/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "VectorDrawableUtils.h" #include "PathParser.h" #include <math.h> #include <utils/Log.h> namespace android { namespace uirenderer { class PathResolver { public: float currentX = 0; float currentY = 0; float ctrlPointX = 0; float ctrlPointY = 0; float currentSegmentStartX = 0; float currentSegmentStartY = 0; void addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector<float>* points, size_t start, size_t end); }; bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) { if (morphFrom.verbs.size() != morphTo.verbs.size()) { return false; } for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) { if (morphFrom.verbs[i] != morphTo.verbs[i] || morphFrom.verbSizes[i] != morphTo.verbSizes[i]) { return false; } } return true; } bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom, const PathData& morphTo, float fraction) { if (!canMorph(morphFrom, morphTo)) { return false; } interpolatePaths(outData, morphFrom, morphTo, fraction); return true; } /** * Convert an array of PathVerb to Path. */ void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) { PathResolver resolver; char previousCommand = 'm'; size_t start = 0; outPath->reset(); for (unsigned int i = 0; i < data.verbs.size(); i++) { size_t verbSize = data.verbSizes[i]; resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start, start + verbSize); previousCommand = data.verbs[i]; start += verbSize; } } /** * The current PathVerb will be interpolated between the * <code>nodeFrom</code> and <code>nodeTo</code> according to the * <code>fraction</code>. * * @param nodeFrom The start value as a PathVerb. * @param nodeTo The end value as a PathVerb * @param fraction The fraction to interpolate. */ void VectorDrawableUtils::interpolatePaths(PathData* outData, const PathData& from, const PathData& to, float fraction) { outData->points.resize(from.points.size()); outData->verbSizes = from.verbSizes; outData->verbs = from.verbs; for (size_t i = 0; i < from.points.size(); i++) { outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction; } } /** * Converts an arc to cubic Bezier segments and records them in p. * * @param p The target for the cubic Bezier segments * @param cx The x coordinate center of the ellipse * @param cy The y coordinate center of the ellipse * @param a The radius of the ellipse in the horizontal direction * @param b The radius of the ellipse in the vertical direction * @param e1x E(eta1) x coordinate of the starting point of the arc * @param e1y E(eta2) y coordinate of the starting point of the arc * @param theta The angle that the ellipse bounding rectangle makes with horizontal plane * @param start The start angle of the arc on the ellipse * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse */ static void arcToBezier(SkPath* p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep) { // Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html // and http://www.spaceroots.org/documents/ellipse/node22.html // Maximum of 45 degrees per cubic Bezier segment int numSegments = ceil(fabs(sweep * 4 / M_PI)); double eta1 = start; double cosTheta = cos(theta); double sinTheta = sin(theta); double cosEta1 = cos(eta1); double sinEta1 = sin(eta1); double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1); double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1); double anglePerSegment = sweep / numSegments; for (int i = 0; i < numSegments; i++) { double eta2 = eta1 + anglePerSegment; double sinEta2 = sin(eta2); double cosEta2 = cos(eta2); double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2); double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2); double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2; double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2; double tanDiff2 = tan((eta2 - eta1) / 2); double alpha = sin(eta2 - eta1) * (sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3; double q1x = e1x + alpha * ep1x; double q1y = e1y + alpha * ep1y; double q2x = e2x - alpha * ep2x; double q2y = e2y - alpha * ep2y; p->cubicTo((float) q1x, (float) q1y, (float) q2x, (float) q2y, (float) e2x, (float) e2y); eta1 = eta2; e1x = e2x; e1y = e2y; ep1x = ep2x; ep1y = ep2y; } } inline double toRadians(float theta) { return theta * M_PI / 180;} static void drawArc(SkPath* p, float x0, float y0, float x1, float y1, float a, float b, float theta, bool isMoreThanHalf, bool isPositiveArc) { /* Convert rotation angle from degrees to radians */ double thetaD = toRadians(theta); /* Pre-compute rotation matrix entries */ double cosTheta = cos(thetaD); double sinTheta = sin(thetaD); /* Transform (x0, y0) and (x1, y1) into unit space */ /* using (inverse) rotation, followed by (inverse) scale */ double x0p = (x0 * cosTheta + y0 * sinTheta) / a; double y0p = (-x0 * sinTheta + y0 * cosTheta) / b; double x1p = (x1 * cosTheta + y1 * sinTheta) / a; double y1p = (-x1 * sinTheta + y1 * cosTheta) / b; /* Compute differences and averages */ double dx = x0p - x1p; double dy = y0p - y1p; double xm = (x0p + x1p) / 2; double ym = (y0p + y1p) / 2; /* Solve for intersecting unit circles */ double dsq = dx * dx + dy * dy; if (dsq == 0.0) { ALOGW("Points are coincident"); return; /* Points are coincident */ } double disc = 1.0 / dsq - 1.0 / 4.0; if (disc < 0.0) { ALOGW("Points are too far apart %f", dsq); float adjust = (float) (sqrt(dsq) / 1.99999); drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta, isMoreThanHalf, isPositiveArc); return; /* Points are too far apart */ } double s = sqrt(disc); double sdx = s * dx; double sdy = s * dy; double cx; double cy; if (isMoreThanHalf == isPositiveArc) { cx = xm - sdy; cy = ym + sdx; } else { cx = xm + sdy; cy = ym - sdx; } double eta0 = atan2((y0p - cy), (x0p - cx)); double eta1 = atan2((y1p - cy), (x1p - cx)); double sweep = (eta1 - eta0); if (isPositiveArc != (sweep >= 0)) { if (sweep > 0) { sweep -= 2 * M_PI; } else { sweep += 2 * M_PI; } } cx *= a; cy *= b; double tcx = cx; cx = cx * cosTheta - cy * sinTheta; cy = tcx * sinTheta + cy * cosTheta; arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep); } // Use the given verb, and points in the range [start, end) to insert a command into the SkPath. void PathResolver::addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector<float>* points, size_t start, size_t end) { int incr = 2; float reflectiveCtrlPointX; float reflectiveCtrlPointY; switch (cmd) { case 'z': case 'Z': outPath->close(); // Path is closed here, but we need to move the pen to the // closed position. So we cache the segment's starting position, // and restore it here. currentX = currentSegmentStartX; currentY = currentSegmentStartY; ctrlPointX = currentSegmentStartX; ctrlPointY = currentSegmentStartY; outPath->moveTo(currentX, currentY); break; case 'm': case 'M': case 'l': case 'L': case 't': case 'T': incr = 2; break; case 'h': case 'H': case 'v': case 'V': incr = 1; break; case 'c': case 'C': incr = 6; break; case 's': case 'S': case 'q': case 'Q': incr = 4; break; case 'a': case 'A': incr = 7; break; } for (unsigned int k = start; k < end; k += incr) { switch (cmd) { case 'm': // moveto - Start a new sub-path (relative) currentX += points->at(k + 0); currentY += points->at(k + 1); if (k > start) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. outPath->rLineTo(points->at(k + 0), points->at(k + 1)); } else { outPath->rMoveTo(points->at(k + 0), points->at(k + 1)); currentSegmentStartX = currentX; currentSegmentStartY = currentY; } break; case 'M': // moveto - Start a new sub-path currentX = points->at(k + 0); currentY = points->at(k + 1); if (k > start) { // According to the spec, if a moveto is followed by multiple // pairs of coordinates, the subsequent pairs are treated as // implicit lineto commands. outPath->lineTo(points->at(k + 0), points->at(k + 1)); } else { outPath->moveTo(points->at(k + 0), points->at(k + 1)); currentSegmentStartX = currentX; currentSegmentStartY = currentY; } break; case 'l': // lineto - Draw a line from the current point (relative) outPath->rLineTo(points->at(k + 0), points->at(k + 1)); currentX += points->at(k + 0); currentY += points->at(k + 1); break; case 'L': // lineto - Draw a line from the current point outPath->lineTo(points->at(k + 0), points->at(k + 1)); currentX = points->at(k + 0); currentY = points->at(k + 1); break; case 'h': // horizontal lineto - Draws a horizontal line (relative) outPath->rLineTo(points->at(k + 0), 0); currentX += points->at(k + 0); break; case 'H': // horizontal lineto - Draws a horizontal line outPath->lineTo(points->at(k + 0), currentY); currentX = points->at(k + 0); break; case 'v': // vertical lineto - Draws a vertical line from the current point (r) outPath->rLineTo(0, points->at(k + 0)); currentY += points->at(k + 0); break; case 'V': // vertical lineto - Draws a vertical line from the current point outPath->lineTo(currentX, points->at(k + 0)); currentY = points->at(k + 0); break; case 'c': // curveto - Draws a cubic Bézier curve (relative) outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), points->at(k + 4), points->at(k + 5)); ctrlPointX = currentX + points->at(k + 2); ctrlPointY = currentY + points->at(k + 3); currentX += points->at(k + 4); currentY += points->at(k + 5); break; case 'C': // curveto - Draws a cubic Bézier curve outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), points->at(k + 4), points->at(k + 5)); currentX = points->at(k + 4); currentY = points->at(k + 5); ctrlPointX = points->at(k + 2); ctrlPointY = points->at(k + 3); break; case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp) reflectiveCtrlPointX = 0; reflectiveCtrlPointY = 0; if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || previousCmd == 'S') { reflectiveCtrlPointX = currentX - ctrlPointX; reflectiveCtrlPointY = currentY - ctrlPointY; } outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = currentX + points->at(k + 0); ctrlPointY = currentY + points->at(k + 1); currentX += points->at(k + 2); currentY += points->at(k + 3); break; case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp) reflectiveCtrlPointX = currentX; reflectiveCtrlPointY = currentY; if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || previousCmd == 'S') { reflectiveCtrlPointX = 2 * currentX - ctrlPointX; reflectiveCtrlPointY = 2 * currentY - ctrlPointY; } outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = points->at(k + 0); ctrlPointY = points->at(k + 1); currentX = points->at(k + 2); currentY = points->at(k + 3); break; case 'q': // Draws a quadratic Bézier (relative) outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = currentX + points->at(k + 0); ctrlPointY = currentY + points->at(k + 1); currentX += points->at(k + 2); currentY += points->at(k + 3); break; case 'Q': // Draws a quadratic Bézier outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); ctrlPointX = points->at(k + 0); ctrlPointY = points->at(k + 1); currentX = points->at(k + 2); currentY = points->at(k + 3); break; case 't': // Draws a quadratic Bézier curve(reflective control point)(relative) reflectiveCtrlPointX = 0; reflectiveCtrlPointY = 0; if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || previousCmd == 'T') { reflectiveCtrlPointX = currentX - ctrlPointX; reflectiveCtrlPointY = currentY - ctrlPointY; } outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1)); ctrlPointX = currentX + reflectiveCtrlPointX; ctrlPointY = currentY + reflectiveCtrlPointY; currentX += points->at(k + 0); currentY += points->at(k + 1); break; case 'T': // Draws a quadratic Bézier curve (reflective control point) reflectiveCtrlPointX = currentX; reflectiveCtrlPointY = currentY; if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || previousCmd == 'T') { reflectiveCtrlPointX = 2 * currentX - ctrlPointX; reflectiveCtrlPointY = 2 * currentY - ctrlPointY; } outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), points->at(k + 1)); ctrlPointX = reflectiveCtrlPointX; ctrlPointY = reflectiveCtrlPointY; currentX = points->at(k + 0); currentY = points->at(k + 1); break; case 'a': // Draws an elliptical arc // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) drawArc(outPath, currentX, currentY, points->at(k + 5) + currentX, points->at(k + 6) + currentY, points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3) != 0, points->at(k + 4) != 0); currentX += points->at(k + 5); currentY += points->at(k + 6); ctrlPointX = currentX; ctrlPointY = currentY; break; case 'A': // Draws an elliptical arc drawArc(outPath, currentX, currentY, points->at(k + 5), points->at(k + 6), points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3) != 0, points->at(k + 4) != 0); currentX = points->at(k + 5); currentY = points->at(k + 6); ctrlPointX = currentX; ctrlPointY = currentY; break; default: LOG_ALWAYS_FATAL("Unsupported command: %c", cmd); break; } previousCmd = cmd; } } } // namespace uirenderer } // namespace android