/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv {
namespace ml {
class NormalBayesClassifierImpl : public NormalBayesClassifier
{
public:
NormalBayesClassifierImpl()
{
nallvars = 0;
}
bool train( const Ptr<TrainData>& trainData, int flags )
{
const float min_variation = FLT_EPSILON;
Mat responses = trainData->getNormCatResponses();
Mat __cls_labels = trainData->getClassLabels();
Mat __var_idx = trainData->getVarIdx();
Mat samples = trainData->getTrainSamples();
int nclasses = (int)__cls_labels.total();
int nvars = trainData->getNVars();
int s, c1, c2, cls;
int __nallvars = trainData->getNAllVars();
bool update = (flags & UPDATE_MODEL) != 0;
if( !update )
{
nallvars = __nallvars;
count.resize(nclasses);
sum.resize(nclasses);
productsum.resize(nclasses);
avg.resize(nclasses);
inv_eigen_values.resize(nclasses);
cov_rotate_mats.resize(nclasses);
for( cls = 0; cls < nclasses; cls++ )
{
count[cls] = Mat::zeros( 1, nvars, CV_32SC1 );
sum[cls] = Mat::zeros( 1, nvars, CV_64FC1 );
productsum[cls] = Mat::zeros( nvars, nvars, CV_64FC1 );
avg[cls] = Mat::zeros( 1, nvars, CV_64FC1 );
inv_eigen_values[cls] = Mat::zeros( 1, nvars, CV_64FC1 );
cov_rotate_mats[cls] = Mat::zeros( nvars, nvars, CV_64FC1 );
}
var_idx = __var_idx;
cls_labels = __cls_labels;
c.create(1, nclasses, CV_64FC1);
}
else
{
// check that the new training data has the same dimensionality etc.
if( nallvars != __nallvars ||
var_idx.size() != __var_idx.size() ||
norm(var_idx, __var_idx, NORM_INF) != 0 ||
cls_labels.size() != __cls_labels.size() ||
norm(cls_labels, __cls_labels, NORM_INF) != 0 )
CV_Error( CV_StsBadArg,
"The new training data is inconsistent with the original training data; varIdx and the class labels should be the same" );
}
Mat cov( nvars, nvars, CV_64FC1 );
int nsamples = samples.rows;
// process train data (count, sum , productsum)
for( s = 0; s < nsamples; s++ )
{
cls = responses.at<int>(s);
int* count_data = count[cls].ptr<int>();
double* sum_data = sum[cls].ptr<double>();
double* prod_data = productsum[cls].ptr<double>();
const float* train_vec = samples.ptr<float>(s);
for( c1 = 0; c1 < nvars; c1++, prod_data += nvars )
{
double val1 = train_vec[c1];
sum_data[c1] += val1;
count_data[c1]++;
for( c2 = c1; c2 < nvars; c2++ )
prod_data[c2] += train_vec[c2]*val1;
}
}
Mat vt;
// calculate avg, covariance matrix, c
for( cls = 0; cls < nclasses; cls++ )
{
double det = 1;
int i, j;
Mat& w = inv_eigen_values[cls];
int* count_data = count[cls].ptr<int>();
double* avg_data = avg[cls].ptr<double>();
double* sum1 = sum[cls].ptr<double>();
completeSymm(productsum[cls], 0);
for( j = 0; j < nvars; j++ )
{
int n = count_data[j];
avg_data[j] = n ? sum1[j] / n : 0.;
}
count_data = count[cls].ptr<int>();
avg_data = avg[cls].ptr<double>();
sum1 = sum[cls].ptr<double>();
for( i = 0; i < nvars; i++ )
{
double* avg2_data = avg[cls].ptr<double>();
double* sum2 = sum[cls].ptr<double>();
double* prod_data = productsum[cls].ptr<double>(i);
double* cov_data = cov.ptr<double>(i);
double s1val = sum1[i];
double avg1 = avg_data[i];
int _count = count_data[i];
for( j = 0; j <= i; j++ )
{
double avg2 = avg2_data[j];
double cov_val = prod_data[j] - avg1 * sum2[j] - avg2 * s1val + avg1 * avg2 * _count;
cov_val = (_count > 1) ? cov_val / (_count - 1) : cov_val;
cov_data[j] = cov_val;
}
}
completeSymm( cov, 1 );
SVD::compute(cov, w, cov_rotate_mats[cls], noArray());
transpose(cov_rotate_mats[cls], cov_rotate_mats[cls]);
cv::max(w, min_variation, w);
for( j = 0; j < nvars; j++ )
det *= w.at<double>(j);
divide(1., w, w);
c.at<double>(cls) = det > 0 ? log(det) : -700;
}
return true;
}
class NBPredictBody : public ParallelLoopBody
{
public:
NBPredictBody( const Mat& _c, const vector<Mat>& _cov_rotate_mats,
const vector<Mat>& _inv_eigen_values,
const vector<Mat>& _avg,
const Mat& _samples, const Mat& _vidx, const Mat& _cls_labels,
Mat& _results, Mat& _results_prob, bool _rawOutput )
{
c = &_c;
cov_rotate_mats = &_cov_rotate_mats;
inv_eigen_values = &_inv_eigen_values;
avg = &_avg;
samples = &_samples;
vidx = &_vidx;
cls_labels = &_cls_labels;
results = &_results;
results_prob = !_results_prob.empty() ? &_results_prob : 0;
rawOutput = _rawOutput;
}
const Mat* c;
const vector<Mat>* cov_rotate_mats;
const vector<Mat>* inv_eigen_values;
const vector<Mat>* avg;
const Mat* samples;
const Mat* vidx;
const Mat* cls_labels;
Mat* results_prob;
Mat* results;
float* value;
bool rawOutput;
void operator()( const Range& range ) const
{
int cls = -1;
int rtype = 0, rptype = 0;
size_t rstep = 0, rpstep = 0;
int nclasses = (int)cls_labels->total();
int nvars = avg->at(0).cols;
double probability = 0;
const int* vptr = vidx && !vidx->empty() ? vidx->ptr<int>() : 0;
if (results)
{
rtype = results->type();
rstep = results->isContinuous() ? 1 : results->step/results->elemSize();
}
if (results_prob)
{
rptype = results_prob->type();
rpstep = results_prob->isContinuous() ? 1 : results_prob->step/results_prob->elemSize();
}
// allocate memory and initializing headers for calculating
cv::AutoBuffer<double> _buffer(nvars*2);
double* _diffin = _buffer;
double* _diffout = _buffer + nvars;
Mat diffin( 1, nvars, CV_64FC1, _diffin );
Mat diffout( 1, nvars, CV_64FC1, _diffout );
for(int k = range.start; k < range.end; k++ )
{
double opt = FLT_MAX;
for(int i = 0; i < nclasses; i++ )
{
double cur = c->at<double>(i);
const Mat& u = cov_rotate_mats->at(i);
const Mat& w = inv_eigen_values->at(i);
const double* avg_data = avg->at(i).ptr<double>();
const float* x = samples->ptr<float>(k);
// cov = u w u' --> cov^(-1) = u w^(-1) u'
for(int j = 0; j < nvars; j++ )
_diffin[j] = avg_data[j] - x[vptr ? vptr[j] : j];
gemm( diffin, u, 1, noArray(), 0, diffout, GEMM_2_T );
for(int j = 0; j < nvars; j++ )
{
double d = _diffout[j];
cur += d*d*w.ptr<double>()[j];
}
if( cur < opt )
{
cls = i;
opt = cur;
}
probability = exp( -0.5 * cur );
if( results_prob )
{
if ( rptype == CV_32FC1 )
results_prob->ptr<float>()[k*rpstep + i] = (float)probability;
else
results_prob->ptr<double>()[k*rpstep + i] = probability;
}
}
int ival = rawOutput ? cls : cls_labels->at<int>(cls);
if( results )
{
if( rtype == CV_32SC1 )
results->ptr<int>()[k*rstep] = ival;
else
results->ptr<float>()[k*rstep] = (float)ival;
}
}
}
};
float predict( InputArray _samples, OutputArray _results, int flags ) const
{
return predictProb(_samples, _results, noArray(), flags);
}
float predictProb( InputArray _samples, OutputArray _results, OutputArray _resultsProb, int flags ) const
{
int value=0;
Mat samples = _samples.getMat(), results, resultsProb;
int nsamples = samples.rows, nclasses = (int)cls_labels.total();
bool rawOutput = (flags & RAW_OUTPUT) != 0;
if( samples.type() != CV_32F || samples.cols != nallvars )
CV_Error( CV_StsBadArg,
"The input samples must be 32f matrix with the number of columns = nallvars" );
if( samples.rows > 1 && _results.needed() )
CV_Error( CV_StsNullPtr,
"When the number of input samples is >1, the output vector of results must be passed" );
if( _results.needed() )
{
_results.create(nsamples, 1, CV_32S);
results = _results.getMat();
}
else
results = Mat(1, 1, CV_32S, &value);
if( _resultsProb.needed() )
{
_resultsProb.create(nsamples, nclasses, CV_32F);
resultsProb = _resultsProb.getMat();
}
cv::parallel_for_(cv::Range(0, nsamples),
NBPredictBody(c, cov_rotate_mats, inv_eigen_values, avg, samples,
var_idx, cls_labels, results, resultsProb, rawOutput));
return (float)value;
}
void write( FileStorage& fs ) const
{
int nclasses = (int)cls_labels.total(), i;
fs << "var_count" << (var_idx.empty() ? nallvars : (int)var_idx.total());
fs << "var_all" << nallvars;
if( !var_idx.empty() )
fs << "var_idx" << var_idx;
fs << "cls_labels" << cls_labels;
fs << "count" << "[";
for( i = 0; i < nclasses; i++ )
fs << count[i];
fs << "]" << "sum" << "[";
for( i = 0; i < nclasses; i++ )
fs << sum[i];
fs << "]" << "productsum" << "[";
for( i = 0; i < nclasses; i++ )
fs << productsum[i];
fs << "]" << "avg" << "[";
for( i = 0; i < nclasses; i++ )
fs << avg[i];
fs << "]" << "inv_eigen_values" << "[";
for( i = 0; i < nclasses; i++ )
fs << inv_eigen_values[i];
fs << "]" << "cov_rotate_mats" << "[";
for( i = 0; i < nclasses; i++ )
fs << cov_rotate_mats[i];
fs << "]";
fs << "c" << c;
}
void read( const FileNode& fn )
{
clear();
fn["var_all"] >> nallvars;
if( nallvars <= 0 )
CV_Error( CV_StsParseError,
"The field \"var_count\" of NBayes classifier is missing or non-positive" );
fn["var_idx"] >> var_idx;
fn["cls_labels"] >> cls_labels;
int nclasses = (int)cls_labels.total(), i;
if( cls_labels.empty() || nclasses < 1 )
CV_Error( CV_StsParseError, "No or invalid \"cls_labels\" in NBayes classifier" );
FileNodeIterator
count_it = fn["count"].begin(),
sum_it = fn["sum"].begin(),
productsum_it = fn["productsum"].begin(),
avg_it = fn["avg"].begin(),
inv_eigen_values_it = fn["inv_eigen_values"].begin(),
cov_rotate_mats_it = fn["cov_rotate_mats"].begin();
count.resize(nclasses);
sum.resize(nclasses);
productsum.resize(nclasses);
avg.resize(nclasses);
inv_eigen_values.resize(nclasses);
cov_rotate_mats.resize(nclasses);
for( i = 0; i < nclasses; i++, ++count_it, ++sum_it, ++productsum_it, ++avg_it,
++inv_eigen_values_it, ++cov_rotate_mats_it )
{
*count_it >> count[i];
*sum_it >> sum[i];
*productsum_it >> productsum[i];
*avg_it >> avg[i];
*inv_eigen_values_it >> inv_eigen_values[i];
*cov_rotate_mats_it >> cov_rotate_mats[i];
}
fn["c"] >> c;
}
void clear()
{
count.clear();
sum.clear();
productsum.clear();
avg.clear();
inv_eigen_values.clear();
cov_rotate_mats.clear();
var_idx.release();
cls_labels.release();
c.release();
nallvars = 0;
}
bool isTrained() const { return !avg.empty(); }
bool isClassifier() const { return true; }
int getVarCount() const { return nallvars; }
String getDefaultName() const { return "opencv_ml_nbayes"; }
int nallvars;
Mat var_idx, cls_labels, c;
vector<Mat> count, sum, productsum, avg, inv_eigen_values, cov_rotate_mats;
};
Ptr<NormalBayesClassifier> NormalBayesClassifier::create()
{
Ptr<NormalBayesClassifierImpl> p = makePtr<NormalBayesClassifierImpl>();
return p;
}
}
}
/* End of file. */