// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/trace_event/process_memory_dump.h"
#include <errno.h>
#include <vector>
#include "base/process/process_metrics.h"
#include "base/trace_event/process_memory_totals.h"
#include "base/trace_event/trace_event_argument.h"
#include "build/build_config.h"
#if defined(OS_POSIX)
#include <sys/mman.h>
#endif
namespace base {
namespace trace_event {
namespace {
const char kEdgeTypeOwnership[] = "ownership";
std::string GetSharedGlobalAllocatorDumpName(
const MemoryAllocatorDumpGuid& guid) {
return "global/" + guid.ToString();
}
} // namespace
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
// static
size_t ProcessMemoryDump::CountResidentBytes(void* start_address,
size_t mapped_size) {
const size_t page_size = GetPageSize();
const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address);
DCHECK_EQ(0u, start_pointer % page_size);
// This function allocates a char vector of size number of pages in the given
// mapped_size. To avoid allocating a large array, the memory is split into
// chunks. Maximum size of vector allocated, will be
// kPageChunkSize / page_size.
const size_t kMaxChunkSize = 32 * 1024 * 1024;
size_t offset = 0;
size_t total_resident_size = 0;
int result = 0;
while (offset < mapped_size) {
void* chunk_start = reinterpret_cast<void*>(start_pointer + offset);
const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize);
const size_t page_count = (chunk_size + page_size - 1) / page_size;
size_t resident_page_count = 0;
#if defined(OS_MACOSX) || defined(OS_IOS)
std::vector<char> vec(page_count + 1);
// mincore in MAC does not fail with EAGAIN.
result = mincore(chunk_start, chunk_size, vec.data());
if (result)
break;
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0;
#else // defined(OS_MACOSX) || defined(OS_IOS)
std::vector<unsigned char> vec(page_count + 1);
int error_counter = 0;
// HANDLE_EINTR tries for 100 times. So following the same pattern.
do {
result = mincore(chunk_start, chunk_size, vec.data());
} while (result == -1 && errno == EAGAIN && error_counter++ < 100);
if (result)
break;
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i];
#endif // defined(OS_MACOSX) || defined(OS_IOS)
total_resident_size += resident_page_count * page_size;
offset += kMaxChunkSize;
}
DCHECK_EQ(0, result);
if (result) {
total_resident_size = 0;
LOG(ERROR) << "mincore() call failed. The resident size is invalid";
}
return total_resident_size;
}
#endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED)
ProcessMemoryDump::ProcessMemoryDump(
const scoped_refptr<MemoryDumpSessionState>& session_state)
: has_process_totals_(false),
has_process_mmaps_(false),
session_state_(session_state) {
}
ProcessMemoryDump::~ProcessMemoryDump() {
}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name) {
MemoryAllocatorDump* mad = new MemoryAllocatorDump(absolute_name, this);
AddAllocatorDumpInternal(mad); // Takes ownership of |mad|.
return mad;
}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name,
const MemoryAllocatorDumpGuid& guid) {
MemoryAllocatorDump* mad = new MemoryAllocatorDump(absolute_name, this, guid);
AddAllocatorDumpInternal(mad); // Takes ownership of |mad|.
return mad;
}
void ProcessMemoryDump::AddAllocatorDumpInternal(MemoryAllocatorDump* mad) {
DCHECK_EQ(0ul, allocator_dumps_.count(mad->absolute_name()));
allocator_dumps_storage_.push_back(mad);
allocator_dumps_[mad->absolute_name()] = mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump(
const std::string& absolute_name) const {
auto it = allocator_dumps_.find(absolute_name);
return it == allocator_dumps_.end() ? nullptr : it->second;
}
MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump(
const std::string& absolute_name) {
MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name);
return mad ? mad : CreateAllocatorDump(absolute_name);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
// A shared allocator dump can be shared within a process and the guid could
// have been created already.
MemoryAllocatorDump* allocator_dump = GetSharedGlobalAllocatorDump(guid);
return allocator_dump ? allocator_dump
: CreateAllocatorDump(
GetSharedGlobalAllocatorDumpName(guid), guid);
}
MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) const {
return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid));
}
void ProcessMemoryDump::AddHeapDump(const std::string& absolute_name,
scoped_refptr<TracedValue> heap_dump) {
DCHECK_EQ(0ul, heap_dumps_.count(absolute_name));
heap_dumps_[absolute_name] = heap_dump;
}
void ProcessMemoryDump::Clear() {
if (has_process_totals_) {
process_totals_.Clear();
has_process_totals_ = false;
}
if (has_process_mmaps_) {
process_mmaps_.Clear();
has_process_mmaps_ = false;
}
allocator_dumps_storage_.clear();
allocator_dumps_.clear();
allocator_dumps_edges_.clear();
heap_dumps_.clear();
}
void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) {
DCHECK(!other->has_process_totals() && !other->has_process_mmaps());
// Moves the ownership of all MemoryAllocatorDump(s) contained in |other|
// into this ProcessMemoryDump.
for (MemoryAllocatorDump* mad : other->allocator_dumps_storage_) {
// Check that we don't merge duplicates.
DCHECK_EQ(0ul, allocator_dumps_.count(mad->absolute_name()));
allocator_dumps_storage_.push_back(mad);
allocator_dumps_[mad->absolute_name()] = mad;
}
other->allocator_dumps_storage_.weak_clear();
other->allocator_dumps_.clear();
// Move all the edges.
allocator_dumps_edges_.insert(allocator_dumps_edges_.end(),
other->allocator_dumps_edges_.begin(),
other->allocator_dumps_edges_.end());
other->allocator_dumps_edges_.clear();
heap_dumps_.insert(other->heap_dumps_.begin(), other->heap_dumps_.end());
other->heap_dumps_.clear();
}
void ProcessMemoryDump::AsValueInto(TracedValue* value) const {
if (has_process_totals_) {
value->BeginDictionary("process_totals");
process_totals_.AsValueInto(value);
value->EndDictionary();
}
if (has_process_mmaps_) {
value->BeginDictionary("process_mmaps");
process_mmaps_.AsValueInto(value);
value->EndDictionary();
}
if (allocator_dumps_storage_.size() > 0) {
value->BeginDictionary("allocators");
for (const MemoryAllocatorDump* allocator_dump : allocator_dumps_storage_)
allocator_dump->AsValueInto(value);
value->EndDictionary();
}
if (heap_dumps_.size() > 0) {
value->BeginDictionary("heaps");
for (const auto& name_and_dump : heap_dumps_)
value->SetValueWithCopiedName(name_and_dump.first, *name_and_dump.second);
value->EndDictionary(); // "heaps"
}
value->BeginArray("allocators_graph");
for (const MemoryAllocatorDumpEdge& edge : allocator_dumps_edges_) {
value->BeginDictionary();
value->SetString("source", edge.source.ToString());
value->SetString("target", edge.target.ToString());
value->SetInteger("importance", edge.importance);
value->SetString("type", edge.type);
value->EndDictionary();
}
value->EndArray();
}
void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
allocator_dumps_edges_.push_back(
{source, target, importance, kEdgeTypeOwnership});
}
void ProcessMemoryDump::AddOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target) {
AddOwnershipEdge(source, target, 0 /* importance */);
}
void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source,
const std::string& target_node_name) {
std::string child_mad_name = target_node_name + "/__" + source.ToString();
MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name);
AddOwnershipEdge(source, target_child_mad->guid());
}
} // namespace trace_event
} // namespace base