#include "wifi_hal.h" #ifndef __WIFI_HAL_STATS_H #define __WIFI_HAL_STATS_H #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define STATS_MAJOR_VERSION 1 #define STATS_MINOR_VERSION 0 #define STATS_MICRO_VERSION 0 typedef enum { WIFI_DISCONNECTED = 0, WIFI_AUTHENTICATING = 1, WIFI_ASSOCIATING = 2, WIFI_ASSOCIATED = 3, WIFI_EAPOL_STARTED = 4, // if done by firmware/driver WIFI_EAPOL_COMPLETED = 5, // if done by firmware/driver } wifi_connection_state; typedef enum { WIFI_ROAMING_IDLE = 0, WIFI_ROAMING_ACTIVE = 1, } wifi_roam_state; typedef enum { WIFI_INTERFACE_STA = 0, WIFI_INTERFACE_SOFTAP = 1, WIFI_INTERFACE_IBSS = 2, WIFI_INTERFACE_P2P_CLIENT = 3, WIFI_INTERFACE_P2P_GO = 4, WIFI_INTERFACE_NAN = 5, WIFI_INTERFACE_MESH = 6, WIFI_INTERFACE_UNKNOWN = -1 } wifi_interface_mode; #define WIFI_CAPABILITY_QOS 0x00000001 // set for QOS association #define WIFI_CAPABILITY_PROTECTED 0x00000002 // set for protected association (802.11 beacon frame control protected bit set) #define WIFI_CAPABILITY_INTERWORKING 0x00000004 // set if 802.11 Extended Capabilities element interworking bit is set #define WIFI_CAPABILITY_HS20 0x00000008 // set for HS20 association #define WIFI_CAPABILITY_SSID_UTF8 0x00000010 // set is 802.11 Extended Capabilities element UTF-8 SSID bit is set #define WIFI_CAPABILITY_COUNTRY 0x00000020 // set is 802.11 Country Element is present typedef struct { wifi_interface_mode mode; // interface mode u8 mac_addr[6]; // interface mac address (self) wifi_connection_state state; // connection state (valid for STA, CLI only) wifi_roam_state roaming; // roaming state u32 capabilities; // WIFI_CAPABILITY_XXX (self) u8 ssid[33]; // null terminated SSID u8 bssid[6]; // bssid u8 ap_country_str[3]; // country string advertised by AP u8 country_str[3]; // country string for this association } wifi_interface_link_layer_info; /* channel information */ typedef struct { wifi_channel_width width; // channel width (20, 40, 80, 80+80, 160) wifi_channel center_freq; // primary 20 MHz channel wifi_channel center_freq0; // center frequency (MHz) first segment wifi_channel center_freq1; // center frequency (MHz) second segment } wifi_channel_info; /* wifi rate */ typedef struct { u32 preamble :3; // 0: OFDM, 1:CCK, 2:HT 3:VHT 4..7 reserved u32 nss :2; // 0:1x1, 1:2x2, 3:3x3, 4:4x4 u32 bw :3; // 0:20MHz, 1:40Mhz, 2:80Mhz, 3:160Mhz u32 rateMcsIdx :8; // OFDM/CCK rate code would be as per ieee std in the units of 0.5mbps // HT/VHT it would be mcs index u32 reserved :16; // reserved u32 bitrate; // units of 100 Kbps } wifi_rate; /* channel statistics */ typedef struct { wifi_channel_info channel; // channel u32 on_time; // msecs the radio is awake (32 bits number accruing over time) u32 cca_busy_time; // msecs the CCA register is busy (32 bits number accruing over time) } wifi_channel_stat; // Max number of tx power levels. The actual number vary per device and is specified by |num_tx_levels| #define RADIO_STAT_MAX_TX_LEVELS 256 /* radio statistics */ typedef struct { wifi_radio radio; // wifi radio (if multiple radio supported) u32 on_time; // msecs the radio is awake (32 bits number accruing over time) u32 tx_time; // msecs the radio is transmitting (32 bits number accruing over time) u32 num_tx_levels; // number of radio transmit power levels u32 *tx_time_per_levels; // pointer to an array of radio transmit per power levels in // msecs accured over time u32 rx_time; // msecs the radio is in active receive (32 bits number accruing over time) u32 on_time_scan; // msecs the radio is awake due to all scan (32 bits number accruing over time) u32 on_time_nbd; // msecs the radio is awake due to NAN (32 bits number accruing over time) u32 on_time_gscan; // msecs the radio is awake due to G?scan (32 bits number accruing over time) u32 on_time_roam_scan; // msecs the radio is awake due to roam?scan (32 bits number accruing over time) u32 on_time_pno_scan; // msecs the radio is awake due to PNO scan (32 bits number accruing over time) u32 on_time_hs20; // msecs the radio is awake due to HS2.0 scans and GAS exchange (32 bits number accruing over time) u32 num_channels; // number of channels wifi_channel_stat channels[]; // channel statistics } wifi_radio_stat; /** * Packet statistics reporting by firmware is performed on MPDU basi (i.e. counters increase by 1 for each MPDU) * As well, "data packet" in associated comments, shall be interpreted as 802.11 data packet, * that is, 802.11 frame control subtype == 2 and excluding management and control frames. * * As an example, in the case of transmission of an MSDU fragmented in 16 MPDUs which are transmitted * OTA in a 16 units long a-mpdu, for which a block ack is received with 5 bits set: * tx_mpdu : shall increase by 5 * retries : shall increase by 16 * tx_ampdu : shall increase by 1 * data packet counters shall not increase regardless of the number of BAR potentially sent by device for this a-mpdu * data packet counters shall not increase regardless of the number of BA received by device for this a-mpdu * * For each subsequent retransmission of the 11 remaining non ACK'ed mpdus * (regardless of the fact that they are transmitted in a-mpdu or not) * retries : shall increase by 1 * * If no subsequent BA or ACK are received from AP, until packet lifetime expires for those 11 packet that were not ACK'ed * mpdu_lost : shall increase by 11 */ /* per rate statistics */ typedef struct { wifi_rate rate; // rate information u32 tx_mpdu; // number of successfully transmitted data pkts (ACK rcvd) u32 rx_mpdu; // number of received data pkts u32 mpdu_lost; // number of data packet losses (no ACK) u32 retries; // total number of data pkt retries u32 retries_short; // number of short data pkt retries u32 retries_long; // number of long data pkt retries } wifi_rate_stat; /* access categories */ typedef enum { WIFI_AC_VO = 0, WIFI_AC_VI = 1, WIFI_AC_BE = 2, WIFI_AC_BK = 3, WIFI_AC_MAX = 4, } wifi_traffic_ac; /* wifi peer type */ typedef enum { WIFI_PEER_STA, WIFI_PEER_AP, WIFI_PEER_P2P_GO, WIFI_PEER_P2P_CLIENT, WIFI_PEER_NAN, WIFI_PEER_TDLS, WIFI_PEER_INVALID, } wifi_peer_type; /* per peer statistics */ typedef struct { wifi_peer_type type; // peer type (AP, TDLS, GO etc.) u8 peer_mac_address[6]; // mac address u32 capabilities; // peer WIFI_CAPABILITY_XXX u32 num_rate; // number of rates wifi_rate_stat rate_stats[]; // per rate statistics, number of entries = num_rate } wifi_peer_info; /* Per access category statistics */ typedef struct { wifi_traffic_ac ac; // access category (VI, VO, BE, BK) u32 tx_mpdu; // number of successfully transmitted unicast data pkts (ACK rcvd) u32 rx_mpdu; // number of received unicast data packets u32 tx_mcast; // number of succesfully transmitted multicast data packets // STA case: implies ACK received from AP for the unicast packet in which mcast pkt was sent u32 rx_mcast; // number of received multicast data packets u32 rx_ampdu; // number of received unicast a-mpdus; support of this counter is optional u32 tx_ampdu; // number of transmitted unicast a-mpdus; support of this counter is optional u32 mpdu_lost; // number of data pkt losses (no ACK) u32 retries; // total number of data pkt retries u32 retries_short; // number of short data pkt retries u32 retries_long; // number of long data pkt retries u32 contention_time_min; // data pkt min contention time (usecs) u32 contention_time_max; // data pkt max contention time (usecs) u32 contention_time_avg; // data pkt avg contention time (usecs) u32 contention_num_samples; // num of data pkts used for contention statistics } wifi_wmm_ac_stat; /* interface statistics */ typedef struct { wifi_interface_handle iface; // wifi interface wifi_interface_link_layer_info info; // current state of the interface u32 beacon_rx; // access point beacon received count from connected AP u64 average_tsf_offset; // average beacon offset encountered (beacon_TSF - TBTT) // The average_tsf_offset field is used so as to calculate the // typical beacon contention time on the channel as well may be // used to debug beacon synchronization and related power consumption issue u32 leaky_ap_detected; // indicate that this AP typically leaks packets beyond the driver guard time. u32 leaky_ap_avg_num_frames_leaked; // average number of frame leaked by AP after frame with PM bit set was ACK'ed by AP u32 leaky_ap_guard_time; // guard time currently in force (when implementing IEEE power management based on // frame control PM bit), How long driver waits before shutting down the radio and // after receiving an ACK for a data frame with PM bit set) u32 mgmt_rx; // access point mgmt frames received count from connected AP (including Beacon) u32 mgmt_action_rx; // action frames received count u32 mgmt_action_tx; // action frames transmit count wifi_rssi rssi_mgmt; // access Point Beacon and Management frames RSSI (averaged) wifi_rssi rssi_data; // access Point Data Frames RSSI (averaged) from connected AP wifi_rssi rssi_ack; // access Point ACK RSSI (averaged) from connected AP wifi_wmm_ac_stat ac[WIFI_AC_MAX]; // per ac data packet statistics u32 num_peers; // number of peers wifi_peer_info peer_info[]; // per peer statistics } wifi_iface_stat; /* configuration params */ typedef struct { u32 mpdu_size_threshold; // threshold to classify the pkts as short or long // packet size < mpdu_size_threshold => short u32 aggressive_statistics_gathering; // set for field debug mode. Driver should collect all statistics regardless of performance impact. } wifi_link_layer_params; /* API to trigger the link layer statistics collection. Unless his API is invoked - link layer statistics will not be collected. Radio statistics (once started) do not stop or get reset unless wifi_clear_link_stats is invoked Interface statistics (once started) reset and start afresh after each connection */ wifi_error wifi_set_link_stats(wifi_interface_handle iface, wifi_link_layer_params params); /* callback for reporting link layer stats */ typedef struct { void (*on_link_stats_results) (wifi_request_id id, wifi_iface_stat *iface_stat, int num_radios, wifi_radio_stat *radio_stat); } wifi_stats_result_handler; /* api to collect the link layer statistics for a given iface and all the radio stats */ wifi_error wifi_get_link_stats(wifi_request_id id, wifi_interface_handle iface, wifi_stats_result_handler handler); /* wifi statistics bitmap */ #define WIFI_STATS_RADIO 0x00000001 // all radio statistics #define WIFI_STATS_RADIO_CCA 0x00000002 // cca_busy_time (within radio statistics) #define WIFI_STATS_RADIO_CHANNELS 0x00000004 // all channel statistics (within radio statistics) #define WIFI_STATS_RADIO_SCAN 0x00000008 // all scan statistics (within radio statistics) #define WIFI_STATS_IFACE 0x00000010 // all interface statistics #define WIFI_STATS_IFACE_TXRATE 0x00000020 // all tx rate statistics (within interface statistics) #define WIFI_STATS_IFACE_AC 0x00000040 // all ac statistics (within interface statistics) #define WIFI_STATS_IFACE_CONTENTION 0x00000080 // all contention (min, max, avg) statistics (within ac statisctics) /* clear api to reset statistics, stats_clear_rsp_mask identifies what stats have been cleared stop_req = 1 will imply whether to stop the statistics collection. stop_rsp = 1 will imply that stop_req was honored and statistics collection was stopped. */ wifi_error wifi_clear_link_stats(wifi_interface_handle iface, u32 stats_clear_req_mask, u32 *stats_clear_rsp_mask, u8 stop_req, u8 *stop_rsp); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /*__WIFI_HAL_STATS_ */