap, false); mCache.dirty = false; } return mCache.bitmap; } void Tree::updateBitmapCache(SkBitmap* outCache, bool useStagingData) { outCache->eraseColor(SK_ColorTRANSPARENT); SkCanvas outCanvas(*outCache); float viewportWidth = useStagingData ? mStagingProperties.getViewportWidth() : mProperties.getViewportWidth(); float viewportHeight = useStagingData ? mStagingProperties.getViewportHeight() : mProperties.getViewportHeight(); float scaleX = outCache->width() / viewportWidth; float scaleY = outCache->height() / viewportHeight; mRootNode->draw(&outCanvas, SkMatrix::I(), scaleX, scaleY, useStagingData); } bool Tree::allocateBitmapIfNeeded(SkBitmap* outCache, int width, int height) { if (!canReuseBitmap(*outCache, width, height)) { SkImageInfo info = SkImageInfo::Make(width, height, kN32_SkColorType, kPremul_SkAlphaType); outCache->setInfo(info); // TODO: Count the bitmap cache against app's java heap outCache->allocPixels(info); return true; } return false; } bool Tree::canReuseBitmap(const SkBitmap& bitmap, int width, int height) { return width == bitmap.width() && height == bitmap.height(); } void Tree::onPropertyChanged(TreeProperties* prop) { if (prop == &mStagingProperties) { mStagingCache.dirty = true; } else { mCache.dirty = true; } } }; // namespace VectorDrawable }; // namespace uirenderer }; // namespace android