/* * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "keymaster0_engine.h" #include <assert.h> #include <memory> #define LOG_TAG "Keymaster0Engine" #include <cutils/log.h> #include "keymaster/android_keymaster_utils.h" #include <openssl/bn.h> #include <openssl/ec_key.h> #include <openssl/ecdsa.h> #include "openssl_utils.h" using std::shared_ptr; using std::unique_ptr; namespace keymaster { Keymaster0Engine* Keymaster0Engine::instance_ = nullptr; Keymaster0Engine::Keymaster0Engine(const keymaster0_device_t* keymaster0_device) : keymaster0_device_(keymaster0_device), engine_(ENGINE_new()), supports_ec_(false) { assert(!instance_); instance_ = this; rsa_index_ = RSA_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, keyblob_dup, keyblob_free); ec_key_index_ = EC_KEY_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, keyblob_dup, keyblob_free); rsa_method_.common.references = 0; rsa_method_.common.is_static = 1; rsa_method_.app_data = nullptr; rsa_method_.init = nullptr; rsa_method_.finish = nullptr; rsa_method_.size = nullptr; rsa_method_.sign = nullptr; rsa_method_.verify = nullptr; rsa_method_.encrypt = nullptr; rsa_method_.sign_raw = nullptr; rsa_method_.decrypt = nullptr; rsa_method_.verify_raw = nullptr; rsa_method_.private_transform = Keymaster0Engine::rsa_private_transform; rsa_method_.mod_exp = nullptr; rsa_method_.bn_mod_exp = BN_mod_exp_mont; rsa_method_.flags = RSA_FLAG_OPAQUE; rsa_method_.keygen = nullptr; rsa_method_.supports_digest = nullptr; ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); if ((keymaster0_device_->flags & KEYMASTER_SUPPORTS_EC) != 0) { supports_ec_ = true; ecdsa_method_.common.references = 0; ecdsa_method_.common.is_static = 1; ecdsa_method_.app_data = nullptr; ecdsa_method_.init = nullptr; ecdsa_method_.finish = nullptr; ecdsa_method_.group_order_size = nullptr; ecdsa_method_.sign = Keymaster0Engine::ecdsa_sign; ecdsa_method_.verify = nullptr; ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); } } Keymaster0Engine::~Keymaster0Engine() { if (keymaster0_device_) keymaster0_device_->common.close( reinterpret_cast<hw_device_t*>(const_cast<keymaster0_device_t*>(keymaster0_device_))); ENGINE_free(engine_); instance_ = nullptr; } bool Keymaster0Engine::GenerateRsaKey(uint64_t public_exponent, uint32_t public_modulus, KeymasterKeyBlob* key_material) const { assert(key_material); keymaster_rsa_keygen_params_t params; params.public_exponent = public_exponent; params.modulus_size = public_modulus; uint8_t* key_blob = 0; if (keymaster0_device_->generate_keypair(keymaster0_device_, TYPE_RSA, ¶ms, &key_blob, &key_material->key_material_size) < 0) { ALOGE("Error generating RSA key pair with keymaster0 device"); return false; } unique_ptr<uint8_t, Malloc_Delete> key_blob_deleter(key_blob); key_material->key_material = dup_buffer(key_blob, key_material->key_material_size); return true; } bool Keymaster0Engine::GenerateEcKey(uint32_t key_size, KeymasterKeyBlob* key_material) const { assert(key_material); keymaster_ec_keygen_params_t params; params.field_size = key_size; uint8_t* key_blob = 0; if (keymaster0_device_->generate_keypair(keymaster0_device_, TYPE_EC, ¶ms, &key_blob, &key_material->key_material_size) < 0) { ALOGE("Error generating EC key pair with keymaster0 device"); return false; } unique_ptr<uint8_t, Malloc_Delete> key_blob_deleter(key_blob); key_material->key_material = dup_buffer(key_blob, key_material->key_material_size); return true; } bool Keymaster0Engine::ImportKey(keymaster_key_format_t key_format, const KeymasterKeyBlob& to_import, KeymasterKeyBlob* imported_key) const { assert(imported_key); if (key_format != KM_KEY_FORMAT_PKCS8) return false; uint8_t* key_blob = 0; if (keymaster0_device_->import_keypair(keymaster0_device_, to_import.key_material, to_import.key_material_size, &key_blob, &imported_key->key_material_size) < 0) { ALOGW("Error importing keypair with keymaster0 device"); return false; } unique_ptr<uint8_t, Malloc_Delete> key_blob_deleter(key_blob); imported_key->key_material = dup_buffer(key_blob, imported_key->key_material_size); return true; } bool Keymaster0Engine::DeleteKey(const KeymasterKeyBlob& blob) const { if (!keymaster0_device_->delete_keypair) return true; return (keymaster0_device_->delete_keypair(keymaster0_device_, blob.key_material, blob.key_material_size) == 0); } bool Keymaster0Engine::DeleteAllKeys() const { if (!keymaster0_device_->delete_all) return true; return (keymaster0_device_->delete_all(keymaster0_device_) == 0); } static keymaster_key_blob_t* duplicate_blob(const uint8_t* key_data, size_t key_data_size) { unique_ptr<uint8_t[]> key_material_copy(dup_buffer(key_data, key_data_size)); if (!key_material_copy) return nullptr; unique_ptr<keymaster_key_blob_t> blob_copy(new (std::nothrow) keymaster_key_blob_t); if (!blob_copy.get()) return nullptr; blob_copy->key_material_size = key_data_size; blob_copy->key_material = key_material_copy.release(); return blob_copy.release(); } inline keymaster_key_blob_t* duplicate_blob(const keymaster_key_blob_t& blob) { return duplicate_blob(blob.key_material, blob.key_material_size); } RSA* Keymaster0Engine::BlobToRsaKey(const KeymasterKeyBlob& blob) const { // Create new RSA key (with engine methods) and insert blob unique_ptr<RSA, RSA_Delete> rsa(RSA_new_method(engine_)); if (!rsa) return nullptr; keymaster_key_blob_t* blob_copy = duplicate_blob(blob); if (!blob_copy->key_material || !RSA_set_ex_data(rsa.get(), rsa_index_, blob_copy)) return nullptr; // Copy public key into new RSA key unique_ptr<EVP_PKEY, EVP_PKEY_Delete> pkey(GetKeymaster0PublicKey(blob)); if (!pkey) return nullptr; unique_ptr<RSA, RSA_Delete> public_rsa(EVP_PKEY_get1_RSA(pkey.get())); if (!public_rsa) return nullptr; rsa->n = BN_dup(public_rsa->n); rsa->e = BN_dup(public_rsa->e); if (!rsa->n || !rsa->e) return nullptr; return rsa.release(); } EC_KEY* Keymaster0Engine::BlobToEcKey(const KeymasterKeyBlob& blob) const { // Create new EC key (with engine methods) and insert blob unique_ptr<EC_KEY, EC_KEY_Delete> ec_key(EC_KEY_new_method(engine_)); if (!ec_key) return nullptr; keymaster_key_blob_t* blob_copy = duplicate_blob(blob); if (!blob_copy->key_material || !EC_KEY_set_ex_data(ec_key.get(), ec_key_index_, blob_copy)) return nullptr; // Copy public key into new EC key unique_ptr<EVP_PKEY, EVP_PKEY_Delete> pkey(GetKeymaster0PublicKey(blob)); if (!pkey) return nullptr; unique_ptr<EC_KEY, EC_KEY_Delete> public_ec_key(EVP_PKEY_get1_EC_KEY(pkey.get())); if (!public_ec_key) return nullptr; if (!EC_KEY_set_group(ec_key.get(), EC_KEY_get0_group(public_ec_key.get())) || !EC_KEY_set_public_key(ec_key.get(), EC_KEY_get0_public_key(public_ec_key.get()))) return nullptr; return ec_key.release(); } const keymaster_key_blob_t* Keymaster0Engine::RsaKeyToBlob(const RSA* rsa) const { return reinterpret_cast<keymaster_key_blob_t*>(RSA_get_ex_data(rsa, rsa_index_)); } const keymaster_key_blob_t* Keymaster0Engine::EcKeyToBlob(const EC_KEY* ec_key) const { return reinterpret_cast<keymaster_key_blob_t*>(EC_KEY_get_ex_data(ec_key, ec_key_index_)); } /* static */ int Keymaster0Engine::keyblob_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, void** from_d, int /* index */, long /* argl */, void* /* argp */) { keymaster_key_blob_t* blob = reinterpret_cast<keymaster_key_blob_t*>(*from_d); if (!blob) return 1; *from_d = duplicate_blob(*blob); if (*from_d) return 1; return 0; } /* static */ void Keymaster0Engine::keyblob_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* data */, int /* index*/, long /* argl */, void* /* argp */) { keymaster_key_blob_t* blob = reinterpret_cast<keymaster_key_blob_t*>(ptr); if (blob) { delete[] blob->key_material; delete blob; } } /* static */ int Keymaster0Engine::rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) { ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned)len); assert(instance_); return instance_->RsaPrivateTransform(rsa, out, in, len); } /* static */ int Keymaster0Engine::ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key) { ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned)digest_len, ec_key); assert(instance_); return instance_->EcdsaSign(digest, digest_len, sig, sig_len, ec_key); } bool Keymaster0Engine::Keymaster0Sign(const void* signing_params, const keymaster_key_blob_t& blob, const uint8_t* data, const size_t data_length, unique_ptr<uint8_t[], Malloc_Delete>* signature, size_t* signature_length) const { uint8_t* signed_data; int err = keymaster0_device_->sign_data(keymaster0_device_, signing_params, blob.key_material, blob.key_material_size, data, data_length, &signed_data, signature_length); if (err < 0) { ALOGE("Keymaster0 signing failed with error %d", err); return false; } signature->reset(signed_data); return true; } EVP_PKEY* Keymaster0Engine::GetKeymaster0PublicKey(const KeymasterKeyBlob& blob) const { uint8_t* pub_key_data; size_t pub_key_data_length; int err = keymaster0_device_->get_keypair_public(keymaster0_device_, blob.key_material, blob.key_material_size, &pub_key_data, &pub_key_data_length); if (err < 0) { ALOGE("Error %d extracting public key", err); return nullptr; } unique_ptr<uint8_t, Malloc_Delete> pub_key(pub_key_data); const uint8_t* p = pub_key_data; return d2i_PUBKEY(nullptr /* allocate new struct */, &p, pub_key_data_length); } static bool data_too_large_for_public_modulus(const uint8_t* data, size_t len, const RSA* rsa) { unique_ptr<BIGNUM, BIGNUM_Delete> input_as_bn( BN_bin2bn(data, len, nullptr /* allocate result */)); return input_as_bn && BN_ucmp(input_as_bn.get(), rsa->n) >= 0; } int Keymaster0Engine::RsaPrivateTransform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) const { const keymaster_key_blob_t* key_blob = RsaKeyToBlob(rsa); if (key_blob == NULL) { ALOGE("key had no key_blob!"); return 0; } keymaster_rsa_sign_params_t sign_params = {DIGEST_NONE, PADDING_NONE}; unique_ptr<uint8_t[], Malloc_Delete> signature; size_t signature_length; if (!Keymaster0Sign(&sign_params, *key_blob, in, len, &signature, &signature_length)) { if (data_too_large_for_public_modulus(in, len, rsa)) { ALOGE("Keymaster0 signing failed because data is too large."); OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); } else { // We don't know what error code is correct; force an "unknown error" return OPENSSL_PUT_ERROR(USER, KM_ERROR_UNKNOWN_ERROR); } return 0; } Eraser eraser(signature.get(), signature_length); if (signature_length > len) { /* The result of the RSA operation can never be larger than the size of * the modulus so we assume that the result has extra zeros on the * left. This provides attackers with an oracle, but there's nothing * that we can do about it here. */ memcpy(out, signature.get() + signature_length - len, len); } else if (signature_length < len) { /* If the keymaster0 implementation returns a short value we assume that * it's because it removed leading zeros from the left side. This is * bad because it provides attackers with an oracle but we cannot do * anything about a broken keymaster0 implementation here. */ memset(out, 0, len); memcpy(out + len - signature_length, signature.get(), signature_length); } else { memcpy(out, signature.get(), len); } ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa); return 1; } int Keymaster0Engine::EcdsaSign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key) const { const keymaster_key_blob_t* key_blob = EcKeyToBlob(ec_key); if (key_blob == NULL) { ALOGE("key had no key_blob!"); return 0; } // Truncate digest if it's too long size_t max_input_len = (ec_group_size_bits(ec_key) + 7) / 8; if (digest_len > max_input_len) digest_len = max_input_len; keymaster_ec_sign_params_t sign_params = {DIGEST_NONE}; unique_ptr<uint8_t[], Malloc_Delete> signature; size_t signature_length; if (!Keymaster0Sign(&sign_params, *key_blob, digest, digest_len, &signature, &signature_length)) { // We don't know what error code is correct; force an "unknown error" return OPENSSL_PUT_ERROR(USER, KM_ERROR_UNKNOWN_ERROR); return 0; } Eraser eraser(signature.get(), signature_length); if (signature_length == 0) { ALOGW("No valid signature returned"); return 0; } else if (signature_length > ECDSA_size(ec_key)) { ALOGW("Signature is too large"); return 0; } else { memcpy(sig, signature.get(), signature_length); *sig_len = signature_length; } ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len, ec_key); return 1; } } // namespace keymaster