// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package rsa implements RSA encryption as specified in PKCS#1. package rsa import ( "crypto" "crypto/rand" "crypto/subtle" "errors" "hash" "io" "math/big" ) var bigZero = big.NewInt(0) var bigOne = big.NewInt(1) // A PublicKey represents the public part of an RSA key. type PublicKey struct { N *big.Int // modulus E int // public exponent } // OAEPOptions is an interface for passing options to OAEP decryption using the // crypto.Decrypter interface. type OAEPOptions struct { // Hash is the hash function that will be used when generating the mask. Hash crypto.Hash // Label is an arbitrary byte string that must be equal to the value // used when encrypting. Label []byte } var ( errPublicModulus = errors.New("crypto/rsa: missing public modulus") errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") ) // checkPub sanity checks the public key before we use it. // We require pub.E to fit into a 32-bit integer so that we // do not have different behavior depending on whether // int is 32 or 64 bits. See also // http://www.imperialviolet.org/2012/03/16/rsae.html. func checkPub(pub *PublicKey) error { if pub.N == nil { return errPublicModulus } if pub.E < 2 { return errPublicExponentSmall } if pub.E > 1<<31-1 { return errPublicExponentLarge } return nil } // A PrivateKey represents an RSA key type PrivateKey struct { PublicKey // public part. D *big.Int // private exponent Primes []*big.Int // prime factors of N, has >= 2 elements. // Precomputed contains precomputed values that speed up private // operations, if available. Precomputed PrecomputedValues } // Public returns the public key corresponding to priv. func (priv *PrivateKey) Public() crypto.PublicKey { return &priv.PublicKey } // Sign signs msg with priv, reading randomness from rand. If opts is a // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will // be used. This method is intended to support keys where the private part is // kept in, for example, a hardware module. Common uses should use the Sign* // functions in this package. func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { if pssOpts, ok := opts.(*PSSOptions); ok { return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) } return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) } // Decrypt decrypts ciphertext with priv. If opts is nil or of type // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise // opts must have type *OAEPOptions and OAEP decryption is done. func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { if opts == nil { return DecryptPKCS1v15(rand, priv, ciphertext) } switch opts := opts.(type) { case *OAEPOptions: return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) case *PKCS1v15DecryptOptions: if l := opts.SessionKeyLen; l > 0 { plaintext = make([]byte, l) if _, err := io.ReadFull(rand, plaintext); err != nil { return nil, err } if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { return nil, err } return plaintext, nil } else { return DecryptPKCS1v15(rand, priv, ciphertext) } default: return nil, errors.New("crypto/rsa: invalid options for Decrypt") } } type PrecomputedValues struct { Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) Qinv *big.Int // Q^-1 mod P // CRTValues is used for the 3rd and subsequent primes. Due to a // historical accident, the CRT for the first two primes is handled // differently in PKCS#1 and interoperability is sufficiently // important that we mirror this. CRTValues []CRTValue } // CRTValue contains the precomputed Chinese remainder theorem values. type CRTValue struct { Exp *big.Int // D mod (prime-1). Coeff *big.Int // R·Coeff ≡ 1 mod Prime. R *big.Int // product of primes prior to this (inc p and q). } // Validate performs basic sanity checks on the key. // It returns nil if the key is valid, or else an error describing a problem. func (priv *PrivateKey) Validate() error { if err := checkPub(&priv.PublicKey); err != nil { return err } // Check that Πprimes == n. modulus := new(big.Int).Set(bigOne) for _, prime := range priv.Primes { // Any primes ≤ 1 will cause divide-by-zero panics later. if prime.Cmp(bigOne) <= 0 { return errors.New("crypto/rsa: invalid prime value") } modulus.Mul(modulus, prime) } if modulus.Cmp(priv.N) != 0 { return errors.New("crypto/rsa: invalid modulus") } // Check that de ≡ 1 mod p-1, for each prime. // This implies that e is coprime to each p-1 as e has a multiplicative // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. congruence := new(big.Int) de := new(big.Int).SetInt64(int64(priv.E)) de.Mul(de, priv.D) for _, prime := range priv.Primes { pminus1 := new(big.Int).Sub(prime, bigOne) congruence.Mod(de, pminus1) if congruence.Cmp(bigOne) != 0 { return errors.New("crypto/rsa: invalid exponents") } } return nil } // GenerateKey generates an RSA keypair of the given bit size using the // random source random (for example, crypto/rand.Reader). func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { return GenerateMultiPrimeKey(random, 2, bits) } // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit // size and the given random source, as suggested in [1]. Although the public // keys are compatible (actually, indistinguishable) from the 2-prime case, // the private keys are not. Thus it may not be possible to export multi-prime // private keys in certain formats or to subsequently import them into other // code. // // Table 1 in [2] suggests maximum numbers of primes for a given size. // // [1] US patent 4405829 (1972, expired) // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { priv = new(PrivateKey) priv.E = 65537 if nprimes < 2 { return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") } primes := make([]*big.Int, nprimes) NextSetOfPrimes: for { todo := bits // crypto/rand should set the top two bits in each prime. // Thus each prime has the form // p_i = 2^bitlen(p_i) × 0.11... (in base 2). // And the product is: // P = 2^todo × α // where α is the product of nprimes numbers of the form 0.11... // // If α < 1/2 (which can happen for nprimes > 2), we need to // shift todo to compensate for lost bits: the mean value of 0.11... // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 // will give good results. if nprimes >= 7 { todo += (nprimes - 2) / 5 } for i := 0; i < nprimes; i++ { primes[i], err = rand.Prime(random, todo/(nprimes-i)) if err != nil { return nil, err } todo -= primes[i].BitLen() } // Make sure that primes is pairwise unequal. for i, prime := range primes { for j := 0; j < i; j++ { if prime.Cmp(primes[j]) == 0 { continue NextSetOfPrimes } } } n := new(big.Int).Set(bigOne) totient := new(big.Int).Set(bigOne) pminus1 := new(big.Int) for _, prime := range primes { n.Mul(n, prime) pminus1.Sub(prime, bigOne) totient.Mul(totient, pminus1) } if n.BitLen() != bits { // This should never happen for nprimes == 2 because // crypto/rand should set the top two bits in each prime. // For nprimes > 2 we hope it does not happen often. continue NextSetOfPrimes } g := new(big.Int) priv.D = new(big.Int) y := new(big.Int) e := big.NewInt(int64(priv.E)) g.GCD(priv.D, y, e, totient) if g.Cmp(bigOne) == 0 { if priv.D.Sign() < 0 { priv.D.Add(priv.D, totient) } priv.Primes = primes priv.N = n break } } priv.Precompute() return } // incCounter increments a four byte, big-endian counter. func incCounter(c *[4]byte) { if c[3]++; c[3] != 0 { return } if c[2]++; c[2] != 0 { return } if c[1]++; c[1] != 0 { return } c[0]++ } // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function // specified in PKCS#1 v2.1. func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { var counter [4]byte var digest []byte done := 0 for done < len(out) { hash.Write(seed) hash.Write(counter[0:4]) digest = hash.Sum(digest[:0]) hash.Reset() for i := 0; i < len(digest) && done < len(out); i++ { out[done] ^= digest[i] done++ } incCounter(&counter) } } // ErrMessageTooLong is returned when attempting to encrypt a message which is // too large for the size of the public key. var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { e := big.NewInt(int64(pub.E)) c.Exp(m, e, pub.N) return c } // EncryptOAEP encrypts the given message with RSA-OAEP. // The message must be no longer than the length of the public modulus less // twice the hash length plus 2. func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { if err := checkPub(pub); err != nil { return nil, err } hash.Reset() k := (pub.N.BitLen() + 7) / 8 if len(msg) > k-2*hash.Size()-2 { err = ErrMessageTooLong return } hash.Write(label) lHash := hash.Sum(nil) hash.Reset() em := make([]byte, k) seed := em[1 : 1+hash.Size()] db := em[1+hash.Size():] copy(db[0:hash.Size()], lHash) db[len(db)-len(msg)-1] = 1 copy(db[len(db)-len(msg):], msg) _, err = io.ReadFull(random, seed) if err != nil { return } mgf1XOR(db, hash, seed) mgf1XOR(seed, hash, db) m := new(big.Int) m.SetBytes(em) c := encrypt(new(big.Int), pub, m) out = c.Bytes() if len(out) < k { // If the output is too small, we need to left-pad with zeros. t := make([]byte, k) copy(t[k-len(out):], out) out = t } return } // ErrDecryption represents a failure to decrypt a message. // It is deliberately vague to avoid adaptive attacks. var ErrDecryption = errors.New("crypto/rsa: decryption error") // ErrVerification represents a failure to verify a signature. // It is deliberately vague to avoid adaptive attacks. var ErrVerification = errors.New("crypto/rsa: verification error") // modInverse returns ia, the inverse of a in the multiplicative group of prime // order n. It requires that a be a member of the group (i.e. less than n). func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { g := new(big.Int) x := new(big.Int) y := new(big.Int) g.GCD(x, y, a, n) if g.Cmp(bigOne) != 0 { // In this case, a and n aren't coprime and we cannot calculate // the inverse. This happens because the values of n are nearly // prime (being the product of two primes) rather than truly // prime. return } if x.Cmp(bigOne) < 0 { // 0 is not the multiplicative inverse of any element so, if x // < 1, then x is negative. x.Add(x, n) } return x, true } // Precompute performs some calculations that speed up private key operations // in the future. func (priv *PrivateKey) Precompute() { if priv.Precomputed.Dp != nil { return } priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) for i := 2; i < len(priv.Primes); i++ { prime := priv.Primes[i] values := &priv.Precomputed.CRTValues[i-2] values.Exp = new(big.Int).Sub(prime, bigOne) values.Exp.Mod(priv.D, values.Exp) values.R = new(big.Int).Set(r) values.Coeff = new(big.Int).ModInverse(r, prime) r.Mul(r, prime) } } // decrypt performs an RSA decryption, resulting in a plaintext integer. If a // random source is given, RSA blinding is used. func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { // TODO(agl): can we get away with reusing blinds? if c.Cmp(priv.N) > 0 { err = ErrDecryption return } var ir *big.Int if random != nil { // Blinding enabled. Blinding involves multiplying c by r^e. // Then the decryption operation performs (m^e * r^e)^d mod n // which equals mr mod n. The factor of r can then be removed // by multiplying by the multiplicative inverse of r. var r *big.Int for { r, err = rand.Int(random, priv.N) if err != nil { return } if r.Cmp(bigZero) == 0 { r = bigOne } var ok bool ir, ok = modInverse(r, priv.N) if ok { break } } bigE := big.NewInt(int64(priv.E)) rpowe := new(big.Int).Exp(r, bigE, priv.N) cCopy := new(big.Int).Set(c) cCopy.Mul(cCopy, rpowe) cCopy.Mod(cCopy, priv.N) c = cCopy } if priv.Precomputed.Dp == nil { m = new(big.Int).Exp(c, priv.D, priv.N) } else { // We have the precalculated values needed for the CRT. m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) m.Sub(m, m2) if m.Sign() < 0 { m.Add(m, priv.Primes[0]) } m.Mul(m, priv.Precomputed.Qinv) m.Mod(m, priv.Primes[0]) m.Mul(m, priv.Primes[1]) m.Add(m, m2) for i, values := range priv.Precomputed.CRTValues { prime := priv.Primes[2+i] m2.Exp(c, values.Exp, prime) m2.Sub(m2, m) m2.Mul(m2, values.Coeff) m2.Mod(m2, prime) if m2.Sign() < 0 { m2.Add(m2, prime) } m2.Mul(m2, values.R) m.Add(m, m2) } } if ir != nil { // Unblind. m.Mul(m, ir) m.Mod(m, priv.N) } return } // DecryptOAEP decrypts ciphertext using RSA-OAEP. // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { if err := checkPub(&priv.PublicKey); err != nil { return nil, err } k := (priv.N.BitLen() + 7) / 8 if len(ciphertext) > k || k < hash.Size()*2+2 { err = ErrDecryption return } c := new(big.Int).SetBytes(ciphertext) m, err := decrypt(random, priv, c) if err != nil { return } hash.Write(label) lHash := hash.Sum(nil) hash.Reset() // Converting the plaintext number to bytes will strip any // leading zeros so we may have to left pad. We do this unconditionally // to avoid leaking timing information. (Although we still probably // leak the number of leading zeros. It's not clear that we can do // anything about this.) em := leftPad(m.Bytes(), k) firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) seed := em[1 : hash.Size()+1] db := em[hash.Size()+1:] mgf1XOR(seed, hash, db) mgf1XOR(db, hash, seed) lHash2 := db[0:hash.Size()] // We have to validate the plaintext in constant time in order to avoid // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 // v2.0. In J. Kilian, editor, Advances in Cryptology. lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) // The remainder of the plaintext must be zero or more 0x00, followed // by 0x01, followed by the message. // lookingForIndex: 1 iff we are still looking for the 0x01 // index: the offset of the first 0x01 byte // invalid: 1 iff we saw a non-zero byte before the 0x01. var lookingForIndex, index, invalid int lookingForIndex = 1 rest := db[hash.Size():] for i := 0; i < len(rest); i++ { equals0 := subtle.ConstantTimeByteEq(rest[i], 0) equals1 := subtle.ConstantTimeByteEq(rest[i], 1) index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) } if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { err = ErrDecryption return } msg = rest[index+1:] return } // leftPad returns a new slice of length size. The contents of input are right // aligned in the new slice. func leftPad(input []byte, size int) (out []byte) { n := len(input) if n > size { n = size } out = make([]byte, size) copy(out[len(out)-n:], input) return }