C++程序  |  3267行  |  108.77 KB

/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "audio_hw_primary"
/*#define LOG_NDEBUG 0*/
/*#define VERY_VERY_VERBOSE_LOGGING*/
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
#else
#define ALOGVV(a...) do { } while(0)
#endif

#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <sys/time.h>
#include <stdlib.h>
#include <math.h>
#include <dlfcn.h>
#include <sys/resource.h>
#include <sys/prctl.h>

#include <cutils/log.h>
#include <cutils/str_parms.h>
#include <cutils/properties.h>
#include <cutils/atomic.h>
#include <cutils/sched_policy.h>

#include <hardware/audio_effect.h>
#include <system/thread_defs.h>
#include <audio_effects/effect_aec.h>
#include <audio_effects/effect_ns.h>
#include <audio_utils/channels.h>
#include "audio_hw.h"
#include "cras_dsp.h"

/* TODO: the following PCM device profiles could be read from a config file */
struct pcm_device_profile pcm_device_playback_hs = {
    .config = {
        .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT,
        .rate = PLAYBACK_DEFAULT_SAMPLING_RATE,
        .period_size = PLAYBACK_PERIOD_SIZE,
        .period_count = PLAYBACK_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = PLAYBACK_START_THRESHOLD,
        .stop_threshold = PLAYBACK_STOP_THRESHOLD,
        .silence_threshold = 0,
        .avail_min = PLAYBACK_AVAILABLE_MIN,
    },
    .card = SOUND_CARD,
    .id = 1,
    .device = 0,
    .type = PCM_PLAYBACK,
    .devices = AUDIO_DEVICE_OUT_WIRED_HEADSET|AUDIO_DEVICE_OUT_WIRED_HEADPHONE,
    .dsp_name = "invert_lr",
};

struct pcm_device_profile pcm_device_capture = {
    .config = {
        .channels = CAPTURE_DEFAULT_CHANNEL_COUNT,
        .rate = CAPTURE_DEFAULT_SAMPLING_RATE,
        .period_size = CAPTURE_PERIOD_SIZE,
        .period_count = CAPTURE_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = CAPTURE_START_THRESHOLD,
        .stop_threshold = 0,
        .silence_threshold = 0,
        .avail_min = 0,
    },
    .card = SOUND_CARD,
    .id = 2,
    .device = 0,
    .type = PCM_CAPTURE,
    .devices = AUDIO_DEVICE_IN_BUILTIN_MIC|AUDIO_DEVICE_IN_WIRED_HEADSET|AUDIO_DEVICE_IN_BACK_MIC,
};

struct pcm_device_profile pcm_device_capture_loopback_aec = {
    .config = {
        .channels = CAPTURE_DEFAULT_CHANNEL_COUNT,
        .rate = CAPTURE_DEFAULT_SAMPLING_RATE,
        .period_size = CAPTURE_PERIOD_SIZE,
        .period_count = CAPTURE_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = CAPTURE_START_THRESHOLD,
        .stop_threshold = 0,
        .silence_threshold = 0,
        .avail_min = 0,
    },
    .card = SOUND_CARD,
    .id = 3,
    .device = 1,
    .type = PCM_CAPTURE,
    .devices = SND_DEVICE_IN_LOOPBACK_AEC,
};

struct pcm_device_profile pcm_device_playback_spk_and_headset = {
    .config = {
        .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT,
        .rate = PLAYBACK_DEFAULT_SAMPLING_RATE,
        .period_size = PLAYBACK_PERIOD_SIZE,
        .period_count = PLAYBACK_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = PLAYBACK_START_THRESHOLD,
        .stop_threshold = PLAYBACK_STOP_THRESHOLD,
        .silence_threshold = 0,
        .avail_min = PLAYBACK_AVAILABLE_MIN,
    },
    .card = SOUND_CARD,
    .id = 4,
    .device = 0,
    .type = PCM_PLAYBACK,
    .devices = AUDIO_DEVICE_OUT_SPEAKER|AUDIO_DEVICE_OUT_WIRED_HEADSET|AUDIO_DEVICE_OUT_WIRED_HEADPHONE,
    .dsp_name = "speaker_eq",
};

struct pcm_device_profile pcm_device_playback_spk = {
    .config = {
        .channels = PLAYBACK_DEFAULT_CHANNEL_COUNT,
        .rate = PLAYBACK_DEFAULT_SAMPLING_RATE,
        .period_size = PLAYBACK_PERIOD_SIZE,
        .period_count = PLAYBACK_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = PLAYBACK_START_THRESHOLD,
        .stop_threshold = PLAYBACK_STOP_THRESHOLD,
        .silence_threshold = 0,
        .avail_min = PLAYBACK_AVAILABLE_MIN,
    },
    .card = SOUND_CARD,
    .id = 5,
    .device = 0,
    .type = PCM_PLAYBACK,
    .devices = AUDIO_DEVICE_OUT_SPEAKER,
    .dsp_name = "speaker_eq",
};

static struct pcm_device_profile pcm_device_hotword_streaming = {
    .config = {
        .channels = 1,
        .rate = 16000,
        .period_size = CAPTURE_PERIOD_SIZE,
        .period_count = CAPTURE_PERIOD_COUNT,
        .format = PCM_FORMAT_S16_LE,
        .start_threshold = CAPTURE_START_THRESHOLD,
        .stop_threshold = 0,
        .silence_threshold = 0,
        .avail_min = 0,
    },
    .card = SOUND_CARD,
    .id = 0,
    .type = PCM_HOTWORD_STREAMING,
    .devices = AUDIO_DEVICE_IN_BUILTIN_MIC |
               AUDIO_DEVICE_IN_WIRED_HEADSET |
               AUDIO_DEVICE_IN_BACK_MIC,
};

struct pcm_device_profile *pcm_devices[] = {
    &pcm_device_playback_hs,
    &pcm_device_capture,
    &pcm_device_playback_spk,
    &pcm_device_capture_loopback_aec,
    &pcm_device_playback_spk_and_headset,
    &pcm_device_hotword_streaming,
    NULL,
};

static const char * const use_case_table[AUDIO_USECASE_MAX] = {
    [USECASE_AUDIO_PLAYBACK] = "playback",
    [USECASE_AUDIO_PLAYBACK_MULTI_CH] = "playback multi-channel",
    [USECASE_AUDIO_CAPTURE] = "capture",
    [USECASE_AUDIO_CAPTURE_HOTWORD] = "capture-hotword",
    [USECASE_VOICE_CALL] = "voice-call",
};


#define STRING_TO_ENUM(string) { #string, string }

struct pcm_config pcm_config_deep_buffer = {
    .channels = 2,
    .rate = DEEP_BUFFER_OUTPUT_SAMPLING_RATE,
    .period_size = DEEP_BUFFER_OUTPUT_PERIOD_SIZE,
    .period_count = DEEP_BUFFER_OUTPUT_PERIOD_COUNT,
    .format = PCM_FORMAT_S16_LE,
    .start_threshold = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4,
    .stop_threshold = INT_MAX,
    .avail_min = DEEP_BUFFER_OUTPUT_PERIOD_SIZE / 4,
};

struct string_to_enum {
    const char *name;
    uint32_t value;
};

static const struct string_to_enum out_channels_name_to_enum_table[] = {
    STRING_TO_ENUM(AUDIO_CHANNEL_OUT_STEREO),
    STRING_TO_ENUM(AUDIO_CHANNEL_OUT_5POINT1),
    STRING_TO_ENUM(AUDIO_CHANNEL_OUT_7POINT1),
};

static bool is_supported_format(audio_format_t format)
{
    if (format == AUDIO_FORMAT_MP3 ||
            ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_AAC))
        return true;

    return false;
}

static int get_snd_codec_id(audio_format_t format)
{
    int id = 0;

    switch (format & AUDIO_FORMAT_MAIN_MASK) {
    default:
        ALOGE("%s: Unsupported audio format", __func__);
    }

    return id;
}

/* Array to store sound devices */
static const char * const device_table[SND_DEVICE_MAX] = {
    [SND_DEVICE_NONE] = "none",
    /* Playback sound devices */
    [SND_DEVICE_OUT_HANDSET] = "handset",
    [SND_DEVICE_OUT_SPEAKER] = "speaker",
    [SND_DEVICE_OUT_HEADPHONES] = "headphones",
    [SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES] = "speaker-and-headphones",
    [SND_DEVICE_OUT_VOICE_HANDSET] = "voice-handset",
    [SND_DEVICE_OUT_VOICE_SPEAKER] = "voice-speaker",
    [SND_DEVICE_OUT_VOICE_HEADPHONES] = "voice-headphones",
    [SND_DEVICE_OUT_HDMI] = "hdmi",
    [SND_DEVICE_OUT_SPEAKER_AND_HDMI] = "speaker-and-hdmi",
    [SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES] = "voice-tty-full-headphones",
    [SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES] = "voice-tty-vco-headphones",
    [SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET] = "voice-tty-hco-handset",

    /* Capture sound devices */
    [SND_DEVICE_IN_HANDSET_MIC] = "handset-mic",
    [SND_DEVICE_IN_SPEAKER_MIC] = "speaker-mic",
    [SND_DEVICE_IN_HEADSET_MIC] = "headset-mic",
    [SND_DEVICE_IN_HANDSET_MIC_AEC] = "handset-mic",
    [SND_DEVICE_IN_SPEAKER_MIC_AEC] = "voice-speaker-mic",
    [SND_DEVICE_IN_HEADSET_MIC_AEC] = "headset-mic",
    [SND_DEVICE_IN_VOICE_SPEAKER_MIC] = "voice-speaker-mic",
    [SND_DEVICE_IN_VOICE_HEADSET_MIC] = "voice-headset-mic",
    [SND_DEVICE_IN_HDMI_MIC] = "hdmi-mic",
    [SND_DEVICE_IN_CAMCORDER_MIC] = "camcorder-mic",
    [SND_DEVICE_IN_VOICE_DMIC_1] = "voice-dmic-1",
    [SND_DEVICE_IN_VOICE_SPEAKER_DMIC_1] = "voice-speaker-dmic-1",
    [SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC] = "voice-tty-full-headset-mic",
    [SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC] = "voice-tty-vco-handset-mic",
    [SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC] = "voice-tty-hco-headset-mic",
    [SND_DEVICE_IN_VOICE_REC_HEADSET_MIC] = "voice-rec-headset-mic",
    [SND_DEVICE_IN_VOICE_REC_MIC] = "voice-rec-mic",
    [SND_DEVICE_IN_VOICE_REC_DMIC_1] = "voice-rec-dmic-1",
    [SND_DEVICE_IN_VOICE_REC_DMIC_NS_1] = "voice-rec-dmic-ns-1",
    [SND_DEVICE_IN_LOOPBACK_AEC] = "loopback-aec",
};

struct mixer_card *adev_get_mixer_for_card(struct audio_device *adev, int card)
{
    struct mixer_card *mixer_card;
    struct listnode *node;

    list_for_each(node, &adev->mixer_list) {
        mixer_card = node_to_item(node, struct mixer_card, adev_list_node);
        if (mixer_card->card == card)
            return mixer_card;
    }
    return NULL;
}

struct mixer_card *uc_get_mixer_for_card(struct audio_usecase *usecase, int card)
{
    struct mixer_card *mixer_card;
    struct listnode *node;

    list_for_each(node, &usecase->mixer_list) {
        mixer_card = node_to_item(node, struct mixer_card, uc_list_node[usecase->id]);
        if (mixer_card->card == card)
            return mixer_card;
    }
    return NULL;
}

void free_mixer_list(struct audio_device *adev)
{
    struct mixer_card *mixer_card;
    struct listnode *node;
    struct listnode *next;

    list_for_each_safe(node, next, &adev->mixer_list) {
        mixer_card = node_to_item(node, struct mixer_card, adev_list_node);
        list_remove(node);
        audio_route_free(mixer_card->audio_route);
        free(mixer_card);
    }
}

int mixer_init(struct audio_device *adev)
{
    int i;
    int card;
    int retry_num;
    struct mixer *mixer;
    struct audio_route *audio_route;
    char mixer_path[PATH_MAX];
    struct mixer_card *mixer_card;
    struct listnode *node;

    list_init(&adev->mixer_list);

    for (i = 0; pcm_devices[i] != NULL; i++) {
        card = pcm_devices[i]->card;
        if (adev_get_mixer_for_card(adev, card) == NULL) {
            retry_num = 0;
            do {
                mixer = mixer_open(card);
                if (mixer == NULL) {
                    if (++retry_num > RETRY_NUMBER) {
                        ALOGE("%s unable to open the mixer for--card %d, aborting.",
                              __func__, card);
                        goto error;
                    }
                    usleep(RETRY_US);
                }
            } while (mixer == NULL);

            sprintf(mixer_path, "/system/etc/mixer_paths_%d.xml", card);
            audio_route = audio_route_init(card, mixer_path);
            if (!audio_route) {
                ALOGE("%s: Failed to init audio route controls for card %d, aborting.",
                      __func__, card);
                goto error;
            }
            mixer_card = calloc(1, sizeof(struct mixer_card));
            mixer_card->card = card;
            mixer_card->mixer = mixer;
            mixer_card->audio_route = audio_route;
            list_add_tail(&adev->mixer_list, &mixer_card->adev_list_node);
        }
    }

    return 0;

error:
    free_mixer_list(adev);
    return -ENODEV;
}

const char *get_snd_device_name(snd_device_t snd_device)
{
    const char *name = NULL;

    if (snd_device >= SND_DEVICE_MIN && snd_device < SND_DEVICE_MAX)
        name = device_table[snd_device];

    ALOGE_IF(name == NULL, "%s: invalid snd device %d", __func__, snd_device);

   return name;
}

const char *get_snd_device_display_name(snd_device_t snd_device)
{
    const char *name = get_snd_device_name(snd_device);

    if (name == NULL)
        name = "SND DEVICE NOT FOUND";

    return name;
}

struct pcm_device_profile *get_pcm_device(usecase_type_t uc_type, audio_devices_t devices)
{
    int i;

    devices &= ~AUDIO_DEVICE_BIT_IN;

    if (!devices)
        return NULL;

    for (i = 0; pcm_devices[i] != NULL; i++) {
        if ((pcm_devices[i]->type == uc_type) &&
                (devices & pcm_devices[i]->devices) == devices)
            return pcm_devices[i];
    }

    return NULL;
}

static struct audio_usecase *get_usecase_from_id(struct audio_device *adev,
                                                   audio_usecase_t uc_id)
{
    struct audio_usecase *usecase;
    struct listnode *node;

    list_for_each(node, &adev->usecase_list) {
        usecase = node_to_item(node, struct audio_usecase, adev_list_node);
        if (usecase->id == uc_id)
            return usecase;
    }
    return NULL;
}

static struct audio_usecase *get_usecase_from_type(struct audio_device *adev,
                                                        usecase_type_t type)
{
    struct audio_usecase *usecase;
    struct listnode *node;

    list_for_each(node, &adev->usecase_list) {
        usecase = node_to_item(node, struct audio_usecase, adev_list_node);
        if (usecase->type & type)
            return usecase;
    }
    return NULL;
}

/* always called with adev lock held */
static int set_voice_volume_l(struct audio_device *adev, float volume)
{
    int err = 0;
    (void)volume;

    if (adev->mode == AUDIO_MODE_IN_CALL) {
        /* TODO */
    }
    return err;
}


snd_device_t get_output_snd_device(struct audio_device *adev, audio_devices_t devices)
{

    audio_mode_t mode = adev->mode;
    snd_device_t snd_device = SND_DEVICE_NONE;

    ALOGV("%s: enter: output devices(%#x), mode(%d)", __func__, devices, mode);
    if (devices == AUDIO_DEVICE_NONE ||
        devices & AUDIO_DEVICE_BIT_IN) {
        ALOGV("%s: Invalid output devices (%#x)", __func__, devices);
        goto exit;
    }

    if (mode == AUDIO_MODE_IN_CALL) {
        if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE ||
            devices & AUDIO_DEVICE_OUT_WIRED_HEADSET) {
            if (adev->tty_mode == TTY_MODE_FULL)
                snd_device = SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES;
            else if (adev->tty_mode == TTY_MODE_VCO)
                snd_device = SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES;
            else if (adev->tty_mode == TTY_MODE_HCO)
                snd_device = SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET;
            else
                snd_device = SND_DEVICE_OUT_VOICE_HEADPHONES;
        } else if (devices & AUDIO_DEVICE_OUT_SPEAKER) {
            snd_device = SND_DEVICE_OUT_VOICE_SPEAKER;
        } else if (devices & AUDIO_DEVICE_OUT_EARPIECE) {
            snd_device = SND_DEVICE_OUT_HANDSET;
        }
        if (snd_device != SND_DEVICE_NONE) {
            goto exit;
        }
    }

    if (popcount(devices) == 2) {
        if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADPHONE |
                        AUDIO_DEVICE_OUT_SPEAKER)) {
            snd_device = SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES;
        } else if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADSET |
                               AUDIO_DEVICE_OUT_SPEAKER)) {
            snd_device = SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES;
        } else {
            ALOGE("%s: Invalid combo device(%#x)", __func__, devices);
            goto exit;
        }
        if (snd_device != SND_DEVICE_NONE) {
            goto exit;
        }
    }

    if (popcount(devices) != 1) {
        ALOGE("%s: Invalid output devices(%#x)", __func__, devices);
        goto exit;
    }

    if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE ||
        devices & AUDIO_DEVICE_OUT_WIRED_HEADSET) {
        snd_device = SND_DEVICE_OUT_HEADPHONES;
    } else if (devices & AUDIO_DEVICE_OUT_SPEAKER) {
        snd_device = SND_DEVICE_OUT_SPEAKER;
    } else if (devices & AUDIO_DEVICE_OUT_EARPIECE) {
        snd_device = SND_DEVICE_OUT_HANDSET;
    } else {
        ALOGE("%s: Unknown device(s) %#x", __func__, devices);
    }
exit:
    ALOGV("%s: exit: snd_device(%s)", __func__, device_table[snd_device]);
    return snd_device;
}

snd_device_t get_input_snd_device(struct audio_device *adev, audio_devices_t out_device)
{
    audio_source_t  source;
    audio_mode_t    mode   = adev->mode;
    audio_devices_t in_device;
    audio_channel_mask_t channel_mask;
    snd_device_t snd_device = SND_DEVICE_NONE;
    struct stream_in *active_input = NULL;
    struct audio_usecase *usecase;

    usecase = get_usecase_from_type(adev, PCM_CAPTURE|VOICE_CALL);
    if (usecase != NULL) {
        active_input = (struct stream_in *)usecase->stream;
    }
    source = (active_input == NULL) ?
                                AUDIO_SOURCE_DEFAULT : active_input->source;

    in_device = ((active_input == NULL) ?
                                    AUDIO_DEVICE_NONE : active_input->devices)
                                & ~AUDIO_DEVICE_BIT_IN;
    channel_mask = (active_input == NULL) ?
                                AUDIO_CHANNEL_IN_MONO : active_input->main_channels;

    ALOGV("%s: enter: out_device(%#x) in_device(%#x)",
          __func__, out_device, in_device);
    if (mode == AUDIO_MODE_IN_CALL) {
        if (out_device == AUDIO_DEVICE_NONE) {
            ALOGE("%s: No output device set for voice call", __func__);
            goto exit;
        }
        if (adev->tty_mode != TTY_MODE_OFF) {
            if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE ||
                out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) {
                switch (adev->tty_mode) {
                case TTY_MODE_FULL:
                    snd_device = SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC;
                    break;
                case TTY_MODE_VCO:
                    snd_device = SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC;
                    break;
                case TTY_MODE_HCO:
                    snd_device = SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC;
                    break;
                default:
                    ALOGE("%s: Invalid TTY mode (%#x)", __func__, adev->tty_mode);
                }
                goto exit;
            }
        }
        if (out_device & AUDIO_DEVICE_OUT_EARPIECE ||
                out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) {
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) {
            snd_device = SND_DEVICE_IN_VOICE_HEADSET_MIC;
        } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER) {
            snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC;
        }
    } else if (source == AUDIO_SOURCE_CAMCORDER) {
        if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC ||
            in_device & AUDIO_DEVICE_IN_BACK_MIC) {
            snd_device = SND_DEVICE_IN_CAMCORDER_MIC;
        }
    } else if (source == AUDIO_SOURCE_VOICE_RECOGNITION) {
        if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) {
            if (adev->dualmic_config == DUALMIC_CONFIG_1) {
                if (channel_mask == AUDIO_CHANNEL_IN_FRONT_BACK)
                    snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_1;
                else if (adev->ns_in_voice_rec)
                    snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_NS_1;
            }

            if (snd_device == SND_DEVICE_NONE) {
                snd_device = SND_DEVICE_IN_VOICE_REC_MIC;
            }
        } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) {
            snd_device = SND_DEVICE_IN_VOICE_REC_HEADSET_MIC;
        }
    } else if (source == AUDIO_SOURCE_VOICE_COMMUNICATION || source == AUDIO_SOURCE_MIC) {
        if (out_device & AUDIO_DEVICE_OUT_SPEAKER)
            in_device = AUDIO_DEVICE_IN_BACK_MIC;
        if (active_input) {
            if (active_input->enable_aec) {
                if (in_device & AUDIO_DEVICE_IN_BACK_MIC) {
                    snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC;
                } else if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) {
                    if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) {
                        snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC;
                    } else {
                        snd_device = SND_DEVICE_IN_HANDSET_MIC_AEC;
                    }
                } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) {
                    snd_device = SND_DEVICE_IN_HEADSET_MIC_AEC;
                }
            }
            /* TODO: set echo reference */
        }
    } else if (source == AUDIO_SOURCE_DEFAULT) {
        goto exit;
    }


    if (snd_device != SND_DEVICE_NONE) {
        goto exit;
    }

    if (in_device != AUDIO_DEVICE_NONE &&
            !(in_device & AUDIO_DEVICE_IN_VOICE_CALL) &&
            !(in_device & AUDIO_DEVICE_IN_COMMUNICATION)) {
        if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) {
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        } else if (in_device & AUDIO_DEVICE_IN_BACK_MIC) {
            snd_device = SND_DEVICE_IN_SPEAKER_MIC;
        } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) {
            snd_device = SND_DEVICE_IN_HEADSET_MIC;
        } else if (in_device & AUDIO_DEVICE_IN_AUX_DIGITAL) {
            snd_device = SND_DEVICE_IN_HDMI_MIC;
        } else {
            ALOGE("%s: Unknown input device(s) %#x", __func__, in_device);
            ALOGW("%s: Using default handset-mic", __func__);
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        }
    } else {
        if (out_device & AUDIO_DEVICE_OUT_EARPIECE) {
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) {
            snd_device = SND_DEVICE_IN_HEADSET_MIC;
        } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER) {
            snd_device = SND_DEVICE_IN_SPEAKER_MIC;
        } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE) {
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        } else {
            ALOGE("%s: Unknown output device(s) %#x", __func__, out_device);
            ALOGW("%s: Using default handset-mic", __func__);
            snd_device = SND_DEVICE_IN_HANDSET_MIC;
        }
    }
exit:
    ALOGV("%s: exit: in_snd_device(%s)", __func__, device_table[snd_device]);
    return snd_device;
}

int set_hdmi_channels(struct audio_device *adev,  int channel_count)
{
    struct mixer_ctl *ctl;
    const char *mixer_ctl_name = "";
    (void)adev;
    (void)channel_count;
    /* TODO */

    return 0;
}

int edid_get_max_channels(struct audio_device *adev)
{
    int max_channels = 2;
    struct mixer_ctl *ctl;
    (void)adev;

    /* TODO */
    return max_channels;
}

/* Delay in Us */
int64_t render_latency(audio_usecase_t usecase)
{
    (void)usecase;
    /* TODO */
    return 0;
}

static int enable_snd_device(struct audio_device *adev,
                             struct audio_usecase *uc_info,
                             snd_device_t snd_device,
                             bool update_mixer)
{
    struct mixer_card *mixer_card;
    struct listnode *node;
    const char *snd_device_name = get_snd_device_name(snd_device);

    if (snd_device_name == NULL)
        return -EINVAL;

    adev->snd_dev_ref_cnt[snd_device]++;
    if (adev->snd_dev_ref_cnt[snd_device] > 1) {
        ALOGV("%s: snd_device(%d: %s) is already active",
              __func__, snd_device, snd_device_name);
        return 0;
    }

    ALOGV("%s: snd_device(%d: %s)", __func__,
          snd_device, snd_device_name);

    list_for_each(node, &uc_info->mixer_list) {
        mixer_card = node_to_item(node, struct mixer_card, uc_list_node[uc_info->id]);
        audio_route_apply_path(mixer_card->audio_route, snd_device_name);
        if (update_mixer)
            audio_route_update_mixer(mixer_card->audio_route);
    }

    return 0;
}

static int disable_snd_device(struct audio_device *adev,
                              struct audio_usecase *uc_info,
                              snd_device_t snd_device,
                              bool update_mixer)
{
    struct mixer_card *mixer_card;
    struct listnode *node;
    const char *snd_device_name = get_snd_device_name(snd_device);

    if (snd_device_name == NULL)
        return -EINVAL;

    if (adev->snd_dev_ref_cnt[snd_device] <= 0) {
        ALOGE("%s: device ref cnt is already 0", __func__);
        return -EINVAL;
    }
    adev->snd_dev_ref_cnt[snd_device]--;
    if (adev->snd_dev_ref_cnt[snd_device] == 0) {
        ALOGV("%s: snd_device(%d: %s)", __func__,
              snd_device, snd_device_name);
        list_for_each(node, &uc_info->mixer_list) {
            mixer_card = node_to_item(node, struct mixer_card, uc_list_node[uc_info->id]);
            audio_route_reset_path(mixer_card->audio_route, snd_device_name);
            if (update_mixer)
                audio_route_update_mixer(mixer_card->audio_route);
        }
    }
    return 0;
}

static int select_devices(struct audio_device *adev,
                          audio_usecase_t uc_id)
{
    snd_device_t out_snd_device = SND_DEVICE_NONE;
    snd_device_t in_snd_device = SND_DEVICE_NONE;
    struct audio_usecase *usecase = NULL;
    struct audio_usecase *vc_usecase = NULL;
    struct listnode *node;
    struct stream_in *active_input = NULL;
    struct stream_out *active_out;
    struct mixer_card *mixer_card;

    ALOGV("%s: usecase(%d)", __func__, uc_id);

    if (uc_id == USECASE_AUDIO_CAPTURE_HOTWORD)
        return 0;

    usecase = get_usecase_from_type(adev, PCM_CAPTURE|VOICE_CALL);
    if (usecase != NULL) {
        active_input = (struct stream_in *)usecase->stream;
    }

    usecase = get_usecase_from_id(adev, uc_id);
    if (usecase == NULL) {
        ALOGE("%s: Could not find the usecase(%d)", __func__, uc_id);
        return -EINVAL;
    }
    active_out = (struct stream_out *)usecase->stream;

    if (usecase->type == VOICE_CALL) {
        out_snd_device = get_output_snd_device(adev, active_out->devices);
        in_snd_device = get_input_snd_device(adev, active_out->devices);
        usecase->devices = active_out->devices;
    } else {
        /*
         * If the voice call is active, use the sound devices of voice call usecase
         * so that it would not result any device switch. All the usecases will
         * be switched to new device when select_devices() is called for voice call
         * usecase.
         */
        if (adev->in_call) {
            vc_usecase = get_usecase_from_id(adev, USECASE_VOICE_CALL);
            if (usecase == NULL) {
                ALOGE("%s: Could not find the voice call usecase", __func__);
            } else {
                in_snd_device = vc_usecase->in_snd_device;
                out_snd_device = vc_usecase->out_snd_device;
            }
        }
        if (usecase->type == PCM_PLAYBACK) {
            usecase->devices = active_out->devices;
            in_snd_device = SND_DEVICE_NONE;
            if (out_snd_device == SND_DEVICE_NONE) {
                out_snd_device = get_output_snd_device(adev, active_out->devices);
                if (active_out == adev->primary_output &&
                        active_input &&
                        active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION) {
                    select_devices(adev, active_input->usecase);
                }
            }
        } else if (usecase->type == PCM_CAPTURE) {
            usecase->devices = ((struct stream_in *)usecase->stream)->devices;
            out_snd_device = SND_DEVICE_NONE;
            if (in_snd_device == SND_DEVICE_NONE) {
                if (active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION &&
                        adev->primary_output && !adev->primary_output->standby) {
                    in_snd_device = get_input_snd_device(adev, adev->primary_output->devices);
                } else {
                    in_snd_device = get_input_snd_device(adev, AUDIO_DEVICE_NONE);
                }
            }
        }
    }

    if (out_snd_device == usecase->out_snd_device &&
        in_snd_device == usecase->in_snd_device) {
        return 0;
    }

    ALOGV("%s: out_snd_device(%d: %s) in_snd_device(%d: %s)", __func__,
          out_snd_device, get_snd_device_display_name(out_snd_device),
          in_snd_device,  get_snd_device_display_name(in_snd_device));


    /* Disable current sound devices */
    if (usecase->out_snd_device != SND_DEVICE_NONE) {
        disable_snd_device(adev, usecase, usecase->out_snd_device, false);
    }

    if (usecase->in_snd_device != SND_DEVICE_NONE) {
        disable_snd_device(adev, usecase, usecase->in_snd_device, false);
    }

    /* Enable new sound devices */
    if (out_snd_device != SND_DEVICE_NONE) {
        enable_snd_device(adev, usecase, out_snd_device, false);
    }

    if (in_snd_device != SND_DEVICE_NONE) {
        enable_snd_device(adev, usecase, in_snd_device, false);
    }

    list_for_each(node, &usecase->mixer_list) {
         mixer_card = node_to_item(node, struct mixer_card, uc_list_node[usecase->id]);
         audio_route_update_mixer(mixer_card->audio_route);
    }

    usecase->in_snd_device = in_snd_device;
    usecase->out_snd_device = out_snd_device;

    return 0;
}

static ssize_t read_frames(struct stream_in *in, void *buffer, ssize_t frames);
static int do_in_standby_l(struct stream_in *in);
static audio_format_t in_get_format(const struct audio_stream *stream);

#ifdef PREPROCESSING_ENABLED
static int get_command_status(int status, int fct_status, uint32_t cmd_status) {
    if (fct_status != 0)
        status = fct_status;
    else if (cmd_status != 0)
        status = cmd_status;
    return status;
}

static uint32_t in_get_aux_channels(struct stream_in *in)
{
    if (in->num_preprocessors == 0)
        return 0;

    /* do not enable quad mic configurations when capturing from other
     * microphones than main */
    if (!(in->devices & AUDIO_DEVICE_IN_BUILTIN_MIC & ~AUDIO_DEVICE_BIT_IN))
        return 0;

    return AUDIO_CHANNEL_INDEX_MASK_4;
}

static int in_configure_effect_channels(effect_handle_t effect,
                                        channel_config_t *channel_config)
{
    int status = 0;
    int fct_status;
    int32_t cmd_status;
    uint32_t reply_size;
    effect_config_t config;
    uint32_t cmd[(sizeof(uint32_t) + sizeof(channel_config_t) - 1) / sizeof(uint32_t) + 1];

    ALOGV("in_configure_effect_channels(): configure effect with channels: [%04x][%04x]",
            channel_config->main_channels,
            channel_config->aux_channels);

    config.inputCfg.mask = EFFECT_CONFIG_CHANNELS;
    config.outputCfg.mask = EFFECT_CONFIG_CHANNELS;
    reply_size = sizeof(effect_config_t);
    fct_status = (*effect)->command(effect,
                                EFFECT_CMD_GET_CONFIG,
                                0,
                                NULL,
                                &reply_size,
                                &config);
    if (fct_status != 0) {
        ALOGE("in_configure_effect_channels(): EFFECT_CMD_GET_CONFIG failed");
        return fct_status;
    }

    config.inputCfg.channels = channel_config->aux_channels;
    config.outputCfg.channels = config.inputCfg.channels;
    reply_size = sizeof(uint32_t);
    fct_status = (*effect)->command(effect,
                                    EFFECT_CMD_SET_CONFIG,
                                    sizeof(effect_config_t),
                                    &config,
                                    &reply_size,
                                    &cmd_status);
    status = get_command_status(status, fct_status, cmd_status);
    if (status != 0) {
        ALOGE("in_configure_effect_channels(): EFFECT_CMD_SET_CONFIG failed");
        return status;
    }

    /* some implementations need to be re-enabled after a config change */
    reply_size = sizeof(uint32_t);
    fct_status = (*effect)->command(effect,
                                  EFFECT_CMD_ENABLE,
                                  0,
                                  NULL,
                                  &reply_size,
                                  &cmd_status);
    status = get_command_status(status, fct_status, cmd_status);
    if (status != 0) {
        ALOGE("in_configure_effect_channels(): EFFECT_CMD_ENABLE failed");
        return status;
    }

    return status;
}

static int in_reconfigure_channels(struct stream_in *in,
                                   effect_handle_t effect,
                                   channel_config_t *channel_config,
                                   bool config_changed) {

    int status = 0;

    ALOGV("in_reconfigure_channels(): config_changed %d effect %p",
          config_changed, effect);

    /* if config changed, reconfigure all previously added effects */
    if (config_changed) {
        int i;
        ALOGV("%s: config_changed (%d)", __func__, config_changed);
        for (i = 0; i < in->num_preprocessors; i++) {
            int cur_status = in_configure_effect_channels(in->preprocessors[i].effect_itfe,
                                                  channel_config);
            ALOGV("%s: in_configure_effect_channels i=(%d), [main_channel,aux_channel]=[%d|%d], status=%d",
                          __func__, i, channel_config->main_channels, channel_config->aux_channels, cur_status);
            if (cur_status != 0) {
                ALOGV("in_reconfigure_channels(): error %d configuring effect "
                        "%d with channels: [%04x][%04x]",
                        cur_status,
                        i,
                        channel_config->main_channels,
                        channel_config->aux_channels);
                status = cur_status;
            }
        }
    } else if (effect != NULL && channel_config->aux_channels) {
        /* if aux channels config did not change but aux channels are present,
         * we still need to configure the effect being added */
        status = in_configure_effect_channels(effect, channel_config);
    }
    return status;
}

static void in_update_aux_channels(struct stream_in *in,
                                   effect_handle_t effect)
{
    uint32_t aux_channels;
    channel_config_t channel_config;
    int status;

    aux_channels = in_get_aux_channels(in);

    channel_config.main_channels = in->main_channels;
    channel_config.aux_channels = aux_channels;
    status = in_reconfigure_channels(in,
                                     effect,
                                     &channel_config,
                                     (aux_channels != in->aux_channels));

    if (status != 0) {
        ALOGV("in_update_aux_channels(): in_reconfigure_channels error %d", status);
        /* resetting aux channels configuration */
        aux_channels = 0;
        channel_config.aux_channels = 0;
        in_reconfigure_channels(in, effect, &channel_config, true);
    }
    ALOGV("%s: aux_channels=%d, in->aux_channels_changed=%d", __func__, aux_channels, in->aux_channels_changed);
    if (in->aux_channels != aux_channels) {
        in->aux_channels_changed = true;
        in->aux_channels = aux_channels;
        do_in_standby_l(in);
    }
}
#endif

/* This function reads PCM data and:
 * - resample if needed
 * - process if pre-processors are attached
 * - discard unwanted channels
 */
static ssize_t read_and_process_frames(struct audio_stream_in *stream, void* buffer, ssize_t frames_num)
{
    struct stream_in *in = (struct stream_in *)stream;
    ssize_t frames_wr = 0; /* Number of frames actually read */
    size_t bytes_per_sample = audio_bytes_per_sample(stream->common.get_format(&stream->common));
    void *proc_buf_out = buffer;
#ifdef PREPROCESSING_ENABLED
    audio_buffer_t in_buf;
    audio_buffer_t out_buf;
    int i;
    bool has_processing = in->num_preprocessors != 0;
#endif
    /* Additional channels might be added on top of main_channels:
    * - aux_channels (by processing effects)
    * - extra channels due to HW limitations
    * In case of additional channels, we cannot work inplace
    */
    size_t src_channels = in->config.channels;
    size_t dst_channels = audio_channel_count_from_in_mask(in->main_channels);
    bool channel_remapping_needed = (dst_channels != src_channels);
    size_t src_buffer_size = frames_num * src_channels * bytes_per_sample;

#ifdef PREPROCESSING_ENABLED
    if (has_processing) {
        /* since all the processing below is done in frames and using the config.channels
         * as the number of channels, no changes is required in case aux_channels are present */
        while (frames_wr < frames_num) {
            /* first reload enough frames at the end of process input buffer */
            if (in->proc_buf_frames < (size_t)frames_num) {
                ssize_t frames_rd;
                if (in->proc_buf_size < (size_t)frames_num) {
                    in->proc_buf_size = (size_t)frames_num;
                    in->proc_buf_in = realloc(in->proc_buf_in, src_buffer_size);
                    ALOG_ASSERT((in->proc_buf_in != NULL),
                                "process_frames() failed to reallocate proc_buf_in");
                    if (channel_remapping_needed) {
                        in->proc_buf_out = realloc(in->proc_buf_out, src_buffer_size);
                        ALOG_ASSERT((in->proc_buf_out != NULL),
                                    "process_frames() failed to reallocate proc_buf_out");
                        proc_buf_out = in->proc_buf_out;
                    }
                }
                frames_rd = read_frames(in,
                                        in->proc_buf_in +
                                            in->proc_buf_frames * src_channels * bytes_per_sample,
                                        frames_num - in->proc_buf_frames);
                  if (frames_rd < 0) {
                    /* Return error code */
                    frames_wr = frames_rd;
                    break;
                }
                in->proc_buf_frames += frames_rd;
            }

             /* in_buf.frameCount and out_buf.frameCount indicate respectively
              * the maximum number of frames to be consumed and produced by process() */
            in_buf.frameCount = in->proc_buf_frames;
            in_buf.s16 = in->proc_buf_in;
            out_buf.frameCount = frames_num - frames_wr;
            out_buf.s16 = (int16_t *)proc_buf_out + frames_wr * in->config.channels;

            /* FIXME: this works because of current pre processing library implementation that
             * does the actual process only when the last enabled effect process is called.
             * The generic solution is to have an output buffer for each effect and pass it as
             * input to the next.
             */
            for (i = 0; i < in->num_preprocessors; i++) {
                (*in->preprocessors[i].effect_itfe)->process(in->preprocessors[i].effect_itfe,
                                                   &in_buf,
                                                   &out_buf);
            }

            /* process() has updated the number of frames consumed and produced in
             * in_buf.frameCount and out_buf.frameCount respectively
             * move remaining frames to the beginning of in->proc_buf_in */
            in->proc_buf_frames -= in_buf.frameCount;

            if (in->proc_buf_frames) {
                memcpy(in->proc_buf_in,
                       in->proc_buf_in + in_buf.frameCount * src_channels * bytes_per_sample,
                       in->proc_buf_frames * in->config.channels * audio_bytes_per_sample(in_get_format(in)));
            }

            /* if not enough frames were passed to process(), read more and retry. */
            if (out_buf.frameCount == 0) {
                ALOGW("No frames produced by preproc");
                continue;
            }

            if ((frames_wr + (ssize_t)out_buf.frameCount) <= frames_num) {
                frames_wr += out_buf.frameCount;
            } else {
                /* The effect does not comply to the API. In theory, we should never end up here! */
                ALOGE("preprocessing produced too many frames: %d + %zd  > %d !",
                      (unsigned int)frames_wr, out_buf.frameCount, (unsigned int)frames_num);
                frames_wr = frames_num;
            }
        }
    }
    else
#endif //PREPROCESSING_ENABLED
    {
        /* No processing effects attached */
        if (channel_remapping_needed) {
            /* With additional channels, we cannot use original buffer */
            if (in->proc_buf_size < src_buffer_size) {
                in->proc_buf_size = src_buffer_size;
                in->proc_buf_out = realloc(in->proc_buf_out, src_buffer_size);
                ALOG_ASSERT((in->proc_buf_out != NULL),
                            "process_frames() failed to reallocate proc_buf_out");
            }
            proc_buf_out = in->proc_buf_out;
        }
        frames_wr = read_frames(in, proc_buf_out, frames_num);
        ALOG_ASSERT(frames_wr <= frames_num, "read more frames than requested");
    }

    if (channel_remapping_needed) {
        size_t ret = adjust_channels(proc_buf_out, src_channels, buffer, dst_channels,
            bytes_per_sample, frames_wr * src_channels * bytes_per_sample);
        ALOG_ASSERT(ret == (frames_wr * dst_channels * bytes_per_sample));
    }

    return frames_wr;
}

static int get_next_buffer(struct resampler_buffer_provider *buffer_provider,
                                   struct resampler_buffer* buffer)
{
    struct stream_in *in;
    struct pcm_device *pcm_device;

    if (buffer_provider == NULL || buffer == NULL)
        return -EINVAL;

    in = (struct stream_in *)((char *)buffer_provider -
                                   offsetof(struct stream_in, buf_provider));

    if (list_empty(&in->pcm_dev_list)) {
        buffer->raw = NULL;
        buffer->frame_count = 0;
        in->read_status = -ENODEV;
        return -ENODEV;
    }

    pcm_device = node_to_item(list_head(&in->pcm_dev_list),
                              struct pcm_device, stream_list_node);

    if (in->read_buf_frames == 0) {
        size_t size_in_bytes = pcm_frames_to_bytes(pcm_device->pcm, in->config.period_size);
        if (in->read_buf_size < in->config.period_size) {
            in->read_buf_size = in->config.period_size;
            in->read_buf = (int16_t *) realloc(in->read_buf, size_in_bytes);
            ALOG_ASSERT((in->read_buf != NULL),
                        "get_next_buffer() failed to reallocate read_buf");
        }

        in->read_status = pcm_read(pcm_device->pcm, (void*)in->read_buf, size_in_bytes);

        if (in->read_status != 0) {
            ALOGE("get_next_buffer() pcm_read error %d", in->read_status);
            buffer->raw = NULL;
            buffer->frame_count = 0;
            return in->read_status;
        }
        in->read_buf_frames = in->config.period_size;
    }

    buffer->frame_count = (buffer->frame_count > in->read_buf_frames) ?
                                in->read_buf_frames : buffer->frame_count;
    buffer->i16 = in->read_buf + (in->config.period_size - in->read_buf_frames) *
                                                in->config.channels;
    return in->read_status;
}

static void release_buffer(struct resampler_buffer_provider *buffer_provider,
                                  struct resampler_buffer* buffer)
{
    struct stream_in *in;

    if (buffer_provider == NULL || buffer == NULL)
        return;

    in = (struct stream_in *)((char *)buffer_provider -
                                   offsetof(struct stream_in, buf_provider));

    in->read_buf_frames -= buffer->frame_count;
}

/* read_frames() reads frames from kernel driver, down samples to capture rate
 * if necessary and output the number of frames requested to the buffer specified */
static ssize_t read_frames(struct stream_in *in, void *buffer, ssize_t frames)
{
    ssize_t frames_wr = 0;

    struct pcm_device *pcm_device;

    if (list_empty(&in->pcm_dev_list)) {
        ALOGE("%s: pcm device list empty", __func__);
        return -EINVAL;
    }

    pcm_device = node_to_item(list_head(&in->pcm_dev_list),
                              struct pcm_device, stream_list_node);

    while (frames_wr < frames) {
        size_t frames_rd = frames - frames_wr;
        ALOGVV("%s: frames_rd: %zd, frames_wr: %zd, in->config.channels: %d",
               __func__,frames_rd,frames_wr,in->config.channels);
        if (in->resampler != NULL) {
            in->resampler->resample_from_provider(in->resampler,
                    (int16_t *)((char *)buffer +
                            pcm_frames_to_bytes(pcm_device->pcm, frames_wr)),
                    &frames_rd);
        } else {
            struct resampler_buffer buf = {
                    { raw : NULL, },
                    frame_count : frames_rd,
            };
            get_next_buffer(&in->buf_provider, &buf);
            if (buf.raw != NULL) {
                memcpy((char *)buffer +
                            pcm_frames_to_bytes(pcm_device->pcm, frames_wr),
                        buf.raw,
                        pcm_frames_to_bytes(pcm_device->pcm, buf.frame_count));
                frames_rd = buf.frame_count;
            }
            release_buffer(&in->buf_provider, &buf);
        }
        /* in->read_status is updated by getNextBuffer() also called by
         * in->resampler->resample_from_provider() */
        if (in->read_status != 0)
            return in->read_status;

        frames_wr += frames_rd;
    }
    return frames_wr;
}

static int in_release_pcm_devices(struct stream_in *in)
{
    struct pcm_device *pcm_device;
    struct listnode *node;
    struct listnode *next;

    list_for_each_safe(node, next, &in->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        list_remove(node);
        free(pcm_device);
    }

    return 0;
}

static int stop_input_stream(struct stream_in *in)
{
    struct audio_usecase *uc_info;
    struct audio_device *adev = in->dev;

    adev->active_input = NULL;
    ALOGV("%s: enter: usecase(%d: %s)", __func__,
          in->usecase, use_case_table[in->usecase]);
    uc_info = get_usecase_from_id(adev, in->usecase);
    if (uc_info == NULL) {
        ALOGE("%s: Could not find the usecase (%d) in the list",
              __func__, in->usecase);
        return -EINVAL;
    }

    /* Disable the tx device */
    disable_snd_device(adev, uc_info, uc_info->in_snd_device, true);

    list_remove(&uc_info->adev_list_node);
    free(uc_info);

    if (list_empty(&in->pcm_dev_list)) {
        ALOGE("%s: pcm device list empty", __func__);
        return -EINVAL;
    }

    in_release_pcm_devices(in);
    list_init(&in->pcm_dev_list);

    return 0;
}

int start_input_stream(struct stream_in *in)
{
    /* Enable output device and stream routing controls */
    int ret = 0;
    bool recreate_resampler = false;
    struct audio_usecase *uc_info;
    struct audio_device *adev = in->dev;
    struct pcm_device_profile *pcm_profile;
    struct pcm_device *pcm_device;

    ALOGV("%s: enter: usecase(%d)", __func__, in->usecase);
    adev->active_input = in;
    pcm_profile = get_pcm_device(in->usecase_type, in->devices);
    if (pcm_profile == NULL) {
        ALOGE("%s: Could not find PCM device id for the usecase(%d)",
              __func__, in->usecase);
        ret = -EINVAL;
        goto error_config;
    }

    if (in->input_flags & AUDIO_INPUT_FLAG_FAST) {
        ALOGV("%s: change capture period size to low latency size %d",
              __func__, CAPTURE_PERIOD_SIZE_LOW_LATENCY);
        pcm_profile->config.period_size = CAPTURE_PERIOD_SIZE_LOW_LATENCY;
    }

    uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase));
    uc_info->id = in->usecase;
    uc_info->type = PCM_CAPTURE;
    uc_info->stream = (struct audio_stream *)in;
    uc_info->devices = in->devices;
    uc_info->in_snd_device = SND_DEVICE_NONE;
    uc_info->out_snd_device = SND_DEVICE_NONE;

    pcm_device = (struct pcm_device *)calloc(1, sizeof(struct pcm_device));
    pcm_device->pcm_profile = pcm_profile;
    list_init(&in->pcm_dev_list);
    list_add_tail(&in->pcm_dev_list, &pcm_device->stream_list_node);

    list_init(&uc_info->mixer_list);
    list_add_tail(&uc_info->mixer_list,
                  &adev_get_mixer_for_card(adev,
                                       pcm_device->pcm_profile->card)->uc_list_node[uc_info->id]);

    list_add_tail(&adev->usecase_list, &uc_info->adev_list_node);

    select_devices(adev, in->usecase);

    /* Config should be updated as profile can be changed between different calls
     * to this function:
     * - Trigger resampler creation
     * - Config needs to be updated */
    if (in->config.rate != pcm_profile->config.rate) {
        recreate_resampler = true;
    }
    in->config = pcm_profile->config;

#ifdef PREPROCESSING_ENABLED
    if (in->aux_channels_changed) {
        in->config.channels = audio_channel_count_from_in_mask(in->aux_channels);
        recreate_resampler = true;
    }
#endif

    if (in->requested_rate != in->config.rate) {
        recreate_resampler = true;
    }

    if (recreate_resampler) {
        if (in->resampler) {
            release_resampler(in->resampler);
            in->resampler = NULL;
        }
        in->buf_provider.get_next_buffer = get_next_buffer;
        in->buf_provider.release_buffer = release_buffer;
        ret = create_resampler(in->config.rate,
                               in->requested_rate,
                               in->config.channels,
                               RESAMPLER_QUALITY_DEFAULT,
                               &in->buf_provider,
                               &in->resampler);
    }

    /* Open the PCM device.
     * The HW is limited to support only the default pcm_profile settings.
     * As such a change in aux_channels will not have an effect.
     */
    ALOGV("%s: Opening PCM device card_id(%d) device_id(%d), channels %d, smp rate %d format %d, \
          period_size %d", __func__, pcm_device->pcm_profile->card, pcm_device->pcm_profile->device,
          pcm_device->pcm_profile->config.channels,pcm_device->pcm_profile->config.rate,
          pcm_device->pcm_profile->config.format, pcm_device->pcm_profile->config.period_size);

    if (pcm_profile->type == PCM_HOTWORD_STREAMING) {
        if (!adev->sound_trigger_open_for_streaming) {
            ALOGE("%s: No handle to sound trigger HAL", __func__);
            ret = -EIO;
            goto error_open;
        }
        pcm_device->pcm = NULL;
        pcm_device->sound_trigger_handle =
                adev->sound_trigger_open_for_streaming();
        if (pcm_device->sound_trigger_handle <= 0) {
            ALOGE("%s: Failed to open DSP for streaming", __func__);
            ret = -EIO;
            goto error_open;
        }
        ALOGV("Opened DSP successfully");
    } else {
        pcm_device->sound_trigger_handle = 0;
        pcm_device->pcm = pcm_open(pcm_device->pcm_profile->card,
                                   pcm_device->pcm_profile->device,
                                   PCM_IN | PCM_MONOTONIC,
                                   &pcm_device->pcm_profile->config);
        if (pcm_device->pcm && !pcm_is_ready(pcm_device->pcm)) {
            ALOGE("%s: %s", __func__, pcm_get_error(pcm_device->pcm));
            pcm_close(pcm_device->pcm);
            pcm_device->pcm = NULL;
            ret = -EIO;
            goto error_open;
        }
    }

    /* force read and proc buffer reallocation in case of frame size or
     * channel count change */
#ifdef PREPROCESSING_ENABLED
    in->proc_buf_frames = 0;
#endif
    in->proc_buf_size = 0;
    in->read_buf_size = 0;
    in->read_buf_frames = 0;

    /* if no supported sample rate is available, use the resampler */
    if (in->resampler) {
        in->resampler->reset(in->resampler);
    }

    ALOGV("%s: exit", __func__);
    return ret;

error_open:
    if (in->resampler) {
        release_resampler(in->resampler);
        in->resampler = NULL;
    }
    stop_input_stream(in);

error_config:
    ALOGV("%s: exit: status(%d)", __func__, ret);
    adev->active_input = NULL;
    return ret;
}

static void lock_input_stream(struct stream_in *in)
{
    pthread_mutex_lock(&in->pre_lock);
    pthread_mutex_lock(&in->lock);
    pthread_mutex_unlock(&in->pre_lock);
}

static void lock_output_stream(struct stream_out *out)
{
    pthread_mutex_lock(&out->pre_lock);
    pthread_mutex_lock(&out->lock);
    pthread_mutex_unlock(&out->pre_lock);
}

static int uc_release_pcm_devices(struct audio_usecase *usecase)
{
    struct stream_out *out = (struct stream_out *)usecase->stream;
    struct pcm_device *pcm_device;
    struct listnode *node;
    struct listnode *next;

    list_for_each_safe(node, next, &out->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        list_remove(node);
        free(pcm_device);
    }
    list_init(&usecase->mixer_list);

    return 0;
}

static int uc_select_pcm_devices(struct audio_usecase *usecase)

{
    struct stream_out *out = (struct stream_out *)usecase->stream;
    struct pcm_device *pcm_device;
    struct pcm_device_profile *pcm_profile;
    struct mixer_card *mixer_card;
    audio_devices_t devices = usecase->devices;

    list_init(&usecase->mixer_list);
    list_init(&out->pcm_dev_list);

    pcm_profile = get_pcm_device(usecase->type, devices);
    if (pcm_profile) {
        pcm_device = calloc(1, sizeof(struct pcm_device));
        pcm_device->pcm_profile = pcm_profile;
        list_add_tail(&out->pcm_dev_list, &pcm_device->stream_list_node);
        mixer_card = uc_get_mixer_for_card(usecase, pcm_profile->card);
        if (mixer_card == NULL) {
            mixer_card = adev_get_mixer_for_card(out->dev, pcm_profile->card);
            list_add_tail(&usecase->mixer_list, &mixer_card->uc_list_node[usecase->id]);
        }
        devices &= ~pcm_profile->devices;
    } else {
        ALOGE("usecase type=%d, devices=%d did not find exact match",
            usecase->type, devices);
    }

    return 0;
}

static int out_close_pcm_devices(struct stream_out *out)
{
    struct pcm_device *pcm_device;
    struct listnode *node;
    struct audio_device *adev = out->dev;

    list_for_each(node, &out->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        if (pcm_device->sound_trigger_handle > 0) {
            adev->sound_trigger_close_for_streaming(
                    pcm_device->sound_trigger_handle);
            pcm_device->sound_trigger_handle = 0;
        }
        if (pcm_device->pcm) {
            pcm_close(pcm_device->pcm);
            pcm_device->pcm = NULL;
        }
        if (pcm_device->resampler) {
            release_resampler(pcm_device->resampler);
            pcm_device->resampler = NULL;
        }
        if (pcm_device->res_buffer) {
            free(pcm_device->res_buffer);
            pcm_device->res_buffer = NULL;
        }
        if (pcm_device->dsp_context) {
            cras_dsp_context_free(pcm_device->dsp_context);
            pcm_device->dsp_context = NULL;
        }
    }

    return 0;
}

static int out_open_pcm_devices(struct stream_out *out)
{
    struct pcm_device *pcm_device;
    struct listnode *node;
    struct audio_device *adev = out->dev;
    int ret = 0;

    list_for_each(node, &out->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        ALOGV("%s: Opening PCM device card_id(%d) device_id(%d)",
              __func__, pcm_device->pcm_profile->card, pcm_device->pcm_profile->device);

        if (pcm_device->pcm_profile->dsp_name) {
            pcm_device->dsp_context = cras_dsp_context_new(pcm_device->pcm_profile->config.rate,
                    (adev->mode == AUDIO_MODE_IN_CALL || adev->mode == AUDIO_MODE_IN_COMMUNICATION)
                        ? "voice-comm" : "playback");
            if (pcm_device->dsp_context) {
                cras_dsp_set_variable(pcm_device->dsp_context, "dsp_name",
                                      pcm_device->pcm_profile->dsp_name);
                cras_dsp_load_pipeline(pcm_device->dsp_context);
            }
        }

        pcm_device->pcm = pcm_open(pcm_device->pcm_profile->card, pcm_device->pcm_profile->device,
                               PCM_OUT | PCM_MONOTONIC, &pcm_device->pcm_profile->config);

        if (pcm_device->pcm && !pcm_is_ready(pcm_device->pcm)) {
            ALOGE("%s: %s", __func__, pcm_get_error(pcm_device->pcm));
            pcm_device->pcm = NULL;
            ret = -EIO;
            goto error_open;
        }
        /*
        * If the stream rate differs from the PCM rate, we need to
        * create a resampler.
        */
        if (out->sample_rate != pcm_device->pcm_profile->config.rate) {
            ALOGV("%s: create_resampler(), pcm_device_card(%d), pcm_device_id(%d), \
                    out_rate(%d), device_rate(%d)",__func__,
                    pcm_device->pcm_profile->card, pcm_device->pcm_profile->device,
                    out->sample_rate, pcm_device->pcm_profile->config.rate);
            ret = create_resampler(out->sample_rate,
                    pcm_device->pcm_profile->config.rate,
                    audio_channel_count_from_out_mask(out->channel_mask),
                    RESAMPLER_QUALITY_DEFAULT,
                    NULL,
                    &pcm_device->resampler);
            pcm_device->res_byte_count = 0;
            pcm_device->res_buffer = NULL;
        }
    }
    return ret;

error_open:
    out_close_pcm_devices(out);
    return ret;
}

static int disable_output_path_l(struct stream_out *out)
{
    struct audio_device *adev = out->dev;
    struct audio_usecase *uc_info;

    uc_info = get_usecase_from_id(adev, out->usecase);
    if (uc_info == NULL) {
        ALOGE("%s: Could not find the usecase (%d) in the list",
             __func__, out->usecase);
        return -EINVAL;
    }
    disable_snd_device(adev, uc_info, uc_info->out_snd_device, true);
    uc_release_pcm_devices(uc_info);
    list_remove(&uc_info->adev_list_node);
    free(uc_info);

    return 0;
}

static void enable_output_path_l(struct stream_out *out)
{
    struct audio_device *adev = out->dev;
    struct audio_usecase *uc_info;

    uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase));
    uc_info->id = out->usecase;
    uc_info->type = PCM_PLAYBACK;
    uc_info->stream = (struct audio_stream *)out;
    uc_info->devices = out->devices;
    uc_info->in_snd_device = SND_DEVICE_NONE;
    uc_info->out_snd_device = SND_DEVICE_NONE;
    uc_select_pcm_devices(uc_info);

    list_add_tail(&adev->usecase_list, &uc_info->adev_list_node);

    select_devices(adev, out->usecase);
}

static int stop_output_stream(struct stream_out *out)
{
    int ret = 0;
    struct audio_device *adev = out->dev;
    bool do_disable = true;

    ALOGV("%s: enter: usecase(%d: %s)", __func__,
          out->usecase, use_case_table[out->usecase]);

    ret = disable_output_path_l(out);

    ALOGV("%s: exit: status(%d)", __func__, ret);
    return ret;
}

int start_output_stream(struct stream_out *out)
{
    int ret = 0;
    struct audio_device *adev = out->dev;

    ALOGV("%s: enter: usecase(%d: %s) devices(%#x) channels(%d)",
          __func__, out->usecase, use_case_table[out->usecase], out->devices, out->config.channels);

    enable_output_path_l(out);

    ret = out_open_pcm_devices(out);
    if (ret != 0)
        goto error_open;
    ALOGV("%s: exit", __func__);
    return 0;
error_open:
    stop_output_stream(out);
    return ret;
}

static int stop_voice_call(struct audio_device *adev)
{
    struct audio_usecase *uc_info;

    ALOGV("%s: enter", __func__);
    adev->in_call = false;

    /* TODO: implement voice call stop */

    uc_info = get_usecase_from_id(adev, USECASE_VOICE_CALL);
    if (uc_info == NULL) {
        ALOGE("%s: Could not find the usecase (%d) in the list",
              __func__, USECASE_VOICE_CALL);
        return -EINVAL;
    }

    disable_snd_device(adev, uc_info, uc_info->out_snd_device, false);
    disable_snd_device(adev, uc_info, uc_info->in_snd_device, true);

    uc_release_pcm_devices(uc_info);
    list_remove(&uc_info->adev_list_node);
    free(uc_info);

    ALOGV("%s: exit", __func__);
    return 0;
}

/* always called with adev lock held */
static int start_voice_call(struct audio_device *adev)
{
    struct audio_usecase *uc_info;

    ALOGV("%s: enter", __func__);

    uc_info = (struct audio_usecase *)calloc(1, sizeof(struct audio_usecase));
    uc_info->id = USECASE_VOICE_CALL;
    uc_info->type = VOICE_CALL;
    uc_info->stream = (struct audio_stream *)adev->primary_output;
    uc_info->devices = adev->primary_output->devices;
    uc_info->in_snd_device = SND_DEVICE_NONE;
    uc_info->out_snd_device = SND_DEVICE_NONE;

    uc_select_pcm_devices(uc_info);

    list_add_tail(&adev->usecase_list, &uc_info->adev_list_node);

    select_devices(adev, USECASE_VOICE_CALL);


    /* TODO: implement voice call start */

    /* set cached volume */
    set_voice_volume_l(adev, adev->voice_volume);

    adev->in_call = true;
    ALOGV("%s: exit", __func__);
    return 0;
}

static int check_input_parameters(uint32_t sample_rate,
                                  audio_format_t format,
                                  int channel_count)
{
    if (format != AUDIO_FORMAT_PCM_16_BIT) return -EINVAL;

    if ((channel_count < 1) || (channel_count > 4)) return -EINVAL;

    switch (sample_rate) {
    case 8000:
    case 11025:
    case 12000:
    case 16000:
    case 22050:
    case 24000:
    case 32000:
    case 44100:
    case 48000:
        break;
    default:
        return -EINVAL;
    }

    return 0;
}

static size_t get_input_buffer_size(uint32_t sample_rate,
                                    audio_format_t format,
                                    int channel_count,
                                    usecase_type_t usecase_type,
                                    audio_devices_t devices)
{
    size_t size = 0;
    struct pcm_device_profile *pcm_profile;

    if (check_input_parameters(sample_rate, format, channel_count) != 0)
        return 0;

    pcm_profile = get_pcm_device(usecase_type, devices);
    if (pcm_profile == NULL)
        return 0;

    /*
     * take resampling into account and return the closest majoring
     * multiple of 16 frames, as audioflinger expects audio buffers to
     * be a multiple of 16 frames
     */
    size = (pcm_profile->config.period_size * sample_rate) / pcm_profile->config.rate;
    size = ((size + 15) / 16) * 16;

    return (size * channel_count * audio_bytes_per_sample(format));

}

static uint32_t out_get_sample_rate(const struct audio_stream *stream)
{
    struct stream_out *out = (struct stream_out *)stream;

    return out->sample_rate;
}

static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
    (void)stream;
    (void)rate;
    return -ENOSYS;
}

static size_t out_get_buffer_size(const struct audio_stream *stream)
{
    struct stream_out *out = (struct stream_out *)stream;

    return out->config.period_size *
               audio_stream_out_frame_size((const struct audio_stream_out *)stream);
}

static uint32_t out_get_channels(const struct audio_stream *stream)
{
    struct stream_out *out = (struct stream_out *)stream;

    return out->channel_mask;
}

static audio_format_t out_get_format(const struct audio_stream *stream)
{
    struct stream_out *out = (struct stream_out *)stream;

    return out->format;
}

static int out_set_format(struct audio_stream *stream, audio_format_t format)
{
    (void)stream;
    (void)format;
    return -ENOSYS;
}

static int do_out_standby_l(struct stream_out *out)
{
    struct audio_device *adev = out->dev;
    int status = 0;

    out->standby = true;
    out_close_pcm_devices(out);
    status = stop_output_stream(out);

    return status;
}

static int out_standby(struct audio_stream *stream)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct audio_device *adev = out->dev;

    ALOGV("%s: enter: usecase(%d: %s)", __func__,
          out->usecase, use_case_table[out->usecase]);
    lock_output_stream(out);
    if (!out->standby) {
        pthread_mutex_lock(&adev->lock);
        do_out_standby_l(out);
        pthread_mutex_unlock(&adev->lock);
    }
    pthread_mutex_unlock(&out->lock);
    ALOGV("%s: exit", __func__);
    return 0;
}

static int out_dump(const struct audio_stream *stream, int fd)
{
    (void)stream;
    (void)fd;

    return 0;
}

static int out_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct audio_device *adev = out->dev;
    struct audio_usecase *usecase;
    struct listnode *node;
    struct str_parms *parms;
    char value[32];
    int ret, val = 0;
    struct audio_usecase *uc_info;
    bool do_standby = false;
    struct pcm_device *pcm_device;
    struct pcm_device_profile *pcm_profile;
#ifdef PREPROCESSING_ENABLED
    struct stream_in *in = NULL;    /* if non-NULL, then force input to standby */
#endif

    ALOGV("%s: enter: usecase(%d: %s) kvpairs: %s out->devices(%d) adev->mode(%d)",
          __func__, out->usecase, use_case_table[out->usecase], kvpairs, out->devices, adev->mode);
    parms = str_parms_create_str(kvpairs);
    ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value));
    if (ret >= 0) {
        val = atoi(value);
        pthread_mutex_lock(&adev->lock_inputs);
        lock_output_stream(out);
        pthread_mutex_lock(&adev->lock);
#ifdef PREPROCESSING_ENABLED
        if (((int)out->devices != val) && (val != 0) && (!out->standby) &&
            (out->usecase == USECASE_AUDIO_PLAYBACK)) {
            /* reset active input:
             *  - to attach the echo reference
             *  - because a change in output device may change mic settings */
            if (adev->active_input && (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION ||
                    adev->active_input->source == AUDIO_SOURCE_MIC)) {
                in = adev->active_input;
            }
        }
#endif
        if (val != 0) {
            out->devices = val;

            if (!out->standby) {
                uc_info = get_usecase_from_id(adev, out->usecase);
                if (uc_info == NULL) {
                    ALOGE("%s: Could not find the usecase (%d) in the list",
                          __func__, out->usecase);
                } else {
                    list_for_each(node, &out->pcm_dev_list) {
                        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
                        if ((pcm_device->pcm_profile->devices & val) == 0)
                            do_standby = true;
                        val &= ~pcm_device->pcm_profile->devices;
                    }
                    if (val != 0)
                        do_standby = true;
                }
                if (do_standby)
                    do_out_standby_l(out);
                else
                    select_devices(adev, out->usecase);
            }

            if ((adev->mode == AUDIO_MODE_IN_CALL) && !adev->in_call &&
                    (out == adev->primary_output)) {
                start_voice_call(adev);
            } else if ((adev->mode == AUDIO_MODE_IN_CALL) && adev->in_call &&
                       (out == adev->primary_output)) {
                select_devices(adev, USECASE_VOICE_CALL);
            }
        }

        if ((adev->mode == AUDIO_MODE_NORMAL) && adev->in_call &&
                (out == adev->primary_output)) {
            stop_voice_call(adev);
        }
        pthread_mutex_unlock(&adev->lock);
        pthread_mutex_unlock(&out->lock);
#ifdef PREPROCESSING_ENABLED
        if (in) {
            /* The lock on adev->lock_inputs prevents input stream from being closed */
            lock_input_stream(in);
            pthread_mutex_lock(&adev->lock);
            LOG_ALWAYS_FATAL_IF(in != adev->active_input);
            do_in_standby_l(in);
            pthread_mutex_unlock(&adev->lock);
            pthread_mutex_unlock(&in->lock);
        }
#endif
        pthread_mutex_unlock(&adev->lock_inputs);
    }

    str_parms_destroy(parms);
    ALOGV("%s: exit: code(%d)", __func__, ret);
    return ret;
}

static char* out_get_parameters(const struct audio_stream *stream, const char *keys)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct str_parms *query = str_parms_create_str(keys);
    char *str;
    char value[256];
    struct str_parms *reply = str_parms_create();
    size_t i, j;
    int ret;
    bool first = true;
    ALOGV("%s: enter: keys - %s", __func__, keys);
    ret = str_parms_get_str(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value, sizeof(value));
    if (ret >= 0) {
        value[0] = '\0';
        i = 0;
        while (out->supported_channel_masks[i] != 0) {
            for (j = 0; j < ARRAY_SIZE(out_channels_name_to_enum_table); j++) {
                if (out_channels_name_to_enum_table[j].value == out->supported_channel_masks[i]) {
                    if (!first) {
                        strcat(value, "|");
                    }
                    strcat(value, out_channels_name_to_enum_table[j].name);
                    first = false;
                    break;
                }
            }
            i++;
        }
        str_parms_add_str(reply, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, value);
        str = str_parms_to_str(reply);
    } else {
        str = strdup(keys);
    }
    str_parms_destroy(query);
    str_parms_destroy(reply);
    ALOGV("%s: exit: returns - %s", __func__, str);
    return str;
}

static uint32_t out_get_latency(const struct audio_stream_out *stream)
{
    struct stream_out *out = (struct stream_out *)stream;

    return (out->config.period_count * out->config.period_size * 1000) /
           (out->config.rate);
}

static int out_set_volume(struct audio_stream_out *stream, float left,
                          float right)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct audio_device *adev = out->dev;
    (void)right;

    if (out->usecase == USECASE_AUDIO_PLAYBACK_MULTI_CH) {
        /* only take left channel into account: the API is for stereo anyway */
        out->muted = (left == 0.0f);
        return 0;
    }

    return -ENOSYS;
}

/* Applies the DSP to the samples for the iodev if applicable. */
static void apply_dsp(struct pcm_device *iodev, uint8_t *buf, size_t frames)
{
	struct cras_dsp_context *ctx;
	struct pipeline *pipeline;

	ctx = iodev->dsp_context;
	if (!ctx)
		return;

	pipeline = cras_dsp_get_pipeline(ctx);
	if (!pipeline)
		return;

	cras_dsp_pipeline_apply(pipeline,
				buf,
				frames);

	cras_dsp_put_pipeline(ctx);
}

static ssize_t out_write(struct audio_stream_out *stream, const void *buffer,
                         size_t bytes)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct audio_device *adev = out->dev;
    ssize_t ret = 0;
    struct pcm_device *pcm_device;
    struct listnode *node;
    size_t frame_size = audio_stream_out_frame_size(stream);
    size_t frames_wr = 0, frames_rq = 0;
    unsigned char *data = NULL;
    struct pcm_config config;
#ifdef PREPROCESSING_ENABLED
    size_t in_frames = bytes / frame_size;
    size_t out_frames = in_frames;
    struct stream_in *in = NULL;
#endif

    lock_output_stream(out);
    if (out->standby) {
#ifdef PREPROCESSING_ENABLED
        pthread_mutex_unlock(&out->lock);
        /* Prevent input stream from being closed */
        pthread_mutex_lock(&adev->lock_inputs);
        lock_output_stream(out);
        if (!out->standby) {
            pthread_mutex_unlock(&adev->lock_inputs);
            goto false_alarm;
        }
#endif
        pthread_mutex_lock(&adev->lock);
        ret = start_output_stream(out);
        if (ret != 0) {
            pthread_mutex_unlock(&adev->lock);
#ifdef PREPROCESSING_ENABLED
            pthread_mutex_unlock(&adev->lock_inputs);
#endif
            goto exit;
        }
        out->standby = false;

#ifdef PREPROCESSING_ENABLED
        /* A change in output device may change the microphone selection */
        if (adev->active_input &&
            (adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION ||
                adev->active_input->source == AUDIO_SOURCE_MIC)) {
                    in = adev->active_input;
                    ALOGV("%s: enter: force_input_standby true", __func__);
        }
#endif
        pthread_mutex_unlock(&adev->lock);
#ifdef PREPROCESSING_ENABLED
        if (!in) {
            /* Leave mutex locked iff in != NULL */
            pthread_mutex_unlock(&adev->lock_inputs);
        }
#endif
    }
false_alarm:

    if (out->muted)
        memset((void *)buffer, 0, bytes);
    list_for_each(node, &out->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        if (pcm_device->resampler) {
            if (bytes * pcm_device->pcm_profile->config.rate / out->sample_rate + frame_size
                    > pcm_device->res_byte_count) {
                pcm_device->res_byte_count =
                    bytes * pcm_device->pcm_profile->config.rate / out->sample_rate + frame_size;
                pcm_device->res_buffer =
                    realloc(pcm_device->res_buffer, pcm_device->res_byte_count);
                ALOGV("%s: resampler res_byte_count = %zu", __func__,
                    pcm_device->res_byte_count);
            }
            frames_rq = bytes / frame_size;
            frames_wr = pcm_device->res_byte_count / frame_size;
            ALOGVV("%s: resampler request frames = %zu frame_size = %zu",
                __func__, frames_rq, frame_size);
            pcm_device->resampler->resample_from_input(pcm_device->resampler,
                (int16_t *)buffer, &frames_rq, (int16_t *)pcm_device->res_buffer, &frames_wr);
            ALOGVV("%s: resampler output frames_= %zu", __func__, frames_wr);
        }
        if (pcm_device->pcm) {
            size_t src_channels = audio_channel_count_from_out_mask(out->channel_mask);
            size_t dst_channels = pcm_device->pcm_profile->config.channels;
            bool channel_remapping_needed = (dst_channels != src_channels);
            unsigned audio_bytes;
            const void *audio_data;

            ALOGVV("%s: writing buffer (%zd bytes) to pcm device", __func__, bytes);
            if (pcm_device->resampler && pcm_device->res_buffer) {
                audio_data = pcm_device->res_buffer;
                audio_bytes = frames_wr * frame_size;
            } else {
                audio_data = buffer;
                audio_bytes = bytes;
            }

            /*
             * This can only be S16_LE stereo because of the supported formats,
             * 4 bytes per frame.
             */
            apply_dsp(pcm_device, audio_data, audio_bytes/4);

            if (channel_remapping_needed) {
                const void *remapped_audio_data;
                size_t dest_buffer_size = audio_bytes * dst_channels / src_channels;
                size_t new_size;
                size_t bytes_per_sample = audio_bytes_per_sample(stream->common.get_format(&stream->common));

                /* With additional channels, we cannot use original buffer */
                if (out->proc_buf_size < dest_buffer_size) {
                    out->proc_buf_size = dest_buffer_size;
                    out->proc_buf_out = realloc(out->proc_buf_out, dest_buffer_size);
                    ALOG_ASSERT((out->proc_buf_out != NULL),
                                "out_write() failed to reallocate proc_buf_out");
                }
                new_size = adjust_channels(audio_data, src_channels, out->proc_buf_out, dst_channels,
                    bytes_per_sample, audio_bytes);
                ALOG_ASSERT(new_size == dest_buffer_size);
                audio_data = out->proc_buf_out;
                audio_bytes = dest_buffer_size;
            }

            pcm_device->status = pcm_write(pcm_device->pcm, audio_data, audio_bytes);
            if (pcm_device->status != 0)
                ret = pcm_device->status;
        }
    }
    if (ret == 0)
        out->written += bytes / frame_size;

exit:
    pthread_mutex_unlock(&out->lock);

    if (ret != 0) {
        list_for_each(node, &out->pcm_dev_list) {
            pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
            if (pcm_device->pcm && pcm_device->status != 0)
                ALOGE("%s: error %zd - %s", __func__, ret, pcm_get_error(pcm_device->pcm));
        }
        out_standby(&out->stream.common);
        usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) /
               out_get_sample_rate(&out->stream.common));
    }

#ifdef PREPROCESSING_ENABLED
    if (in) {
        /* The lock on adev->lock_inputs prevents input stream from being closed */
        lock_input_stream(in);
        pthread_mutex_lock(&adev->lock);
        LOG_ALWAYS_FATAL_IF(in != adev->active_input);
        do_in_standby_l(in);
        pthread_mutex_unlock(&adev->lock);
        pthread_mutex_unlock(&in->lock);
        /* This mutex was left locked iff in != NULL */
        pthread_mutex_unlock(&adev->lock_inputs);
    }
#endif

    return bytes;
}

static int out_get_render_position(const struct audio_stream_out *stream,
                                   uint32_t *dsp_frames)
{
    (void)stream;
    *dsp_frames = 0;
    return -EINVAL;
}

static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
    (void)stream;
    (void)effect;
    return 0;
}

static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
    (void)stream;
    (void)effect;
    return 0;
}

static int out_get_next_write_timestamp(const struct audio_stream_out *stream,
                                        int64_t *timestamp)
{
    (void)stream;
    (void)timestamp;
    return -EINVAL;
}

static int out_get_presentation_position(const struct audio_stream_out *stream,
                                   uint64_t *frames, struct timespec *timestamp)
{
    struct stream_out *out = (struct stream_out *)stream;
    int ret = -1;
    unsigned long dsp_frames;

    lock_output_stream(out);

    /* FIXME: which device to read from? */
    if (!list_empty(&out->pcm_dev_list)) {
        unsigned int avail;
        struct pcm_device *pcm_device = node_to_item(list_head(&out->pcm_dev_list),
                                               struct pcm_device, stream_list_node);

        if (pcm_get_htimestamp(pcm_device->pcm, &avail, timestamp) == 0) {
            size_t kernel_buffer_size = out->config.period_size * out->config.period_count;
            int64_t signed_frames = out->written - kernel_buffer_size + avail;
            /* This adjustment accounts for buffering after app processor.
               It is based on estimated DSP latency per use case, rather than exact. */
            signed_frames -=
                (render_latency(out->usecase) * out->sample_rate / 1000000LL);

            /* It would be unusual for this value to be negative, but check just in case ... */
            if (signed_frames >= 0) {
                *frames = signed_frames;
                ret = 0;
            }
        }
    }

    pthread_mutex_unlock(&out->lock);

    return ret;
}

/** audio_stream_in implementation **/
static uint32_t in_get_sample_rate(const struct audio_stream *stream)
{
    struct stream_in *in = (struct stream_in *)stream;

    return in->requested_rate;
}

static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
    (void)stream;
    (void)rate;
    return -ENOSYS;
}

static uint32_t in_get_channels(const struct audio_stream *stream)
{
    struct stream_in *in = (struct stream_in *)stream;

    return in->main_channels;
}

static audio_format_t in_get_format(const struct audio_stream *stream)
{
    (void)stream;
    return AUDIO_FORMAT_PCM_16_BIT;
}

static int in_set_format(struct audio_stream *stream, audio_format_t format)
{
    (void)stream;
    (void)format;

    return -ENOSYS;
}

static size_t in_get_buffer_size(const struct audio_stream *stream)
{
    struct stream_in *in = (struct stream_in *)stream;

    return get_input_buffer_size(in->requested_rate,
                                 in_get_format(stream),
                                 audio_channel_count_from_in_mask(in->main_channels),
                                 in->usecase_type,
                                 in->devices);
}

static int in_close_pcm_devices(struct stream_in *in)
{
    struct pcm_device *pcm_device;
    struct listnode *node;
    struct audio_device *adev = in->dev;

    list_for_each(node, &in->pcm_dev_list) {
        pcm_device = node_to_item(node, struct pcm_device, stream_list_node);
        if (pcm_device) {
            if (pcm_device->pcm)
                pcm_close(pcm_device->pcm);
            pcm_device->pcm = NULL;
            if (pcm_device->sound_trigger_handle > 0)
                adev->sound_trigger_close_for_streaming(
                        pcm_device->sound_trigger_handle);
            pcm_device->sound_trigger_handle = 0;
        }
    }
    return 0;
}


/* must be called with stream and hw device mutex locked */
static int do_in_standby_l(struct stream_in *in)
{
    int status = 0;

    if (!in->standby) {

        in_close_pcm_devices(in);

        status = stop_input_stream(in);

        if (in->read_buf) {
            free(in->read_buf);
            in->read_buf = NULL;
        }

        in->standby = 1;
    }
    return 0;
}

// called with adev->lock_inputs locked
static int in_standby_l(struct stream_in *in)
{
    struct audio_device *adev = in->dev;
    int status = 0;
    lock_input_stream(in);
    if (!in->standby) {
        pthread_mutex_lock(&adev->lock);
        status = do_in_standby_l(in);
        pthread_mutex_unlock(&adev->lock);
    }
    pthread_mutex_unlock(&in->lock);
    return status;
}

static int in_standby(struct audio_stream *stream)
{
    struct stream_in *in = (struct stream_in *)stream;
    struct audio_device *adev = in->dev;
    int status;
    ALOGV("%s: enter", __func__);
    pthread_mutex_lock(&adev->lock_inputs);
    status = in_standby_l(in);
    pthread_mutex_unlock(&adev->lock_inputs);
    ALOGV("%s: exit:  status(%d)", __func__, status);
    return status;
}

static int in_dump(const struct audio_stream *stream, int fd)
{
    (void)stream;
    (void)fd;

    return 0;
}

static int in_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
    struct stream_in *in = (struct stream_in *)stream;
    struct audio_device *adev = in->dev;
    struct str_parms *parms;
    char *str;
    char value[32];
    int ret, val = 0;
    struct audio_usecase *uc_info;
    bool do_standby = false;
    struct listnode *node;
    struct pcm_device *pcm_device;
    struct pcm_device_profile *pcm_profile;

    ALOGV("%s: enter: kvpairs=%s", __func__, kvpairs);
    parms = str_parms_create_str(kvpairs);

    ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_INPUT_SOURCE, value, sizeof(value));

    pthread_mutex_lock(&adev->lock_inputs);
    lock_input_stream(in);
    pthread_mutex_lock(&adev->lock);
    if (ret >= 0) {
        val = atoi(value);
        /* no audio source uses val == 0 */
        if (((int)in->source != val) && (val != 0)) {
            in->source = val;
        }
    }

    ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value));
    if (ret >= 0) {
        val = atoi(value);
        if (((int)in->devices != val) && (val != 0)) {
            in->devices = val;
            /* If recording is in progress, change the tx device to new device */
            if (!in->standby) {
                uc_info = get_usecase_from_id(adev, in->usecase);
                if (uc_info == NULL) {
                    ALOGE("%s: Could not find the usecase (%d) in the list",
                          __func__, in->usecase);
                } else {
                    if (list_empty(&in->pcm_dev_list))
                        ALOGE("%s: pcm device list empty", __func__);
                    else {
                        pcm_device = node_to_item(list_head(&in->pcm_dev_list),
                                                  struct pcm_device, stream_list_node);
                        if ((pcm_device->pcm_profile->devices & val & ~AUDIO_DEVICE_BIT_IN) == 0) {
                            do_standby = true;
                        }
                    }
                }
                if (do_standby) {
                    ret = do_in_standby_l(in);
                } else
                    ret = select_devices(adev, in->usecase);
            }
        }
    }
    pthread_mutex_unlock(&adev->lock);
    pthread_mutex_unlock(&in->lock);
    pthread_mutex_unlock(&adev->lock_inputs);
    str_parms_destroy(parms);

    if (ret > 0)
        ret = 0;

    return ret;
}

static char* in_get_parameters(const struct audio_stream *stream,
                               const char *keys)
{
    (void)stream;
    (void)keys;

    return strdup("");
}

static int in_set_gain(struct audio_stream_in *stream, float gain)
{
    (void)stream;
    (void)gain;

    return 0;
}

static ssize_t read_bytes_from_dsp(struct stream_in *in, void* buffer,
                                   size_t bytes)
{
    struct pcm_device *pcm_device;
    struct audio_device *adev = in->dev;

    pcm_device = node_to_item(list_head(&in->pcm_dev_list),
                              struct pcm_device, stream_list_node);

    if (pcm_device->sound_trigger_handle > 0)
        return adev->sound_trigger_read_samples(
                pcm_device->sound_trigger_handle, buffer, bytes);
    else
        return 0;
}

static ssize_t in_read(struct audio_stream_in *stream, void *buffer,
                       size_t bytes)
{
    struct stream_in *in = (struct stream_in *)stream;
    struct audio_device *adev = in->dev;
    ssize_t frames = -1;
    int ret = -1;
    int read_and_process_successful = false;

    size_t frames_rq = bytes / audio_stream_in_frame_size(stream);

    /* no need to acquire adev->lock_inputs because API contract prevents a close */
    lock_input_stream(in);
    if (in->standby) {
        pthread_mutex_unlock(&in->lock);
        pthread_mutex_lock(&adev->lock_inputs);
        lock_input_stream(in);
        if (!in->standby) {
            pthread_mutex_unlock(&adev->lock_inputs);
            goto false_alarm;
        }
        pthread_mutex_lock(&adev->lock);
        ret = start_input_stream(in);
        pthread_mutex_unlock(&adev->lock);
        pthread_mutex_unlock(&adev->lock_inputs);
        if (ret != 0) {
            goto exit;
        }
        in->standby = 0;
    }
false_alarm:

    if (!list_empty(&in->pcm_dev_list)) {
        if (in->usecase == USECASE_AUDIO_CAPTURE_HOTWORD) {
            bytes = read_bytes_from_dsp(in, buffer, bytes);
            if (bytes > 0)
                read_and_process_successful = true;
        } else {
            /*
             * Read PCM and:
             * - resample if needed
             * - process if pre-processors are attached
             * - discard unwanted channels
             */
            frames = read_and_process_frames(stream, buffer, frames_rq);
            if (frames >= 0)
                read_and_process_successful = true;
        }
    }

    /*
     * Instead of writing zeroes here, we could trust the hardware
     * to always provide zeroes when muted.
     */
    if (read_and_process_successful == true && adev->mic_mute)
        memset(buffer, 0, bytes);

exit:
    pthread_mutex_unlock(&in->lock);

    if (read_and_process_successful == false) {
        in_standby(&in->stream.common);
        ALOGV("%s: read failed - sleeping for buffer duration", __func__);
        usleep(bytes * 1000000 / audio_stream_in_frame_size(stream) /
               in->requested_rate);
    }
    return bytes;
}

static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream)
{
    (void)stream;

    return 0;
}

static int add_remove_audio_effect(const struct audio_stream *stream,
                                   effect_handle_t effect,
                                   bool enable)
{
    struct stream_in *in = (struct stream_in *)stream;
    struct audio_device *adev = in->dev;
    int status = 0;
    effect_descriptor_t desc;
#ifdef PREPROCESSING_ENABLED
    int i;
#endif
    status = (*effect)->get_descriptor(effect, &desc);
    if (status != 0)
        return status;

    ALOGI("add_remove_audio_effect(), effect type: %08x, enable: %d ", desc.type.timeLow, enable);

    pthread_mutex_lock(&adev->lock_inputs);
    lock_input_stream(in);
    pthread_mutex_lock(&in->dev->lock);
#ifndef PREPROCESSING_ENABLED
    if ((in->source == AUDIO_SOURCE_VOICE_COMMUNICATION) &&
            in->enable_aec != enable &&
            (memcmp(&desc.type, FX_IID_AEC, sizeof(effect_uuid_t)) == 0)) {
        in->enable_aec = enable;
        if (!in->standby)
            select_devices(in->dev, in->usecase);
    }
#else
    if (enable) {
        if (in->num_preprocessors >= MAX_PREPROCESSORS) {
            status = -ENOSYS;
            goto exit;
        }
        in->preprocessors[in->num_preprocessors].effect_itfe = effect;
        in->num_preprocessors ++;
        /* check compatibility between main channel supported and possible auxiliary channels */
        in_update_aux_channels(in, effect);//wesley crash
        in->aux_channels_changed = true;
    } else {
        /* if ( enable == false ) */
        if (in->num_preprocessors <= 0) {
            status = -ENOSYS;
            goto exit;
        }
        status = -EINVAL;
        for (i = 0; i < in->num_preprocessors && status != 0; i++) {
            if ( in->preprocessors[i].effect_itfe == effect ) {
                ALOGV("add_remove_audio_effect found fx at index %d", i);
                free(in->preprocessors[i].channel_configs);
                in->num_preprocessors--;
                memcpy(in->preprocessors + i,
                       in->preprocessors + i + 1,
                       (in->num_preprocessors - i) * sizeof(in->preprocessors[0]));
                memset(in->preprocessors + in->num_preprocessors,
                       0,
                       sizeof(in->preprocessors[0]));
                status = 0;
            }
        }
        if (status != 0)
            goto exit;
        in->aux_channels_changed = false;
        ALOGV("%s: enable(%d), in->aux_channels_changed(%d)",
              __func__, enable, in->aux_channels_changed);
    }
    ALOGI("%s:  num_preprocessors = %d", __func__, in->num_preprocessors);

exit:
#endif
    ALOGW_IF(status != 0, "add_remove_audio_effect() error %d", status);
    pthread_mutex_unlock(&in->dev->lock);
    pthread_mutex_unlock(&in->lock);
    pthread_mutex_unlock(&adev->lock_inputs);
    return status;
}

static int in_add_audio_effect(const struct audio_stream *stream,
                               effect_handle_t effect)
{
    ALOGV("%s: effect %p", __func__, effect);
    return add_remove_audio_effect(stream, effect, true /* enabled */);
}

static int in_remove_audio_effect(const struct audio_stream *stream,
                                  effect_handle_t effect)
{
    ALOGV("%s: effect %p", __func__, effect);
    return add_remove_audio_effect(stream, effect, false /* disabled */);
}

static int adev_open_output_stream(struct audio_hw_device *dev,
                                   audio_io_handle_t handle,
                                   audio_devices_t devices,
                                   audio_output_flags_t flags,
                                   struct audio_config *config,
                                   struct audio_stream_out **stream_out,
                                   const char *address __unused)
{
    struct audio_device *adev = (struct audio_device *)dev;
    struct stream_out *out;
    int i, ret;
    struct pcm_device_profile *pcm_profile;

    ALOGV("%s: enter: sample_rate(%d) channel_mask(%#x) devices(%#x) flags(%#x)",
          __func__, config->sample_rate, config->channel_mask, devices, flags);
    *stream_out = NULL;
    out = (struct stream_out *)calloc(1, sizeof(struct stream_out));

    if (devices == AUDIO_DEVICE_NONE)
        devices = AUDIO_DEVICE_OUT_SPEAKER;

    out->flags = flags;
    out->devices = devices;
    out->dev = adev;
    out->format = config->format;
    out->sample_rate = config->sample_rate;
    out->channel_mask = AUDIO_CHANNEL_OUT_STEREO;
    out->supported_channel_masks[0] = AUDIO_CHANNEL_OUT_STEREO;
    out->handle = handle;

    pcm_profile = get_pcm_device(PCM_PLAYBACK, devices);
    if (pcm_profile == NULL) {
        ret = -EINVAL;
        goto error_open;
    }
    out->config = pcm_profile->config;

    /* Init use case and pcm_config */
    if (out->flags & (AUDIO_OUTPUT_FLAG_DEEP_BUFFER)) {
        out->usecase = USECASE_AUDIO_PLAYBACK_DEEP_BUFFER;
        out->config = pcm_config_deep_buffer;
        out->sample_rate = out->config.rate;
        ALOGV("%s: use AUDIO_PLAYBACK_DEEP_BUFFER",__func__);
    } else {
        out->usecase = USECASE_AUDIO_PLAYBACK;
        out->sample_rate = out->config.rate;
    }

    if (flags & AUDIO_OUTPUT_FLAG_PRIMARY) {
        if (adev->primary_output == NULL)
            adev->primary_output = out;
        else {
            ALOGE("%s: Primary output is already opened", __func__);
            ret = -EEXIST;
            goto error_open;
        }
    }

    /* Check if this usecase is already existing */
    pthread_mutex_lock(&adev->lock);
    if (get_usecase_from_id(adev, out->usecase) != NULL) {
        ALOGE("%s: Usecase (%d) is already present", __func__, out->usecase);
        pthread_mutex_unlock(&adev->lock);
        ret = -EEXIST;
        goto error_open;
    }
    pthread_mutex_unlock(&adev->lock);

    out->stream.common.get_sample_rate = out_get_sample_rate;
    out->stream.common.set_sample_rate = out_set_sample_rate;
    out->stream.common.get_buffer_size = out_get_buffer_size;
    out->stream.common.get_channels = out_get_channels;
    out->stream.common.get_format = out_get_format;
    out->stream.common.set_format = out_set_format;
    out->stream.common.standby = out_standby;
    out->stream.common.dump = out_dump;
    out->stream.common.set_parameters = out_set_parameters;
    out->stream.common.get_parameters = out_get_parameters;
    out->stream.common.add_audio_effect = out_add_audio_effect;
    out->stream.common.remove_audio_effect = out_remove_audio_effect;
    out->stream.get_latency = out_get_latency;
    out->stream.set_volume = out_set_volume;
    out->stream.write = out_write;
    out->stream.get_render_position = out_get_render_position;
    out->stream.get_next_write_timestamp = out_get_next_write_timestamp;
    out->stream.get_presentation_position = out_get_presentation_position;

    out->standby = 1;
    /* out->muted = false; by calloc() */
    /* out->written = 0; by calloc() */

    pthread_mutex_init(&out->lock, (const pthread_mutexattr_t *) NULL);
    pthread_mutex_init(&out->pre_lock, (const pthread_mutexattr_t *) NULL);
    pthread_cond_init(&out->cond, (const pthread_condattr_t *) NULL);

    config->format = out->stream.common.get_format(&out->stream.common);
    config->channel_mask = out->stream.common.get_channels(&out->stream.common);
    config->sample_rate = out->stream.common.get_sample_rate(&out->stream.common);

    *stream_out = &out->stream;
    ALOGV("%s: exit", __func__);
    return 0;

error_open:
    free(out);
    *stream_out = NULL;
    ALOGV("%s: exit: ret %d", __func__, ret);
    return ret;
}

static void adev_close_output_stream(struct audio_hw_device *dev,
                                     struct audio_stream_out *stream)
{
    struct stream_out *out = (struct stream_out *)stream;
    struct audio_device *adev = out->dev;
    (void)dev;

    ALOGV("%s: enter", __func__);
    out_standby(&stream->common);
    pthread_cond_destroy(&out->cond);
    pthread_mutex_destroy(&out->lock);
    pthread_mutex_destroy(&out->pre_lock);
    free(out->proc_buf_out);
    free(stream);
    ALOGV("%s: exit", __func__);
}

static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs)
{
    struct audio_device *adev = (struct audio_device *)dev;
    struct str_parms *parms;
    char *str;
    char value[32];
    int val;
    int ret;

    ALOGV("%s: enter: %s", __func__, kvpairs);

    parms = str_parms_create_str(kvpairs);
    ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_TTY_MODE, value, sizeof(value));
    if (ret >= 0) {
        int tty_mode;

        if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_OFF) == 0)
            tty_mode = TTY_MODE_OFF;
        else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_VCO) == 0)
            tty_mode = TTY_MODE_VCO;
        else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_HCO) == 0)
            tty_mode = TTY_MODE_HCO;
        else if (strcmp(value, AUDIO_PARAMETER_VALUE_TTY_FULL) == 0)
            tty_mode = TTY_MODE_FULL;
        else
            return -EINVAL;

        pthread_mutex_lock(&adev->lock);
        if (tty_mode != adev->tty_mode) {
            adev->tty_mode = tty_mode;
            if (adev->in_call)
                select_devices(adev, USECASE_VOICE_CALL);
        }
        pthread_mutex_unlock(&adev->lock);
    }

    ret = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_BT_NREC, value, sizeof(value));
    if (ret >= 0) {
        /* When set to false, HAL should disable EC and NS
         * But it is currently not supported.
         */
        if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0)
            adev->bluetooth_nrec = true;
        else
            adev->bluetooth_nrec = false;
    }

    ret = str_parms_get_str(parms, "screen_state", value, sizeof(value));
    if (ret >= 0) {
        if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0)
            adev->screen_off = false;
        else
            adev->screen_off = true;
    }

    ret = str_parms_get_int(parms, "rotation", &val);
    if (ret >= 0) {
        bool reverse_speakers = false;
        switch(val) {
        /* FIXME: note that the code below assumes that the speakers are in the correct placement
             relative to the user when the device is rotated 90deg from its default rotation. This
             assumption is device-specific, not platform-specific like this code. */
        case 270:
            reverse_speakers = true;
            break;
        case 0:
        case 90:
        case 180:
            break;
        default:
            ALOGE("%s: unexpected rotation of %d", __func__, val);
        }
        pthread_mutex_lock(&adev->lock);
        if (adev->speaker_lr_swap != reverse_speakers) {
            adev->speaker_lr_swap = reverse_speakers;
            /* only update the selected device if there is active pcm playback */
            struct audio_usecase *usecase;
            struct listnode *node;
            list_for_each(node, &adev->usecase_list) {
                usecase = node_to_item(node, struct audio_usecase, adev_list_node);
                if (usecase->type == PCM_PLAYBACK) {
                    select_devices(adev, usecase->id);
                    /* TODO(dgreid) speaker flip */
                    break;
                }
            }
        }
        pthread_mutex_unlock(&adev->lock);
    }

    str_parms_destroy(parms);
    ALOGV("%s: exit with code(%d)", __func__, ret);
    return ret;
}

static char* adev_get_parameters(const struct audio_hw_device *dev,
                                 const char *keys)
{
    (void)dev;
    (void)keys;

    return strdup("");
}

static int adev_init_check(const struct audio_hw_device *dev)
{
    (void)dev;

    return 0;
}

static int adev_set_voice_volume(struct audio_hw_device *dev, float volume)
{
    int ret = 0;
    struct audio_device *adev = (struct audio_device *)dev;
    pthread_mutex_lock(&adev->lock);
    /* cache volume */
    adev->voice_volume = volume;
    ret = set_voice_volume_l(adev, adev->voice_volume);
    pthread_mutex_unlock(&adev->lock);
    return ret;
}

static int adev_set_master_volume(struct audio_hw_device *dev, float volume)
{
    (void)dev;
    (void)volume;

    return -ENOSYS;
}

static int adev_get_master_volume(struct audio_hw_device *dev,
                                  float *volume)
{
    (void)dev;
    (void)volume;

    return -ENOSYS;
}

static int adev_set_master_mute(struct audio_hw_device *dev, bool muted)
{
    (void)dev;
    (void)muted;

    return -ENOSYS;
}

static int adev_get_master_mute(struct audio_hw_device *dev, bool *muted)
{
    (void)dev;
    (void)muted;

    return -ENOSYS;
}

static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode)
{
    struct audio_device *adev = (struct audio_device *)dev;

    pthread_mutex_lock(&adev->lock);
    if (adev->mode != mode) {
        ALOGI("%s mode = %d", __func__, mode);
        adev->mode = mode;
    }
    pthread_mutex_unlock(&adev->lock);
    return 0;
}

static int adev_set_mic_mute(struct audio_hw_device *dev, bool state)
{
    struct audio_device *adev = (struct audio_device *)dev;
    int err = 0;

    pthread_mutex_lock(&adev->lock);
    adev->mic_mute = state;

    if (adev->mode == AUDIO_MODE_IN_CALL) {
        /* TODO */
    }

    pthread_mutex_unlock(&adev->lock);
    return err;
}

static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state)
{
    struct audio_device *adev = (struct audio_device *)dev;

    *state = adev->mic_mute;

    return 0;
}

static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev,
                                         const struct audio_config *config)
{
    (void)dev;

    /* NOTE: we default to built in mic which may cause a mismatch between what we
     * report here and the actual buffer size
     */
    return get_input_buffer_size(config->sample_rate,
                                 config->format,
                                 audio_channel_count_from_in_mask(config->channel_mask),
                                 PCM_CAPTURE /* usecase_type */,
                                 AUDIO_DEVICE_IN_BUILTIN_MIC);
}

static int adev_open_input_stream(struct audio_hw_device *dev,
                                  audio_io_handle_t handle __unused,
                                  audio_devices_t devices,
                                  struct audio_config *config,
                                  struct audio_stream_in **stream_in,
                                  audio_input_flags_t flags,
                                  const char *address __unused,
                                  audio_source_t source)
{
    struct audio_device *adev = (struct audio_device *)dev;
    struct stream_in *in;
    struct pcm_device_profile *pcm_profile;

    ALOGV("%s: enter", __func__);

    *stream_in = NULL;
    if (check_input_parameters(config->sample_rate, config->format,
                               audio_channel_count_from_in_mask(config->channel_mask)) != 0)
        return -EINVAL;

    usecase_type_t usecase_type = (source == AUDIO_SOURCE_HOTWORD) ?
                PCM_HOTWORD_STREAMING : PCM_CAPTURE;
    pcm_profile = get_pcm_device(usecase_type, devices);
    if (pcm_profile == NULL)
        return -EINVAL;

    in = (struct stream_in *)calloc(1, sizeof(struct stream_in));

    in->stream.common.get_sample_rate = in_get_sample_rate;
    in->stream.common.set_sample_rate = in_set_sample_rate;
    in->stream.common.get_buffer_size = in_get_buffer_size;
    in->stream.common.get_channels = in_get_channels;
    in->stream.common.get_format = in_get_format;
    in->stream.common.set_format = in_set_format;
    in->stream.common.standby = in_standby;
    in->stream.common.dump = in_dump;
    in->stream.common.set_parameters = in_set_parameters;
    in->stream.common.get_parameters = in_get_parameters;
    in->stream.common.add_audio_effect = in_add_audio_effect;
    in->stream.common.remove_audio_effect = in_remove_audio_effect;
    in->stream.set_gain = in_set_gain;
    in->stream.read = in_read;
    in->stream.get_input_frames_lost = in_get_input_frames_lost;

    in->devices = devices;
    in->source = source;
    in->dev = adev;
    in->standby = 1;
    in->main_channels = config->channel_mask;
    in->requested_rate = config->sample_rate;
    if (config->sample_rate != CAPTURE_DEFAULT_SAMPLING_RATE)
        flags = flags & ~AUDIO_INPUT_FLAG_FAST;
    in->input_flags = flags;
    /* HW codec is limited to default channels. No need to update with
     * requested channels */
    in->config = pcm_profile->config;

    /* Update config params with the requested sample rate and channels */
    if (source == AUDIO_SOURCE_HOTWORD) {
        in->usecase = USECASE_AUDIO_CAPTURE_HOTWORD;
    } else {
        in->usecase = USECASE_AUDIO_CAPTURE;
    }
    in->usecase_type = usecase_type;

    pthread_mutex_init(&in->lock, (const pthread_mutexattr_t *) NULL);
    pthread_mutex_init(&in->pre_lock, (const pthread_mutexattr_t *) NULL);

    *stream_in = &in->stream;
    ALOGV("%s: exit", __func__);
    return 0;
}

static void adev_close_input_stream(struct audio_hw_device *dev,
                                    struct audio_stream_in *stream)
{
    struct audio_device *adev = (struct audio_device *)dev;
    struct stream_in *in = (struct stream_in*)stream;
    ALOGV("%s", __func__);

    /* prevent concurrent out_set_parameters, or out_write from standby */
    pthread_mutex_lock(&adev->lock_inputs);

    in_standby_l(in);
    pthread_mutex_destroy(&in->lock);
    pthread_mutex_destroy(&in->pre_lock);
    free(in->proc_buf_out);

#ifdef PREPROCESSING_ENABLED
    int i;

    for (i=0; i<in->num_preprocessors; i++) {
        free(in->preprocessors[i].channel_configs);
    }

    if (in->read_buf) {
        free(in->read_buf);
    }

    if (in->proc_buf_in) {
        free(in->proc_buf_in);
    }

    if (in->resampler) {
        release_resampler(in->resampler);
    }
#endif

    free(stream);

    pthread_mutex_unlock(&adev->lock_inputs);

    return;
}

static int adev_dump(const audio_hw_device_t *device, int fd)
{
    (void)device;
    (void)fd;

    return 0;
}

static int adev_close(hw_device_t *device)
{
    struct audio_device *adev = (struct audio_device *)device;
    free(adev->snd_dev_ref_cnt);
    free_mixer_list(adev);
    free(device);
    return 0;
}

static int adev_open(const hw_module_t *module, const char *name,
                     hw_device_t **device)
{
    struct audio_device *adev;
    int i, ret, retry_count;

    ALOGV("%s: enter", __func__);
    if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL;

    adev = calloc(1, sizeof(struct audio_device));

    adev->device.common.tag = HARDWARE_DEVICE_TAG;
    adev->device.common.version = AUDIO_DEVICE_API_VERSION_2_0;
    adev->device.common.module = (struct hw_module_t *)module;
    adev->device.common.close = adev_close;

    adev->device.init_check = adev_init_check;
    adev->device.set_voice_volume = adev_set_voice_volume;
    adev->device.set_master_volume = adev_set_master_volume;
    adev->device.get_master_volume = adev_get_master_volume;
    adev->device.set_master_mute = adev_set_master_mute;
    adev->device.get_master_mute = adev_get_master_mute;
    adev->device.set_mode = adev_set_mode;
    adev->device.set_mic_mute = adev_set_mic_mute;
    adev->device.get_mic_mute = adev_get_mic_mute;
    adev->device.set_parameters = adev_set_parameters;
    adev->device.get_parameters = adev_get_parameters;
    adev->device.get_input_buffer_size = adev_get_input_buffer_size;
    adev->device.open_output_stream = adev_open_output_stream;
    adev->device.close_output_stream = adev_close_output_stream;
    adev->device.open_input_stream = adev_open_input_stream;
    adev->device.close_input_stream = adev_close_input_stream;
    adev->device.dump = adev_dump;

    /* Set the default route before the PCM stream is opened */
    adev->mode = AUDIO_MODE_NORMAL;
    adev->active_input = NULL;
    adev->primary_output = NULL;
    adev->voice_volume = 1.0f;
    adev->tty_mode = TTY_MODE_OFF;
    adev->bluetooth_nrec = true;
    adev->in_call = false;
    /* adev->cur_hdmi_channels = 0;  by calloc() */
    adev->snd_dev_ref_cnt = calloc(SND_DEVICE_MAX, sizeof(int));

    adev->dualmic_config = DUALMIC_CONFIG_NONE;
    adev->ns_in_voice_rec = false;

    list_init(&adev->usecase_list);

    if (mixer_init(adev) != 0) {
        free(adev->snd_dev_ref_cnt);
        free(adev);
        ALOGE("%s: Failed to init, aborting.", __func__);
        *device = NULL;
        return -EINVAL;
    }


    if (access(SOUND_TRIGGER_HAL_LIBRARY_PATH, R_OK) == 0) {
        adev->sound_trigger_lib = dlopen(SOUND_TRIGGER_HAL_LIBRARY_PATH,
                                         RTLD_NOW);
        if (adev->sound_trigger_lib == NULL) {
            ALOGE("%s: DLOPEN failed for %s", __func__,
                  SOUND_TRIGGER_HAL_LIBRARY_PATH);
        } else {
            ALOGV("%s: DLOPEN successful for %s", __func__,
                  SOUND_TRIGGER_HAL_LIBRARY_PATH);
            adev->sound_trigger_open_for_streaming =
                    (int (*)(void))dlsym(adev->sound_trigger_lib,
                                         "sound_trigger_open_for_streaming");
            adev->sound_trigger_read_samples =
                    (size_t (*)(int, void *, size_t))dlsym(
                            adev->sound_trigger_lib,
                            "sound_trigger_read_samples");
            adev->sound_trigger_close_for_streaming =
                        (int (*)(int))dlsym(
                                adev->sound_trigger_lib,
                                "sound_trigger_close_for_streaming");
            if (!adev->sound_trigger_open_for_streaming ||
                !adev->sound_trigger_read_samples ||
                !adev->sound_trigger_close_for_streaming) {

                ALOGE("%s: Error grabbing functions in %s", __func__,
                      SOUND_TRIGGER_HAL_LIBRARY_PATH);
                adev->sound_trigger_open_for_streaming = 0;
                adev->sound_trigger_read_samples = 0;
                adev->sound_trigger_close_for_streaming = 0;
            }
        }
    }

    *device = &adev->device.common;

    cras_dsp_init("/system/etc/cras/speakerdsp.ini");

    ALOGV("%s: exit", __func__);
    return 0;
}

static struct hw_module_methods_t hal_module_methods = {
    .open = adev_open,
};

struct audio_module HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .module_api_version = AUDIO_MODULE_API_VERSION_0_1,
        .hal_api_version = HARDWARE_HAL_API_VERSION,
        .id = AUDIO_HARDWARE_MODULE_ID,
        .name = "NVIDIA Tegra Audio HAL",
        .author = "The Android Open Source Project",
        .methods = &hal_module_methods,
    },
};