// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package obj import ( "fmt" "log" ) func addvarint(ctxt *Link, d *Pcdata, val uint32) { var v uint32 for v = val; v >= 0x80; v >>= 7 { d.P = append(d.P, uint8(v|0x80)) } d.P = append(d.P, uint8(v)) } // funcpctab writes to dst a pc-value table mapping the code in func to the values // returned by valfunc parameterized by arg. The invocation of valfunc to update the // current value is, for each p, // // val = valfunc(func, val, p, 0, arg); // record val as value at p->pc; // val = valfunc(func, val, p, 1, arg); // // where func is the function, val is the current value, p is the instruction being // considered, and arg can be used to further parameterize valfunc. func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) { // To debug a specific function, uncomment second line and change name. dbg := 0 //dbg = strcmp(func->name, "main.main") == 0; //dbg = strcmp(desc, "pctofile") == 0; ctxt.Debugpcln += int32(dbg) dst.P = dst.P[:0] if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "funcpctab %s [valfunc=%s]\n", func_.Name, desc) } val := int32(-1) oldval := val if func_.Text == nil { ctxt.Debugpcln -= int32(dbg) return } pc := func_.Text.Pc if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(pc), val, func_.Text) } started := int32(0) var delta uint32 for p := func_.Text; p != nil; p = p.Link { // Update val. If it's not changing, keep going. val = valfunc(ctxt, func_, val, p, 0, arg) if val == oldval && started != 0 { val = valfunc(ctxt, func_, val, p, 1, arg) if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p) } continue } // If the pc of the next instruction is the same as the // pc of this instruction, this instruction is not a real // instruction. Keep going, so that we only emit a delta // for a true instruction boundary in the program. if p.Link != nil && p.Link.Pc == p.Pc { val = valfunc(ctxt, func_, val, p, 1, arg) if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p) } continue } // The table is a sequence of (value, pc) pairs, where each // pair states that the given value is in effect from the current position // up to the given pc, which becomes the new current position. // To generate the table as we scan over the program instructions, // we emit a "(value" when pc == func->value, and then // each time we observe a change in value we emit ", pc) (value". // When the scan is over, we emit the closing ", pc)". // // The table is delta-encoded. The value deltas are signed and // transmitted in zig-zag form, where a complement bit is placed in bit 0, // and the pc deltas are unsigned. Both kinds of deltas are sent // as variable-length little-endian base-128 integers, // where the 0x80 bit indicates that the integer continues. if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(int64(p.Pc)), val, p) } if started != 0 { addvarint(ctxt, dst, uint32((p.Pc-pc)/int64(ctxt.Arch.Minlc))) pc = p.Pc } delta = uint32(val) - uint32(oldval) if delta>>31 != 0 { delta = 1 | ^(delta << 1) } else { delta <<= 1 } addvarint(ctxt, dst, delta) oldval = val started = 1 val = valfunc(ctxt, func_, val, p, 1, arg) } if started != 0 { if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "%6x done\n", uint64(int64(func_.Text.Pc)+func_.Size)) } addvarint(ctxt, dst, uint32((func_.Value+func_.Size-pc)/int64(ctxt.Arch.Minlc))) addvarint(ctxt, dst, 0) // terminator } if ctxt.Debugpcln != 0 { fmt.Fprintf(ctxt.Bso, "wrote %d bytes to %p\n", len(dst.P), dst) for i := 0; i < len(dst.P); i++ { fmt.Fprintf(ctxt.Bso, " %02x", dst.P[i]) } fmt.Fprintf(ctxt.Bso, "\n") } ctxt.Debugpcln -= int32(dbg) } // pctofileline computes either the file number (arg == 0) // or the line number (arg == 1) to use at p. // Because p->lineno applies to p, phase == 0 (before p) // takes care of the update. func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if p.As == ATEXT || p.As == ANOP || p.As == AUSEFIELD || p.Lineno == 0 || phase == 1 { return oldval } var l int32 var f *LSym linkgetline(ctxt, p.Lineno, &f, &l) if f == nil { // print("getline failed for %s %v\n", ctxt->cursym->name, p); return oldval } if arg == nil { return l } pcln := arg.(*Pcln) if f == pcln.Lastfile { return int32(pcln.Lastindex) } var i int32 for i = 0; i < int32(len(pcln.File)); i++ { file := pcln.File[i] if file == f { pcln.Lastfile = f pcln.Lastindex = int(i) return int32(i) } } pcln.File = append(pcln.File, f) pcln.Lastfile = f pcln.Lastindex = int(i) return i } // pctospadj computes the sp adjustment in effect. // It is oldval plus any adjustment made by p itself. // The adjustment by p takes effect only after p, so we // apply the change during phase == 1. func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if oldval == -1 { // starting oldval = 0 } if phase == 0 { return oldval } if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 { ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj) log.Fatalf("bad code") } return oldval + p.Spadj } // pctopcdata computes the pcdata value in effect at p. // A PCDATA instruction sets the value in effect at future // non-PCDATA instructions. // Since PCDATA instructions have no width in the final code, // it does not matter which phase we use for the update. func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) { return oldval } if int64(int32(p.To.Offset)) != p.To.Offset { ctxt.Diag("overflow in PCDATA instruction: %v", p) log.Fatalf("bad code") } return int32(p.To.Offset) } func linkpcln(ctxt *Link, cursym *LSym) { ctxt.Cursym = cursym pcln := new(Pcln) cursym.Pcln = pcln npcdata := 0 nfuncdata := 0 for p := cursym.Text; p != nil; p = p.Link { if p.As == APCDATA && p.From.Offset >= int64(npcdata) { npcdata = int(p.From.Offset + 1) } if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) { nfuncdata = int(p.From.Offset + 1) } } pcln.Pcdata = make([]Pcdata, npcdata) pcln.Pcdata = pcln.Pcdata[:npcdata] pcln.Funcdata = make([]*LSym, nfuncdata) pcln.Funcdataoff = make([]int64, nfuncdata) pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata] funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil) funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln) funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil) // tabulate which pc and func data we have. havepc := make([]uint32, (npcdata+31)/32) havefunc := make([]uint32, (nfuncdata+31)/32) for p := cursym.Text; p != nil; p = p.Link { if p.As == AFUNCDATA { if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 { ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset) } havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } if p.As == APCDATA { havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } } // pcdata. for i := 0; i < npcdata; i++ { if (havepc[i/32]>>uint(i%32))&1 == 0 { continue } funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i))) } // funcdata if nfuncdata > 0 { var i int for p := cursym.Text; p != nil; p = p.Link { if p.As == AFUNCDATA { i = int(p.From.Offset) pcln.Funcdataoff[i] = p.To.Offset if p.To.Type != TYPE_CONST { // TODO: Dedup. //funcdata_bytes += p->to.sym->size; pcln.Funcdata[i] = p.To.Sym } } } } } // iteration over encoded pcdata tables. func getvarint(pp *[]byte) uint32 { v := uint32(0) p := *pp for shift := 0; ; shift += 7 { v |= uint32(p[0]&0x7F) << uint(shift) tmp7 := p p = p[1:] if tmp7[0]&0x80 == 0 { break } } *pp = p return v } func pciternext(it *Pciter) { it.pc = it.nextpc if it.done != 0 { return } if -cap(it.p) >= -cap(it.d.P[len(it.d.P):]) { it.done = 1 return } // value delta v := getvarint(&it.p) if v == 0 && it.start == 0 { it.done = 1 return } it.start = 0 dv := int32(v>>1) ^ (int32(v<<31) >> 31) it.value += dv // pc delta v = getvarint(&it.p) it.nextpc = it.pc + v*it.pcscale } func pciterinit(ctxt *Link, it *Pciter, d *Pcdata) { it.d = *d it.p = it.d.P it.pc = 0 it.nextpc = 0 it.value = -1 it.start = 1 it.done = 0 it.pcscale = uint32(ctxt.Arch.Minlc) pciternext(it) }