/*
* eBPF user space agent part
*
* Simple, _self-contained_ user space agent for the eBPF kernel
* ebpf_prog.c program, which gets all map fds passed from tc via unix
* domain socket in one transaction and can thus keep referencing
* them from user space in order to read out (or possibly modify)
* map data. Here, just as a minimal example to display counters.
*
* The agent only uses the bpf(2) syscall API to read or possibly
* write to eBPF maps, it doesn't need to be aware of the low-level
* bytecode parts and/or ELF parsing bits.
*
* ! For more details, see header comment in bpf_prog.c !
*
* gcc bpf_agent.c -o bpf_agent -Wall -O2
*
* For example, a more complex user space agent could run on each
* host, reading and writing into eBPF maps used by tc classifier
* and actions. It would thus allow for implementing a distributed
* tc architecture, for example, which would push down central
* policies into eBPF maps, and thus altering run-time behaviour.
*
* -- Happy eBPF hacking! ;)
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <stdint.h>
#include <assert.h>
#include <sys/un.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
/* Just some misc macros as min(), offsetof(), etc. */
#include "../../include/utils.h"
/* Common code from fd passing. */
#include "../../include/bpf_scm.h"
/* Common, shared definitions with ebpf_prog.c */
#include "bpf_shared.h"
/* Mini syscall wrapper */
#include "bpf_sys.h"
static void bpf_dump_drops(int fd)
{
int cpu, max;
max = sysconf(_SC_NPROCESSORS_ONLN);
printf(" `- number of drops:");
for (cpu = 0; cpu < max; cpu++) {
long drops;
assert(bpf_lookup_elem(fd, &cpu, &drops) == 0);
printf("\tcpu%d: %5ld", cpu, drops);
}
printf("\n");
}
static void bpf_dump_queue(int fd)
{
/* Just for the same of the example. */
int max_queue = 4, i;
printf(" | nic queues:");
for (i = 0; i < max_queue; i++) {
struct count_queue cq;
int ret;
memset(&cq, 0, sizeof(cq));
ret = bpf_lookup_elem(fd, &i, &cq);
assert(ret == 0 || (ret < 0 && errno == ENOENT));
printf("\tq%d:[pkts: %ld, mis: %ld]",
i, cq.total, cq.mismatch);
}
printf("\n");
}
static void bpf_dump_proto(int fd)
{
uint8_t protos[] = { IPPROTO_TCP, IPPROTO_UDP, IPPROTO_ICMP };
char *names[] = { "tcp", "udp", "icmp" };
int i;
printf(" ` protos:");
for (i = 0; i < ARRAY_SIZE(protos); i++) {
struct count_tuple ct;
int ret;
memset(&ct, 0, sizeof(ct));
ret = bpf_lookup_elem(fd, &protos[i], &ct);
assert(ret == 0 || (ret < 0 && errno == ENOENT));
printf("\t%s:[pkts: %ld, bytes: %ld]",
names[i], ct.packets, ct.bytes);
}
printf("\n");
}
static void bpf_dump_map_data(int *tfd)
{
int i;
for (i = 0; i < 30; i++) {
const int period = 5;
printf("data, period: %dsec\n", period);
bpf_dump_drops(tfd[BPF_MAP_ID_DROPS]);
bpf_dump_queue(tfd[BPF_MAP_ID_QUEUE]);
bpf_dump_proto(tfd[BPF_MAP_ID_PROTO]);
sleep(period);
}
}
static void bpf_info_loop(int *fds, struct bpf_map_aux *aux)
{
int i, tfd[BPF_MAP_ID_MAX];
printf("ver: %d\nobj: %s\ndev: %lu\nino: %lu\nmaps: %u\n",
aux->uds_ver, aux->obj_name, aux->obj_st.st_dev,
aux->obj_st.st_ino, aux->num_ent);
for (i = 0; i < aux->num_ent; i++) {
printf("map%d:\n", i);
printf(" `- fd: %u\n", fds[i]);
printf(" | serial: %u\n", aux->ent[i].id);
printf(" | type: %u\n", aux->ent[i].type);
printf(" | max elem: %u\n", aux->ent[i].max_elem);
printf(" | size key: %u\n", aux->ent[i].size_key);
printf(" ` size val: %u\n", aux->ent[i].size_value);
tfd[aux->ent[i].id] = fds[i];
}
bpf_dump_map_data(tfd);
}
static void bpf_map_get_from_env(int *tfd)
{
char key[64], *val;
int i;
for (i = 0; i < BPF_MAP_ID_MAX; i++) {
memset(key, 0, sizeof(key));
snprintf(key, sizeof(key), "BPF_MAP%d", i);
val = getenv(key);
assert(val != NULL);
tfd[i] = atoi(val);
}
}
static int bpf_map_set_recv(int fd, int *fds, struct bpf_map_aux *aux,
unsigned int entries)
{
struct bpf_map_set_msg msg;
int *cmsg_buf, min_fd, i;
char *amsg_buf, *mmsg_buf;
cmsg_buf = bpf_map_set_init(&msg, NULL, 0);
amsg_buf = (char *)msg.aux.ent;
mmsg_buf = (char *)&msg.aux;
for (i = 0; i < entries; i += min_fd) {
struct cmsghdr *cmsg;
int ret;
min_fd = min(BPF_SCM_MAX_FDS * 1U, entries - i);
bpf_map_set_init_single(&msg, min_fd);
ret = recvmsg(fd, &msg.hdr, 0);
if (ret <= 0)
return ret ? : -1;
cmsg = CMSG_FIRSTHDR(&msg.hdr);
if (!cmsg || cmsg->cmsg_type != SCM_RIGHTS)
return -EINVAL;
if (msg.hdr.msg_flags & MSG_CTRUNC)
return -EIO;
min_fd = (cmsg->cmsg_len - sizeof(*cmsg)) / sizeof(fd);
if (min_fd > entries || min_fd <= 0)
return -1;
memcpy(&fds[i], cmsg_buf, sizeof(fds[0]) * min_fd);
memcpy(&aux->ent[i], amsg_buf, sizeof(aux->ent[0]) * min_fd);
memcpy(aux, mmsg_buf, offsetof(struct bpf_map_aux, ent));
if (i + min_fd == aux->num_ent)
break;
}
return 0;
}
int main(int argc, char **argv)
{
int fds[BPF_SCM_MAX_FDS];
struct bpf_map_aux aux;
struct sockaddr_un addr;
int fd, ret, i;
/* When arguments are being passed, we take it as a path
* to a Unix domain socket, otherwise we grab the fds
* from the environment to demonstrate both possibilities.
*/
if (argc == 1) {
int tfd[BPF_MAP_ID_MAX];
bpf_map_get_from_env(tfd);
bpf_dump_map_data(tfd);
return 0;
}
fd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (fd < 0) {
fprintf(stderr, "Cannot open socket: %s\n",
strerror(errno));
exit(1);
}
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, argv[argc - 1], sizeof(addr.sun_path));
ret = bind(fd, (struct sockaddr *)&addr, sizeof(addr));
if (ret < 0) {
fprintf(stderr, "Cannot bind to socket: %s\n",
strerror(errno));
exit(1);
}
memset(fds, 0, sizeof(fds));
memset(&aux, 0, sizeof(aux));
ret = bpf_map_set_recv(fd, fds, &aux, BPF_SCM_MAX_FDS);
if (ret >= 0)
bpf_info_loop(fds, &aux);
for (i = 0; i < aux.num_ent; i++)
close(fds[i]);
close(fd);
return 0;
}