// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package rand import ( "errors" "fmt" "math" "os" "runtime" "testing" ) const ( numTestSamples = 10000 ) type statsResults struct { mean float64 stddev float64 closeEnough float64 maxError float64 } func max(a, b float64) float64 { if a > b { return a } return b } func nearEqual(a, b, closeEnough, maxError float64) bool { absDiff := math.Abs(a - b) if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. return true } return absDiff/max(math.Abs(a), math.Abs(b)) < maxError } var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} // checkSimilarDistribution returns success if the mean and stddev of the // two statsResults are similar. func (this *statsResults) checkSimilarDistribution(expected *statsResults) error { if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) { s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) { s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } return nil } func getStatsResults(samples []float64) *statsResults { res := new(statsResults) var sum, squaresum float64 for _, s := range samples { sum += s squaresum += s * s } res.mean = sum / float64(len(samples)) res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean) return res } func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { actual := getStatsResults(samples) err := actual.checkSimilarDistribution(expected) if err != nil { t.Errorf(err.Error()) } } func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { chunk := len(samples) / nslices for i := 0; i < nslices; i++ { low := i * chunk var high int if i == nslices-1 { high = len(samples) - 1 } else { high = (i + 1) * chunk } checkSampleDistribution(t, samples[low:high], expected) } } // // Normal distribution tests // func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.NormFloat64()*stddev + mean } return samples } func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); samples := generateNormalSamples(nsamples, mean, stddev, seed) errorScale := max(1.0, stddev) // Error scales with stddev expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardNormalValues(t *testing.T) { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, 0, 1, seed) } } func TestNonStandardNormalValues(t *testing.T) { sdmax := 1000.0 mmax := 1000.0 if testing.Short() { sdmax = 5 mmax = 5 } for sd := 0.5; sd < sdmax; sd *= 2 { for m := 0.5; m < mmax; m *= 2 { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, m, sd, seed) if testing.Short() { break } } } } } // // Exponential distribution tests // func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.ExpFloat64() / rate } return samples } func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); mean := 1 / rate stddev := mean samples := generateExponentialSamples(nsamples, rate, seed) errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardExponentialValues(t *testing.T) { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, 1, seed) } } func TestNonStandardExponentialValues(t *testing.T) { for rate := 0.05; rate < 10; rate *= 2 { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, rate, seed) if testing.Short() { break } } } } // // Table generation tests // func initNorm() (testKn []uint32, testWn, testFn []float32) { const m1 = 1 << 31 var ( dn float64 = rn tn = dn vn float64 = 9.91256303526217e-3 ) testKn = make([]uint32, 128) testWn = make([]float32, 128) testFn = make([]float32, 128) q := vn / math.Exp(-0.5*dn*dn) testKn[0] = uint32((dn / q) * m1) testKn[1] = 0 testWn[0] = float32(q / m1) testWn[127] = float32(dn / m1) testFn[0] = 1.0 testFn[127] = float32(math.Exp(-0.5 * dn * dn)) for i := 126; i >= 1; i-- { dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) testKn[i+1] = uint32((dn / tn) * m1) tn = dn testFn[i] = float32(math.Exp(-0.5 * dn * dn)) testWn[i] = float32(dn / m1) } return } func initExp() (testKe []uint32, testWe, testFe []float32) { const m2 = 1 << 32 var ( de float64 = re te = de ve float64 = 3.9496598225815571993e-3 ) testKe = make([]uint32, 256) testWe = make([]float32, 256) testFe = make([]float32, 256) q := ve / math.Exp(-de) testKe[0] = uint32((de / q) * m2) testKe[1] = 0 testWe[0] = float32(q / m2) testWe[255] = float32(de / m2) testFe[0] = 1.0 testFe[255] = float32(math.Exp(-de)) for i := 254; i >= 1; i-- { de = -math.Log(ve/de + math.Exp(-de)) testKe[i+1] = uint32((de / te) * m2) te = de testFe[i] = float32(math.Exp(-de)) testWe[i] = float32(de / m2) } return } // compareUint32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareUint32Slices(s1, s2 []uint32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if s1[i] != s2[i] { return i } } return -1 } // compareFloat32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareFloat32Slices(s1, s2 []float32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { return i } } return -1 } func TestNormTables(t *testing.T) { testKn, testWn, testFn := initNorm() if i := compareUint32Slices(kn[0:], testKn); i >= 0 { t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) } if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) } if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) } } func TestExpTables(t *testing.T) { testKe, testWe, testFe := initExp() if i := compareUint32Slices(ke[0:], testKe); i >= 0 { t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) } if i := compareFloat32Slices(we[0:], testWe); i >= 0 { t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) } if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) } } func TestFloat32(t *testing.T) { // For issue 6721, the problem came after 7533753 calls, so check 10e6. num := int(10e6) // But ARM5 floating point emulation is slow (Issue 10749), so // do less for that builder: if testing.Short() && runtime.GOARCH == "arm" && os.Getenv("GOARM") == "5" { num /= 100 // 1.72 seconds instead of 172 seconds } r := New(NewSource(1)) for ct := 0; ct < num; ct++ { f := r.Float32() if f >= 1 { t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f) } } } // Benchmarks func BenchmarkInt63Threadsafe(b *testing.B) { for n := b.N; n > 0; n-- { Int63() } } func BenchmarkInt63Unthreadsafe(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int63() } } func BenchmarkIntn1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Intn(1000) } } func BenchmarkInt63n1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int63n(1000) } } func BenchmarkInt31n1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int31n(1000) } } func BenchmarkFloat32(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Float32() } } func BenchmarkFloat64(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Float64() } } func BenchmarkPerm3(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Perm(3) } } func BenchmarkPerm30(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Perm(30) } }