HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.0
|
7.0.0_r31
下载
查看原文件
收藏
根目录
art
runtime
mirror
object-inl.h
/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "art_field.h" #include "art_method.h" #include "atomic.h" #include "array-inl.h" #include "class.h" #include "class_flags.h" #include "class_linker.h" #include "class_loader-inl.h" #include "dex_cache-inl.h" #include "lock_word-inl.h" #include "monitor.h" #include "object_array-inl.h" #include "read_barrier-inl.h" #include "reference.h" #include "runtime.h" #include "string-inl.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize(size_t pointer_size) { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template
inline Class* Object::GetClass() { return GetFieldObject
( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template
inline void Object::SetClass(Class* new_klass) { // new_klass may be null prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier
(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } template
inline LockWord Object::GetLockWord(bool as_volatile) { if (as_volatile) { return LockWord(GetField32Volatile
(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } return LockWord(GetField32
(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } template
inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakRelaxed(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakRelaxed32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakRelease(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakRelease32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline Object* Object::GetReadBarrierPointer() { #ifdef USE_BAKER_READ_BARRIER DCHECK(kUseBakerReadBarrier); return reinterpret_cast
(GetLockWord(false).ReadBarrierState()); #elif USE_BROOKS_READ_BARRIER DCHECK(kUseBrooksReadBarrier); return GetFieldObject
( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_)); #else LOG(FATAL) << "Unreachable"; UNREACHABLE(); #endif } inline void Object::SetReadBarrierPointer(Object* rb_ptr) { #ifdef USE_BAKER_READ_BARRIER DCHECK(kUseBakerReadBarrier); DCHECK_EQ(reinterpret_cast
(rb_ptr) >> 32, 0U); LockWord lw = GetLockWord(false); lw.SetReadBarrierState(static_cast
(reinterpret_cast
(rb_ptr))); SetLockWord(lw, false); #elif USE_BROOKS_READ_BARRIER DCHECK(kUseBrooksReadBarrier); // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. SetFieldObjectWithoutWriteBarrier
( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_), rb_ptr); #else LOG(FATAL) << "Unreachable"; UNREACHABLE(); UNUSED(rb_ptr); #endif } template
inline bool Object::AtomicSetReadBarrierPointer(Object* expected_rb_ptr, Object* rb_ptr) { #ifdef USE_BAKER_READ_BARRIER DCHECK(kUseBakerReadBarrier); DCHECK_EQ(reinterpret_cast
(expected_rb_ptr) >> 32, 0U); DCHECK_EQ(reinterpret_cast
(rb_ptr) >> 32, 0U); LockWord expected_lw; LockWord new_lw; do { LockWord lw = GetLockWord(false); if (UNLIKELY(reinterpret_cast
(lw.ReadBarrierState()) != expected_rb_ptr)) { // Lost the race. return false; } expected_lw = lw; expected_lw.SetReadBarrierState( static_cast
(reinterpret_cast
(expected_rb_ptr))); new_lw = lw; new_lw.SetReadBarrierState(static_cast
(reinterpret_cast
(rb_ptr))); // ConcurrentCopying::ProcessMarkStackRef uses this with kCasRelease == true. // If kCasRelease == true, use a CAS release so that when GC updates all the fields of // an object and then changes the object from gray to black, the field updates (stores) will be // visible (won't be reordered after this CAS.) } while (!(kCasRelease ? CasLockWordWeakRelease(expected_lw, new_lw) : CasLockWordWeakRelaxed(expected_lw, new_lw))); return true; #elif USE_BROOKS_READ_BARRIER DCHECK(kUseBrooksReadBarrier); MemberOffset offset = OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_); uint8_t* raw_addr = reinterpret_cast
(this) + offset.SizeValue(); Atomic
* atomic_rb_ptr = reinterpret_cast
*>(raw_addr); HeapReference
expected_ref(HeapReference
::FromMirrorPtr(expected_rb_ptr)); HeapReference
new_ref(HeapReference
::FromMirrorPtr(rb_ptr)); do { if (UNLIKELY(atomic_rb_ptr->LoadRelaxed() != expected_ref.reference_)) { // Lost the race. return false; } } while (!atomic_rb_ptr->CompareExchangeWeakSequentiallyConsistent(expected_ref.reference_, new_ref.reference_)); return true; #else UNUSED(expected_rb_ptr, rb_ptr); LOG(FATAL) << "Unreachable"; UNREACHABLE(); #endif } inline void Object::AssertReadBarrierPointer() const { if (kUseBakerReadBarrier) { Object* obj = const_cast
(this); DCHECK(obj->GetReadBarrierPointer() == nullptr) << "Bad Baker pointer: obj=" << reinterpret_cast
(obj) << " ptr=" << reinterpret_cast
(obj->GetReadBarrierPointer()); } else { CHECK(kUseBrooksReadBarrier); Object* obj = const_cast
(this); DCHECK_EQ(obj, obj->GetReadBarrierPointer()) << "Bad Brooks pointer: obj=" << reinterpret_cast
(obj) << " ptr=" << reinterpret_cast
(obj->GetReadBarrierPointer()); } } template
inline bool Object::VerifierInstanceOf(Class* klass) { DCHECK(klass != nullptr); DCHECK(GetClass
() != nullptr); return klass->IsInterface() || InstanceOf(klass); } template
inline bool Object::InstanceOf(Class* klass) { DCHECK(klass != nullptr); DCHECK(GetClass
() != nullptr); return klass->IsAssignableFrom(GetClass
()); } template
inline bool Object::IsClass() { Class* java_lang_Class = GetClass
()-> template GetClass
(); return GetClass
(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template
inline Class* Object::AsClass() { DCHECK((IsClass
())); return down_cast
(this); } template
inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); return IsArrayInstance
() && !GetClass
()-> template GetComponentType
()->IsPrimitive(); } template
inline ObjectArray
* Object::AsObjectArray() { DCHECK((IsObjectArray
())); return down_cast
*>(this); } template
inline bool Object::IsArrayInstance() { return GetClass
()-> template IsArrayClass
(); } template
inline bool Object::IsReferenceInstance() { return GetClass
()->IsTypeOfReferenceClass(); } template
inline Reference* Object::AsReference() { DCHECK((IsReferenceInstance
())); return down_cast
(this); } template
inline Array* Object::AsArray() { DCHECK((IsArrayInstance
())); return down_cast
(this); } template
inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->GetComponentType()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline ByteArray* Object::AsByteArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte()); return down_cast
(this); } template
inline ByteArray* Object::AsByteSizedArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte() || GetClass
()->template GetComponentType
()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort()); return down_cast
(this); } template
inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort() || GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline bool Object::IsIntArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); mirror::Class* klass = GetClass
(); mirror::Class* component_type = klass->GetComponentType
(); return component_type != nullptr && component_type->template IsPrimitiveInt
(); } template
inline IntArray* Object::AsIntArray() { DCHECK((IsIntArray
())); return down_cast
(this); } template
inline bool Object::IsLongArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); mirror::Class* klass = GetClass
(); mirror::Class* component_type = klass->GetComponentType
(); return component_type != nullptr && component_type->template IsPrimitiveLong
(); } template
inline LongArray* Object::AsLongArray() { DCHECK((IsLongArray
())); return down_cast
(this); } template
inline bool Object::IsFloatArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass
()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveFloat
(); } template
inline FloatArray* Object::AsFloatArray() { DCHECK(IsFloatArray
()); constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveFloat()); return down_cast
(this); } template
inline bool Object::IsDoubleArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass
()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveDouble
(); } template
inline DoubleArray* Object::AsDoubleArray() { DCHECK(IsDoubleArray
()); constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveDouble()); return down_cast
(this); } template
inline bool Object::IsString() { return GetClass
()->IsStringClass(); } template
inline String* Object::AsString() { DCHECK((IsString
())); return down_cast
(this); } template
inline Throwable* Object::AsThrowable() { DCHECK(GetClass
()->IsThrowableClass()); return down_cast
(this); } template
inline bool Object::IsWeakReferenceInstance() { return GetClass
()->IsWeakReferenceClass(); } template
inline bool Object::IsSoftReferenceInstance() { return GetClass
()->IsSoftReferenceClass(); } template
inline bool Object::IsFinalizerReferenceInstance() { return GetClass
()->IsFinalizerReferenceClass(); } template
inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance
()); return down_cast
(this); } template
inline bool Object::IsPhantomReferenceInstance() { return GetClass
()->IsPhantomReferenceClass(); } template
inline size_t Object::SizeOf() { size_t result; constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance
()) { result = AsArray
()-> template SizeOf
(); } else if (IsClass
()) { result = AsClass
()-> template SizeOf
(); } else if (GetClass
()->IsStringClass()) { result = AsString
()-> template SizeOf
(); } else { result = GetClass
()-> template GetObjectSize
(); } DCHECK_GE(result, sizeof(Object)) << " class=" << PrettyTypeOf(GetClass
()); return result; } template
inline uint8_t Object::GetFieldBoolean(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int8_t Object::GetFieldByte(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline uint8_t Object::GetFieldBooleanVolatile(MemberOffset field_offset) { return GetFieldBoolean
(field_offset); } template
inline int8_t Object::GetFieldByteVolatile(MemberOffset field_offset) { return GetFieldByte
(field_offset); } template
inline void Object::SetFieldBoolean(MemberOffset field_offset, uint8_t new_value) SHARED_REQUIRES(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, GetFieldBoolean
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldByte(MemberOffset field_offset, int8_t new_value) SHARED_REQUIRES(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldByte(this, field_offset, GetFieldByte
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldBooleanVolatile(MemberOffset field_offset, uint8_t new_value) { return SetFieldBoolean
( field_offset, new_value); } template
inline void Object::SetFieldByteVolatile(MemberOffset field_offset, int8_t new_value) { return SetFieldByte
( field_offset, new_value); } template
inline uint16_t Object::GetFieldChar(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int16_t Object::GetFieldShort(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline uint16_t Object::GetFieldCharVolatile(MemberOffset field_offset) { return GetFieldChar
(field_offset); } template
inline int16_t Object::GetFieldShortVolatile(MemberOffset field_offset) { return GetFieldShort
(field_offset); } template
inline void Object::SetFieldChar(MemberOffset field_offset, uint16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldChar
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldShort(MemberOffset field_offset, int16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldShort
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetFieldCharVolatile(MemberOffset field_offset, uint16_t new_value) { return SetFieldChar
( field_offset, new_value); } template
inline void Object::SetFieldShortVolatile(MemberOffset field_offset, int16_t new_value) { return SetFieldShort
( field_offset, new_value); } template
inline int32_t Object::GetField32(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int32_t Object::GetField32Volatile(MemberOffset field_offset) { return GetField32
(field_offset); } template
inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32
(field_offset, new_value); } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template
inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template
inline bool Object::CasFieldWeakRelaxed32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakRelaxed(old_value, new_value); } template
inline bool Object::CasFieldWeakRelease32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakRelease(old_value, new_value); } template
inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template
inline int64_t Object::GetField64(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField
(field_offset); } template
inline int64_t Object::GetField64Volatile(MemberOffset field_offset) { return GetField64
(field_offset); } template
inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField
(field_offset, new_value); } template
inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64
(field_offset, new_value); } template
inline void Object::SetField(MemberOffset field_offset, kSize new_value) { uint8_t* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); kSize* addr = reinterpret_cast
(raw_addr); if (kIsVolatile) { reinterpret_cast
*>(addr)->StoreSequentiallyConsistent(new_value); } else { reinterpret_cast
*>(addr)->StoreJavaData(new_value); } } template