/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "class.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "class_linker-inl.h"
#include "class_loader.h"
#include "class-inl.h"
#include "dex_cache.h"
#include "dex_file-inl.h"
#include "gc/accounting/card_table-inl.h"
#include "handle_scope-inl.h"
#include "method.h"
#include "object_array-inl.h"
#include "object-inl.h"
#include "runtime.h"
#include "thread.h"
#include "throwable.h"
#include "utils.h"
#include "well_known_classes.h"
namespace art {
namespace mirror {
GcRoot<Class> Class::java_lang_Class_;
void Class::SetClassClass(Class* java_lang_Class) {
CHECK(java_lang_Class_.IsNull())
<< java_lang_Class_.Read()
<< " " << java_lang_Class;
CHECK(java_lang_Class != nullptr);
java_lang_Class->SetClassFlags(mirror::kClassFlagClass);
java_lang_Class_ = GcRoot<Class>(java_lang_Class);
}
void Class::ResetClass() {
CHECK(!java_lang_Class_.IsNull());
java_lang_Class_ = GcRoot<Class>(nullptr);
}
void Class::VisitRoots(RootVisitor* visitor) {
java_lang_Class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
}
inline void Class::SetVerifyError(mirror::Object* error) {
CHECK(error != nullptr) << PrettyClass(this);
if (Runtime::Current()->IsActiveTransaction()) {
SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_), error);
} else {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_), error);
}
}
void Class::SetStatus(Handle<Class> h_this, Status new_status, Thread* self) {
Status old_status = h_this->GetStatus();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
bool class_linker_initialized = class_linker != nullptr && class_linker->IsInitialized();
if (LIKELY(class_linker_initialized)) {
if (UNLIKELY(new_status <= old_status && new_status != kStatusError &&
new_status != kStatusRetired)) {
LOG(FATAL) << "Unexpected change back of class status for " << PrettyClass(h_this.Get())
<< " " << old_status << " -> " << new_status;
}
if (new_status >= kStatusResolved || old_status >= kStatusResolved) {
// When classes are being resolved the resolution code should hold the lock.
CHECK_EQ(h_this->GetLockOwnerThreadId(), self->GetThreadId())
<< "Attempt to change status of class while not holding its lock: "
<< PrettyClass(h_this.Get()) << " " << old_status << " -> " << new_status;
}
}
if (UNLIKELY(new_status == kStatusError)) {
CHECK_NE(h_this->GetStatus(), kStatusError)
<< "Attempt to set as erroneous an already erroneous class "
<< PrettyClass(h_this.Get());
if (VLOG_IS_ON(class_linker)) {
LOG(ERROR) << "Setting " << PrettyDescriptor(h_this.Get()) << " to erroneous.";
if (self->IsExceptionPending()) {
LOG(ERROR) << "Exception: " << self->GetException()->Dump();
}
}
// Remember the current exception.
CHECK(self->GetException() != nullptr);
h_this->SetVerifyError(self->GetException());
}
static_assert(sizeof(Status) == sizeof(uint32_t), "Size of status not equal to uint32");
if (Runtime::Current()->IsActiveTransaction()) {
h_this->SetField32Volatile<true>(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status);
} else {
h_this->SetField32Volatile<false>(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status);
}
if (!class_linker_initialized) {
// When the class linker is being initialized its single threaded and by definition there can be
// no waiters. During initialization classes may appear temporary but won't be retired as their
// size was statically computed.
} else {
// Classes that are being resolved or initialized need to notify waiters that the class status
// changed. See ClassLinker::EnsureResolved and ClassLinker::WaitForInitializeClass.
if (h_this->IsTemp()) {
// Class is a temporary one, ensure that waiters for resolution get notified of retirement
// so that they can grab the new version of the class from the class linker's table.
CHECK_LT(new_status, kStatusResolved) << PrettyDescriptor(h_this.Get());
if (new_status == kStatusRetired || new_status == kStatusError) {
h_this->NotifyAll(self);
}
} else {
CHECK_NE(new_status, kStatusRetired);
if (old_status >= kStatusResolved || new_status >= kStatusResolved) {
h_this->NotifyAll(self);
}
}
}
}
void Class::SetDexCache(DexCache* new_dex_cache) {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache);
SetDexCacheStrings(new_dex_cache != nullptr ? new_dex_cache->GetStrings() : nullptr);
}
void Class::SetClassSize(uint32_t new_class_size) {
if (kIsDebugBuild && new_class_size < GetClassSize()) {
DumpClass(LOG(INTERNAL_FATAL), kDumpClassFullDetail);
LOG(INTERNAL_FATAL) << new_class_size << " vs " << GetClassSize();
LOG(FATAL) << " class=" << PrettyTypeOf(this);
}
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size);
}
// Return the class' name. The exact format is bizarre, but it's the specified behavior for
// Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int"
// but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than
// slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness.
String* Class::ComputeName(Handle<Class> h_this) {
String* name = h_this->GetName();
if (name != nullptr) {
return name;
}
std::string temp;
const char* descriptor = h_this->GetDescriptor(&temp);
Thread* self = Thread::Current();
if ((descriptor[0] != 'L') && (descriptor[0] != '[')) {
// The descriptor indicates that this is the class for
// a primitive type; special-case the return value.
const char* c_name = nullptr;
switch (descriptor[0]) {
case 'Z': c_name = "boolean"; break;
case 'B': c_name = "byte"; break;
case 'C': c_name = "char"; break;
case 'S': c_name = "short"; break;
case 'I': c_name = "int"; break;
case 'J': c_name = "long"; break;
case 'F': c_name = "float"; break;
case 'D': c_name = "double"; break;
case 'V': c_name = "void"; break;
default:
LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]);
}
name = String::AllocFromModifiedUtf8(self, c_name);
} else {
// Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package
// components.
name = String::AllocFromModifiedUtf8(self, DescriptorToDot(descriptor).c_str());
}
h_this->SetName(name);
return name;
}
void Class::DumpClass(std::ostream& os, int flags) {
if ((flags & kDumpClassFullDetail) == 0) {
os << PrettyClass(this);
if ((flags & kDumpClassClassLoader) != 0) {
os << ' ' << GetClassLoader();
}
if ((flags & kDumpClassInitialized) != 0) {
os << ' ' << GetStatus();
}
os << "\n";
return;
}
Thread* const self = Thread::Current();
StackHandleScope<2> hs(self);
Handle<mirror::Class> h_this(hs.NewHandle(this));
Handle<mirror::Class> h_super(hs.NewHandle(GetSuperClass()));
auto image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
std::string temp;
os << "----- " << (IsInterface() ? "interface" : "class") << " "
<< "'" << GetDescriptor(&temp) << "' cl=" << GetClassLoader() << " -----\n",
os << " objectSize=" << SizeOf() << " "
<< "(" << (h_super.Get() != nullptr ? h_super->SizeOf() : -1) << " from super)\n",
os << StringPrintf(" access=0x%04x.%04x\n",
GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask);
if (h_super.Get() != nullptr) {
os << " super='" << PrettyClass(h_super.Get()) << "' (cl=" << h_super->GetClassLoader()
<< ")\n";
}
if (IsArrayClass()) {
os << " componentType=" << PrettyClass(GetComponentType()) << "\n";
}
const size_t num_direct_interfaces = NumDirectInterfaces();
if (num_direct_interfaces > 0) {
os << " interfaces (" << num_direct_interfaces << "):\n";
for (size_t i = 0; i < num_direct_interfaces; ++i) {
Class* interface = GetDirectInterface(self, h_this, i);
if (interface == nullptr) {
os << StringPrintf(" %2zd: nullptr!\n", i);
} else {
const ClassLoader* cl = interface->GetClassLoader();
os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl);
}
}
}
if (!IsLoaded()) {
os << " class not yet loaded";
} else {
// After this point, this may have moved due to GetDirectInterface.
os << " vtable (" << h_this->NumVirtualMethods() << " entries, "
<< (h_super.Get() != nullptr ? h_super->NumVirtualMethods() : 0) << " in super):\n";
for (size_t i = 0; i < NumVirtualMethods(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(
h_this->GetVirtualMethodDuringLinking(i, image_pointer_size)).c_str());
}
os << " direct methods (" << h_this->NumDirectMethods() << " entries):\n";
for (size_t i = 0; i < h_this->NumDirectMethods(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(
h_this->GetDirectMethod(i, image_pointer_size)).c_str());
}
if (h_this->NumStaticFields() > 0) {
os << " static fields (" << h_this->NumStaticFields() << " entries):\n";
if (h_this->IsResolved() || h_this->IsErroneous()) {
for (size_t i = 0; i < h_this->NumStaticFields(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyField(h_this->GetStaticField(i)).c_str());
}
} else {
os << " <not yet available>";
}
}
if (h_this->NumInstanceFields() > 0) {
os << " instance fields (" << h_this->NumInstanceFields() << " entries):\n";
if (h_this->IsResolved() || h_this->IsErroneous()) {
for (size_t i = 0; i < h_this->NumInstanceFields(); ++i) {
os << StringPrintf(" %2zd: %s\n", i, PrettyField(h_this->GetInstanceField(i)).c_str());
}
} else {
os << " <not yet available>";
}
}
}
}
void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) {
if (kIsDebugBuild && new_reference_offsets != kClassWalkSuper) {
// Sanity check that the number of bits set in the reference offset bitmap
// agrees with the number of references
uint32_t count = 0;
for (Class* c = this; c != nullptr; c = c->GetSuperClass()) {
count += c->NumReferenceInstanceFieldsDuringLinking();
}
// +1 for the Class in Object.
CHECK_EQ(static_cast<uint32_t>(POPCOUNT(new_reference_offsets)) + 1, count);
}
// Not called within a transaction.
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_),
new_reference_offsets);
}
bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) {
size_t i = 0;
size_t min_length = std::min(descriptor1.size(), descriptor2.size());
while (i < min_length && descriptor1[i] == descriptor2[i]) {
++i;
}
if (descriptor1.find('/', i) != StringPiece::npos ||
descriptor2.find('/', i) != StringPiece::npos) {
return false;
} else {
return true;
}
}
bool Class::IsInSamePackage(Class* that) {
Class* klass1 = this;
Class* klass2 = that;
if (klass1 == klass2) {
return true;
}
// Class loaders must match.
if (klass1->GetClassLoader() != klass2->GetClassLoader()) {
return false;
}
// Arrays are in the same package when their element classes are.
while (klass1->IsArrayClass()) {
klass1 = klass1->GetComponentType();
}
while (klass2->IsArrayClass()) {
klass2 = klass2->GetComponentType();
}
// trivial check again for array types
if (klass1 == klass2) {
return true;
}
// Compare the package part of the descriptor string.
std::string temp1, temp2;
return IsInSamePackage(klass1->GetDescriptor(&temp1), klass2->GetDescriptor(&temp2));
}
bool Class::IsThrowableClass() {
return WellKnownClasses::ToClass(WellKnownClasses::java_lang_Throwable)->IsAssignableFrom(this);
}
void Class::SetClassLoader(ClassLoader* new_class_loader) {
if (Runtime::Current()->IsActiveTransaction()) {
SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader);
} else {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader);
}
}
ArtMethod* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature,
size_t pointer_size) {
// Check the current class before checking the interfaces.
ArtMethod* method = FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; ++i) {
method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindInterfaceMethod(const StringPiece& name, const Signature& signature,
size_t pointer_size) {
// Check the current class before checking the interfaces.
ArtMethod* method = FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; ++i) {
method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx,
size_t pointer_size) {
// Check the current class before checking the interfaces.
ArtMethod* method = FindDeclaredVirtualMethod(dex_cache, dex_method_idx, pointer_size);
if (method != nullptr) {
return method;
}
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; ++i) {
method = iftable->GetInterface(i)->FindDeclaredVirtualMethod(
dex_cache, dex_method_idx, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature,
size_t pointer_size) {
for (auto& method : GetDirectMethods(pointer_size)) {
if (name == method.GetName() && method.GetSignature() == signature) {
return &method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature,
size_t pointer_size) {
for (auto& method : GetDirectMethods(pointer_size)) {
if (name == method.GetName() && signature == method.GetSignature()) {
return &method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx,
size_t pointer_size) {
if (GetDexCache() == dex_cache) {
for (auto& method : GetDirectMethods(pointer_size)) {
if (method.GetDexMethodIndex() == dex_method_idx) {
return &method;
}
}
}
return nullptr;
}
ArtMethod* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature,
size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredDirectMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindDirectMethod(const StringPiece& name, const Signature& signature,
size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredDirectMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindDirectMethod(
const DexCache* dex_cache, uint32_t dex_method_idx, size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredDirectMethod(dex_cache, dex_method_idx, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredDirectMethodByName(const StringPiece& name, size_t pointer_size) {
for (auto& method : GetDirectMethods(pointer_size)) {
ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
if (name == np_method->GetName()) {
return &method;
}
}
return nullptr;
}
// TODO These should maybe be changed to be named FindOwnedVirtualMethod or something similar
// because they do not only find 'declared' methods and will return copied methods. This behavior is
// desired and correct but the naming can lead to confusion because in the java language declared
// excludes interface methods which might be found by this.
ArtMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature,
size_t pointer_size) {
for (auto& method : GetVirtualMethods(pointer_size)) {
ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
if (name == np_method->GetName() && np_method->GetSignature() == signature) {
return &method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature,
size_t pointer_size) {
for (auto& method : GetVirtualMethods(pointer_size)) {
ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
if (name == np_method->GetName() && signature == np_method->GetSignature()) {
return &method;
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx,
size_t pointer_size) {
if (GetDexCache() == dex_cache) {
for (auto& method : GetDeclaredVirtualMethods(pointer_size)) {
if (method.GetDexMethodIndex() == dex_method_idx) {
return &method;
}
}
}
return nullptr;
}
ArtMethod* Class::FindDeclaredVirtualMethodByName(const StringPiece& name, size_t pointer_size) {
for (auto& method : GetVirtualMethods(pointer_size)) {
ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
if (name == np_method->GetName()) {
return &method;
}
}
return nullptr;
}
ArtMethod* Class::FindVirtualMethod(
const StringPiece& name, const StringPiece& signature, size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindVirtualMethod(
const StringPiece& name, const Signature& signature, size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredVirtualMethod(name, signature, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindVirtualMethod(
const DexCache* dex_cache, uint32_t dex_method_idx, size_t pointer_size) {
for (Class* klass = this; klass != nullptr; klass = klass->GetSuperClass()) {
ArtMethod* method = klass->FindDeclaredVirtualMethod(dex_cache, dex_method_idx, pointer_size);
if (method != nullptr) {
return method;
}
}
return nullptr;
}
ArtMethod* Class::FindVirtualMethodForInterfaceSuper(ArtMethod* method, size_t pointer_size) {
DCHECK(method->GetDeclaringClass()->IsInterface());
DCHECK(IsInterface()) << "Should only be called on a interface class";
// Check if we have one defined on this interface first. This includes searching copied ones to
// get any conflict methods. Conflict methods are copied into each subtype from the supertype. We
// don't do any indirect method checks here.
for (ArtMethod& iface_method : GetVirtualMethods(pointer_size)) {
if (method->HasSameNameAndSignature(&iface_method)) {
return &iface_method;
}
}
std::vector<ArtMethod*> abstract_methods;
// Search through the IFTable for a working version. We don't need to check for conflicts
// because if there was one it would appear in this classes virtual_methods_ above.
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
MutableHandle<mirror::IfTable> iftable(hs.NewHandle(GetIfTable()));
MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
size_t iftable_count = GetIfTableCount();
// Find the method. We don't need to check for conflicts because they would have been in the
// copied virtuals of this interface. Order matters, traverse in reverse topological order; most
// subtypiest interfaces get visited first.
for (size_t k = iftable_count; k != 0;) {
k--;
DCHECK_LT(k, iftable->Count());
iface.Assign(iftable->GetInterface(k));
// Iterate through every declared method on this interface. Each direct method's name/signature
// is unique so the order of the inner loop doesn't matter.
for (auto& method_iter : iface->GetDeclaredVirtualMethods(pointer_size)) {
ArtMethod* current_method = &method_iter;
if (current_method->HasSameNameAndSignature(method)) {
if (current_method->IsDefault()) {
// Handle JLS soft errors, a default method from another superinterface tree can
// "override" an abstract method(s) from another superinterface tree(s). To do this,
// ignore any [default] method which are dominated by the abstract methods we've seen so
// far. Check if overridden by any in abstract_methods. We do not need to check for
// default_conflicts because we would hit those before we get to this loop.
bool overridden = false;
for (ArtMethod* possible_override : abstract_methods) {
DCHECK(possible_override->HasSameNameAndSignature(current_method));
if (iface->IsAssignableFrom(possible_override->GetDeclaringClass())) {
overridden = true;
break;
}
}
if (!overridden) {
return current_method;
}
} else {
// Is not default.
// This might override another default method. Just stash it for now.
abstract_methods.push_back(current_method);
}
}
}
}
// If we reach here we either never found any declaration of the method (in which case
// 'abstract_methods' is empty or we found no non-overriden default methods in which case
// 'abstract_methods' contains a number of abstract implementations of the methods. We choose one
// of these arbitrarily.
return abstract_methods.empty() ? nullptr : abstract_methods[0];
}
ArtMethod* Class::FindClassInitializer(size_t pointer_size) {
for (ArtMethod& method : GetDirectMethods(pointer_size)) {
if (method.IsClassInitializer()) {
DCHECK_STREQ(method.GetName(), "<clinit>");
DCHECK_STREQ(method.GetSignature().ToString().c_str(), "()V");
return &method;
}
}
return nullptr;
}
// Custom binary search to avoid double comparisons from std::binary_search.
static ArtField* FindFieldByNameAndType(LengthPrefixedArray<ArtField>* fields,
const StringPiece& name,
const StringPiece& type)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (fields == nullptr) {
return nullptr;
}
size_t low = 0;
size_t high = fields->size();
ArtField* ret = nullptr;
while (low < high) {
size_t mid = (low + high) / 2;
ArtField& field = fields->At(mid);
// Fields are sorted by class, then name, then type descriptor. This is verified in dex file
// verifier. There can be multiple fields with the same in the same class name due to proguard.
int result = StringPiece(field.GetName()).Compare(name);
if (result == 0) {
result = StringPiece(field.GetTypeDescriptor()).Compare(type);
}
if (result < 0) {
low = mid + 1;
} else if (result > 0) {
high = mid;
} else {
ret = &field;
break;
}
}
if (kIsDebugBuild) {
ArtField* found = nullptr;
for (ArtField& field : MakeIterationRangeFromLengthPrefixedArray(fields)) {
if (name == field.GetName() && type == field.GetTypeDescriptor()) {
found = &field;
break;
}
}
CHECK_EQ(found, ret) << "Found " << PrettyField(found) << " vs " << PrettyField(ret);
}
return ret;
}
ArtField* Class::FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) {
// Binary search by name. Interfaces are not relevant because they can't contain instance fields.
return FindFieldByNameAndType(GetIFieldsPtr(), name, type);
}
ArtField* Class::FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) {
if (GetDexCache() == dex_cache) {
for (ArtField& field : GetIFields()) {
if (field.GetDexFieldIndex() == dex_field_idx) {
return &field;
}
}
}
return nullptr;
}
ArtField* Class::FindInstanceField(const StringPiece& name, const StringPiece& type) {
// Is the field in this class, or any of its superclasses?
// Interfaces are not relevant because they can't contain instance fields.
for (Class* c = this; c != nullptr; c = c->GetSuperClass()) {
ArtField* f = c->FindDeclaredInstanceField(name, type);
if (f != nullptr) {
return f;
}
}
return nullptr;
}
ArtField* Class::FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) {
// Is the field in this class, or any of its superclasses?
// Interfaces are not relevant because they can't contain instance fields.
for (Class* c = this; c != nullptr; c = c->GetSuperClass()) {
ArtField* f = c->FindDeclaredInstanceField(dex_cache, dex_field_idx);
if (f != nullptr) {
return f;
}
}
return nullptr;
}
ArtField* Class::FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) {
DCHECK(type != nullptr);
return FindFieldByNameAndType(GetSFieldsPtr(), name, type);
}
ArtField* Class::FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) {
if (dex_cache == GetDexCache()) {
for (ArtField& field : GetSFields()) {
if (field.GetDexFieldIndex() == dex_field_idx) {
return &field;
}
}
}
return nullptr;
}
ArtField* Class::FindStaticField(Thread* self, Handle<Class> klass, const StringPiece& name,
const StringPiece& type) {
// Is the field in this class (or its interfaces), or any of its
// superclasses (or their interfaces)?
for (Class* k = klass.Get(); k != nullptr; k = k->GetSuperClass()) {
// Is the field in this class?
ArtField* f = k->FindDeclaredStaticField(name, type);
if (f != nullptr) {
return f;
}
// Wrap k incase it moves during GetDirectInterface.
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h_k(hs.NewHandleWrapper(&k));
// Is this field in any of this class' interfaces?
for (uint32_t i = 0; i < h_k->NumDirectInterfaces(); ++i) {
StackHandleScope<1> hs2(self);
Handle<mirror::Class> interface(hs2.NewHandle(GetDirectInterface(self, h_k, i)));
f = FindStaticField(self, interface, name, type);
if (f != nullptr) {
return f;
}
}
}
return nullptr;
}
ArtField* Class::FindStaticField(Thread* self, Handle<Class> klass, const DexCache* dex_cache,
uint32_t dex_field_idx) {
for (Class* k = klass.Get(); k != nullptr; k = k->GetSuperClass()) {
// Is the field in this class?
ArtField* f = k->FindDeclaredStaticField(dex_cache, dex_field_idx);
if (f != nullptr) {
return f;
}
// Wrap k incase it moves during GetDirectInterface.
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h_k(hs.NewHandleWrapper(&k));
// Is this field in any of this class' interfaces?
for (uint32_t i = 0; i < h_k->NumDirectInterfaces(); ++i) {
StackHandleScope<1> hs2(self);
Handle<mirror::Class> interface(hs2.NewHandle(GetDirectInterface(self, h_k, i)));
f = FindStaticField(self, interface, dex_cache, dex_field_idx);
if (f != nullptr) {
return f;
}
}
}
return nullptr;
}
ArtField* Class::FindField(Thread* self, Handle<Class> klass, const StringPiece& name,
const StringPiece& type) {
// Find a field using the JLS field resolution order
for (Class* k = klass.Get(); k != nullptr; k = k->GetSuperClass()) {
// Is the field in this class?
ArtField* f = k->FindDeclaredInstanceField(name, type);
if (f != nullptr) {
return f;
}
f = k->FindDeclaredStaticField(name, type);
if (f != nullptr) {
return f;
}
// Is this field in any of this class' interfaces?
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h_k(hs.NewHandleWrapper(&k));
for (uint32_t i = 0; i < h_k->NumDirectInterfaces(); ++i) {
StackHandleScope<1> hs2(self);
Handle<mirror::Class> interface(hs2.NewHandle(GetDirectInterface(self, h_k, i)));
f = interface->FindStaticField(self, interface, name, type);
if (f != nullptr) {
return f;
}
}
}
return nullptr;
}
void Class::SetSkipAccessChecksFlagOnAllMethods(size_t pointer_size) {
DCHECK(IsVerified());
for (auto& m : GetMethods(pointer_size)) {
if (!m.IsNative() && m.IsInvokable()) {
m.SetSkipAccessChecks();
}
}
}
const char* Class::GetDescriptor(std::string* storage) {
if (IsPrimitive()) {
return Primitive::Descriptor(GetPrimitiveType());
} else if (IsArrayClass()) {
return GetArrayDescriptor(storage);
} else if (IsProxyClass()) {
*storage = Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(this);
return storage->c_str();
} else {
const DexFile& dex_file = GetDexFile();
const DexFile::TypeId& type_id = dex_file.GetTypeId(GetClassDef()->class_idx_);
return dex_file.GetTypeDescriptor(type_id);
}
}
const char* Class::GetArrayDescriptor(std::string* storage) {
std::string temp;
const char* elem_desc = GetComponentType()->GetDescriptor(&temp);
*storage = "[";
*storage += elem_desc;
return storage->c_str();
}
const DexFile::ClassDef* Class::GetClassDef() {
uint16_t class_def_idx = GetDexClassDefIndex();
if (class_def_idx == DexFile::kDexNoIndex16) {
return nullptr;
}
return &GetDexFile().GetClassDef(class_def_idx);
}
uint16_t Class::GetDirectInterfaceTypeIdx(uint32_t idx) {
DCHECK(!IsPrimitive());
DCHECK(!IsArrayClass());
return GetInterfaceTypeList()->GetTypeItem(idx).type_idx_;
}
mirror::Class* Class::GetDirectInterface(Thread* self, Handle<mirror::Class> klass,
uint32_t idx) {
DCHECK(klass.Get() != nullptr);
DCHECK(!klass->IsPrimitive());
if (klass->IsArrayClass()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (idx == 0) {
return class_linker->FindSystemClass(self, "Ljava/lang/Cloneable;");
} else {
DCHECK_EQ(1U, idx);
return class_linker->FindSystemClass(self, "Ljava/io/Serializable;");
}
} else if (klass->IsProxyClass()) {
mirror::ObjectArray<mirror::Class>* interfaces = klass.Get()->GetInterfaces();
DCHECK(interfaces != nullptr);
return interfaces->Get(idx);
} else {
uint16_t type_idx = klass->GetDirectInterfaceTypeIdx(idx);
mirror::Class* interface = klass->GetDexCache()->GetResolvedType(type_idx);
if (interface == nullptr) {
interface = Runtime::Current()->GetClassLinker()->ResolveType(klass->GetDexFile(), type_idx,
klass.Get());
CHECK(interface != nullptr || self->IsExceptionPending());
}
return interface;
}
}
mirror::Class* Class::GetCommonSuperClass(Handle<Class> klass) {
DCHECK(klass.Get() != nullptr);
DCHECK(!klass->IsInterface());
DCHECK(!IsInterface());
mirror::Class* common_super_class = this;
while (!common_super_class->IsAssignableFrom(klass.Get())) {
mirror::Class* old_common = common_super_class;
common_super_class = old_common->GetSuperClass();
DCHECK(common_super_class != nullptr) << PrettyClass(old_common);
}
return common_super_class;
}
const char* Class::GetSourceFile() {
const DexFile& dex_file = GetDexFile();
const DexFile::ClassDef* dex_class_def = GetClassDef();
if (dex_class_def == nullptr) {
// Generated classes have no class def.
return nullptr;
}
return dex_file.GetSourceFile(*dex_class_def);
}
std::string Class::GetLocation() {
mirror::DexCache* dex_cache = GetDexCache();
if (dex_cache != nullptr && !IsProxyClass()) {
return dex_cache->GetLocation()->ToModifiedUtf8();
}
// Arrays and proxies are generated and have no corresponding dex file location.
return "generated class";
}
const DexFile::TypeList* Class::GetInterfaceTypeList() {
const DexFile::ClassDef* class_def = GetClassDef();
if (class_def == nullptr) {
return nullptr;
}
return GetDexFile().GetInterfacesList(*class_def);
}
void Class::PopulateEmbeddedImtAndVTable(ArtMethod* const (&methods)[kImtSize],
size_t pointer_size) {
for (size_t i = 0; i < kImtSize; i++) {
auto method = methods[i];
DCHECK(method != nullptr);
SetEmbeddedImTableEntry(i, method, pointer_size);
}
PointerArray* table = GetVTableDuringLinking();
CHECK(table != nullptr) << PrettyClass(this);
const size_t table_length = table->GetLength();
SetEmbeddedVTableLength(table_length);
for (size_t i = 0; i < table_length; i++) {
SetEmbeddedVTableEntry(i, table->GetElementPtrSize<ArtMethod*>(i, pointer_size), pointer_size);
}
// Keep java.lang.Object class's vtable around for since it's easier
// to be reused by array classes during their linking.
if (!IsObjectClass()) {
SetVTable(nullptr);
}
}
class ReadBarrierOnNativeRootsVisitor {
public:
void operator()(mirror::Object* obj ATTRIBUTE_UNUSED,
MemberOffset offset ATTRIBUTE_UNUSED,
bool is_static ATTRIBUTE_UNUSED) const {}
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
SHARED_REQUIRES(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
SHARED_REQUIRES(Locks::mutator_lock_) {
mirror::Object* old_ref = root->AsMirrorPtr();
mirror::Object* new_ref = ReadBarrier::BarrierForRoot(root);
if (old_ref != new_ref) {
// Update the field atomically. This may fail if mutator updates before us, but it's ok.
auto* atomic_root =
reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
atomic_root->CompareExchangeStrongSequentiallyConsistent(
mirror::CompressedReference<mirror::Object>::FromMirrorPtr(old_ref),
mirror::CompressedReference<mirror::Object>::FromMirrorPtr(new_ref));
}
}
};
// The pre-fence visitor for Class::CopyOf().
class CopyClassVisitor {
public:
CopyClassVisitor(Thread* self, Handle<mirror::Class>* orig, size_t new_length,
size_t copy_bytes, ArtMethod* const (&imt)[mirror::Class::kImtSize],
size_t pointer_size)
: self_(self), orig_(orig), new_length_(new_length),
copy_bytes_(copy_bytes), imt_(imt), pointer_size_(pointer_size) {
}
void operator()(mirror::Object* obj, size_t usable_size ATTRIBUTE_UNUSED) const
SHARED_REQUIRES(Locks::mutator_lock_) {
StackHandleScope<1> hs(self_);
Handle<mirror::Class> h_new_class_obj(hs.NewHandle(obj->AsClass()));
mirror::Object::CopyObject(self_, h_new_class_obj.Get(), orig_->Get(), copy_bytes_);
mirror::Class::SetStatus(h_new_class_obj, Class::kStatusResolving, self_);
h_new_class_obj->PopulateEmbeddedImtAndVTable(imt_, pointer_size_);
h_new_class_obj->SetClassSize(new_length_);
// Visit all of the references to make sure there is no from space references in the native
// roots.
static_cast<mirror::Object*>(h_new_class_obj.Get())->VisitReferences(
ReadBarrierOnNativeRootsVisitor(), VoidFunctor());
}
private:
Thread* const self_;
Handle<mirror::Class>* const orig_;
const size_t new_length_;
const size_t copy_bytes_;
ArtMethod* const (&imt_)[mirror::Class::kImtSize];
const size_t pointer_size_;
DISALLOW_COPY_AND_ASSIGN(CopyClassVisitor);
};
Class* Class::CopyOf(Thread* self, int32_t new_length,
ArtMethod* const (&imt)[mirror::Class::kImtSize], size_t pointer_size) {
DCHECK_GE(new_length, static_cast<int32_t>(sizeof(Class)));
// We may get copied by a compacting GC.
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_this(hs.NewHandle(this));
gc::Heap* heap = Runtime::Current()->GetHeap();
// The num_bytes (3rd param) is sizeof(Class) as opposed to SizeOf()
// to skip copying the tail part that we will overwrite here.
CopyClassVisitor visitor(self, &h_this, new_length, sizeof(Class), imt, pointer_size);
mirror::Object* new_class = kMovingClasses ?
heap->AllocObject<true>(self, java_lang_Class_.Read(), new_length, visitor) :
heap->AllocNonMovableObject<true>(self, java_lang_Class_.Read(), new_length, visitor);
if (UNLIKELY(new_class == nullptr)) {
self->AssertPendingOOMException();
return nullptr;
}
return new_class->AsClass();
}
bool Class::ProxyDescriptorEquals(const char* match) {
DCHECK(IsProxyClass());
return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(this) == match;
}
// TODO: Move this to java_lang_Class.cc?
ArtMethod* Class::GetDeclaredConstructor(
Thread* self, Handle<mirror::ObjectArray<mirror::Class>> args, size_t pointer_size) {
for (auto& m : GetDirectMethods(pointer_size)) {
// Skip <clinit> which is a static constructor, as well as non constructors.
if (m.IsStatic() || !m.IsConstructor()) {
continue;
}
// May cause thread suspension and exceptions.
if (m.GetInterfaceMethodIfProxy(sizeof(void*))->EqualParameters(args)) {
return &m;
}
if (UNLIKELY(self->IsExceptionPending())) {
return nullptr;
}
}
return nullptr;
}
uint32_t Class::Depth() {
uint32_t depth = 0;
for (Class* klass = this; klass->GetSuperClass() != nullptr; klass = klass->GetSuperClass()) {
depth++;
}
return depth;
}
uint32_t Class::FindTypeIndexInOtherDexFile(const DexFile& dex_file) {
std::string temp;
const DexFile::TypeId* type_id = dex_file.FindTypeId(GetDescriptor(&temp));
return (type_id == nullptr) ? DexFile::kDexNoIndex : dex_file.GetIndexForTypeId(*type_id);
}
template <bool kTransactionActive>
mirror::Method* Class::GetDeclaredMethodInternal(Thread* self,
mirror::Class* klass,
mirror::String* name,
mirror::ObjectArray<mirror::Class>* args) {
// Covariant return types permit the class to define multiple
// methods with the same name and parameter types. Prefer to
// return a non-synthetic method in such situations. We may
// still return a synthetic method to handle situations like
// escalated visibility. We never return miranda methods that
// were synthesized by the runtime.
constexpr uint32_t kSkipModifiers = kAccMiranda | kAccSynthetic;
StackHandleScope<3> hs(self);
auto h_method_name = hs.NewHandle(name);
if (UNLIKELY(h_method_name.Get() == nullptr)) {
ThrowNullPointerException("name == null");
return nullptr;
}
auto h_args = hs.NewHandle(args);
Handle<mirror::Class> h_klass = hs.NewHandle(klass);
ArtMethod* result = nullptr;
const size_t pointer_size = kTransactionActive
? Runtime::Current()->GetClassLinker()->GetImagePointerSize()
: sizeof(void*);
for (auto& m : h_klass->GetDeclaredVirtualMethods(pointer_size)) {
auto* np_method = m.GetInterfaceMethodIfProxy(pointer_size);
// May cause thread suspension.
mirror::String* np_name = np_method->GetNameAsString(self);
if (!np_name->Equals(h_method_name.Get()) || !np_method->EqualParameters(h_args)) {
if (UNLIKELY(self->IsExceptionPending())) {
return nullptr;
}
continue;
}
auto modifiers = m.GetAccessFlags();
if ((modifiers & kSkipModifiers) == 0) {
return mirror::Method::CreateFromArtMethod<kTransactionActive>(self, &m);
}
if ((modifiers & kAccMiranda) == 0) {
result = &m; // Remember as potential result if it's not a miranda method.
}
}
if (result == nullptr) {
for (auto& m : h_klass->GetDirectMethods(pointer_size)) {
auto modifiers = m.GetAccessFlags();
if ((modifiers & kAccConstructor) != 0) {
continue;
}
auto* np_method = m.GetInterfaceMethodIfProxy(pointer_size);
// May cause thread suspension.
mirror::String* np_name = np_method->GetNameAsString(self);
if (np_name == nullptr) {
self->AssertPendingException();
return nullptr;
}
if (!np_name->Equals(h_method_name.Get()) || !np_method->EqualParameters(h_args)) {
if (UNLIKELY(self->IsExceptionPending())) {
return nullptr;
}
continue;
}
if ((modifiers & kSkipModifiers) == 0) {
return mirror::Method::CreateFromArtMethod<kTransactionActive>(self, &m);
}
// Direct methods cannot be miranda methods, so this potential result must be synthetic.
result = &m;
}
}
return result != nullptr
? mirror::Method::CreateFromArtMethod<kTransactionActive>(self, result)
: nullptr;
}
template
mirror::Method* Class::GetDeclaredMethodInternal<false>(Thread* self,
mirror::Class* klass,
mirror::String* name,
mirror::ObjectArray<mirror::Class>* args);
template
mirror::Method* Class::GetDeclaredMethodInternal<true>(Thread* self,
mirror::Class* klass,
mirror::String* name,
mirror::ObjectArray<mirror::Class>* args);
template <bool kTransactionActive>
mirror::Constructor* Class::GetDeclaredConstructorInternal(
Thread* self,
mirror::Class* klass,
mirror::ObjectArray<mirror::Class>* args) {
StackHandleScope<1> hs(self);
const size_t pointer_size = kTransactionActive
? Runtime::Current()->GetClassLinker()->GetImagePointerSize()
: sizeof(void*);
ArtMethod* result = klass->GetDeclaredConstructor(self, hs.NewHandle(args), pointer_size);
return result != nullptr
? mirror::Constructor::CreateFromArtMethod<kTransactionActive>(self, result)
: nullptr;
}
// mirror::Constructor::CreateFromArtMethod<kTransactionActive>(self, result)
template mirror::Constructor* Class::GetDeclaredConstructorInternal<false>(
Thread* self,
mirror::Class* klass,
mirror::ObjectArray<mirror::Class>* args);
template mirror::Constructor* Class::GetDeclaredConstructorInternal<true>(
Thread* self,
mirror::Class* klass,
mirror::ObjectArray<mirror::Class>* args);
int32_t Class::GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) {
if (h_this->IsProxyClass() || h_this->GetDexCache() == nullptr) {
return default_value;
}
uint32_t flags;
if (!h_this->GetDexFile().GetInnerClassFlags(h_this, &flags)) {
return default_value;
}
return flags;
}
} // namespace mirror
} // namespace art