/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Fuzz.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommandLineFlags.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkImage.h"
#include "SkImageEncoder.h"
#include "SkMallocPixelRef.h"
#include "SkPicture.h"
#include "SkStream.h"
#include <cmath>
#include <signal.h>
#include <stdlib.h>
// TODO(kjlubick): Remove once http://crrev.com/1671193002 lands
__SK_FORCE_IMAGE_DECODER_LINKING;
DEFINE_string2(bytes, b, "", "A path to a file. This can be the fuzz bytes or a binary to parse.");
DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name.");
DEFINE_string2(type, t, "api", "How to interpret --bytes, either 'image_scale', 'image_mode', 'skp', or 'api'.");
DEFINE_string2(dump, d, "", "If not empty, dump 'image*' or 'skp' types as a PNG with this name.");
static int printUsage(const char* name) {
SkDebugf("Usage: %s -t <type> -b <path/to/file> [-n api-to-fuzz]\n", name);
return 1;
}
static uint8_t calculate_option(SkData*);
static int fuzz_api(SkData*);
static int fuzz_img(SkData*, uint8_t, uint8_t);
static int fuzz_skp(SkData*);
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
const char* path = FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0];
SkAutoTUnref<SkData> bytes(SkData::NewFromFileName(path));
if (!bytes) {
SkDebugf("Could not read %s\n", path);
return 2;
}
uint8_t option = calculate_option(bytes);
if (!FLAGS_type.isEmpty()) {
switch (FLAGS_type[0][0]) {
case 'a': return fuzz_api(bytes);
case 'i':
// We only allow one degree of freedom to avoid a search space explosion for afl-fuzz.
if (FLAGS_type[0][6] == 's') { // image_scale
return fuzz_img(bytes, option, 0);
}
// image_mode
return fuzz_img(bytes, 0, option);
case 's': return fuzz_skp(bytes);
}
}
return printUsage(argv[0]);
}
// This adds up the first 1024 bytes and returns it as an 8 bit integer. This allows afl-fuzz to
// deterministically excercise different paths, or *options* (such as different scaling sizes or
// different image modes) without needing to introduce a parameter. This way we don't need a
// image_scale1, image_scale2, image_scale4, etc fuzzer, we can just have a image_scale fuzzer.
// Clients are expected to transform this number into a different range, e.g. with modulo (%).
static uint8_t calculate_option(SkData* bytes) {
uint8_t total = 0;
const uint8_t* data = bytes->bytes();
for (size_t i = 0; i < 1024 && i < bytes->size(); i++) {
total += data[i];
}
return total;
}
int fuzz_api(SkData* bytes) {
const char* name = FLAGS_name.isEmpty() ? "" : FLAGS_name[0];
for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
auto fuzzable = r->factory();
if (0 == strcmp(name, fuzzable.name)) {
SkDebugf("Fuzzing %s...\n", fuzzable.name);
Fuzz fuzz(bytes);
fuzzable.fn(&fuzz);
SkDebugf("[terminated] Success!\n");
return 0;
}
}
SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n");
for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
auto fuzzable = r->factory();
SkDebugf("\t%s\n", fuzzable.name);
}
return 1;
}
static void dump_png(SkBitmap bitmap) {
if (!FLAGS_dump.isEmpty()) {
SkImageEncoder::EncodeFile(FLAGS_dump[0], bitmap, SkImageEncoder::kPNG_Type, 100);
SkDebugf("Dumped to %s\n", FLAGS_dump[0]);
}
}
int fuzz_img(SkData* bytes, uint8_t scale, uint8_t mode) {
// We can scale 1x, 2x, 4x, 8x, 16x
scale = scale % 5;
float fscale = (float)pow(2.0f, scale);
SkDebugf("Scaling factor: %f\n", fscale);
// We have 4 different modes of decoding, just like DM.
mode = mode % 4;
SkDebugf("Mode: %d\n", mode);
// This is mostly copied from DMSrcSink's CodecSrc::draw method.
SkDebugf("Decoding\n");
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(bytes));
if (nullptr == codec.get()) {
SkDebugf("[terminated] Couldn't create codec.\n");
return 3;
}
SkImageInfo decodeInfo = codec->getInfo();
SkISize size = codec->getScaledDimensions(fscale);
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
// Construct a color table for the decode if necessary
SkAutoTUnref<SkColorTable> colorTable(nullptr);
SkPMColor* colorPtr = nullptr;
int* colorCountPtr = nullptr;
int maxColors = 256;
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
SkPMColor colors[256];
colorTable.reset(new SkColorTable(colors, maxColors));
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
colorCountPtr = &maxColors;
}
SkBitmap bitmap;
SkMallocPixelRef::ZeroedPRFactory zeroFactory;
SkCodec::Options options;
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
if (!bitmap.tryAllocPixels(decodeInfo, &zeroFactory, colorTable.get())) {
SkDebugf("[terminated] Could not allocate memory. Image might be too large (%d x %d)",
decodeInfo.width(), decodeInfo.height());
return 4;
}
switch (mode) {
case 0: {//kCodecZeroInit_Mode, kCodec_Mode
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options,
colorPtr, colorCountPtr)) {
case SkCodec::kSuccess:
SkDebugf("[terminated] Success!\n");
break;
case SkCodec::kIncompleteInput:
SkDebugf("[terminated] Partial Success\n");
break;
case SkCodec::kInvalidConversion:
SkDebugf("Incompatible colortype conversion\n");
// Crash to allow afl-fuzz to know this was a bug.
raise(SIGSEGV);
default:
SkDebugf("[terminated] Couldn't getPixels.\n");
return 6;
}
break;
}
case 1: {//kScanline_Mode
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
colorCountPtr)) {
SkDebugf("[terminated] Could not start scanline decoder\n");
return 7;
}
void* dst = bitmap.getAddr(0, 0);
size_t rowBytes = bitmap.rowBytes();
uint32_t height = decodeInfo.height();
switch (codec->getScanlineOrder()) {
case SkCodec::kTopDown_SkScanlineOrder:
case SkCodec::kBottomUp_SkScanlineOrder:
case SkCodec::kNone_SkScanlineOrder:
// We do not need to check the return value. On an incomplete
// image, memory will be filled with a default value.
codec->getScanlines(dst, height, rowBytes);
break;
case SkCodec::kOutOfOrder_SkScanlineOrder: {
for (int y = 0; y < decodeInfo.height(); y++) {
int dstY = codec->outputScanline(y);
void* dstPtr = bitmap.getAddr(0, dstY);
// We complete the loop, even if this call begins to fail
// due to an incomplete image. This ensures any uninitialized
// memory will be filled with the proper value.
codec->getScanlines(dstPtr, 1, bitmap.rowBytes());
}
break;
}
}
SkDebugf("[terminated] Success!\n");
break;
}
case 2: { //kStripe_Mode
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
// Decode odd stripes
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
colorCountPtr)
|| SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
// to run this test for image types that do not have this scanline ordering.
SkDebugf("[terminated] Could not start top-down scanline decoder\n");
return 8;
}
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
codec->skipScanlines(linesToSkip);
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
if (linesToRead > 0) {
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
}
}
// Decode even stripes
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
colorPtr, colorCountPtr);
if (SkCodec::kSuccess != startResult) {
SkDebugf("[terminated] Failed to restart scanline decoder with same parameters.\n");
return 9;
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
codec->skipScanlines(linesToSkip);
}
}
SkDebugf("[terminated] Success!\n");
break;
}
case 3: { //kSubset_Mode
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
SkDebugf("[terminated] Cannot codec subset: divisor %d is too big "
"with dimensions (%d x %d)\n", divisor, W, H);
return 10;
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = ⊂
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* pixels = bitmap.getPixels();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fscale * x and fscale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = SkTMin(w, W - x);
const int preScaleH = SkTMin(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And fscale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
decodeInfo = decodeInfo.makeWH(
SkTMax(1, SkScalarRoundToInt(preScaleW * fscale)),
SkTMax(1, SkScalarRoundToInt(preScaleH * fscale)));
size_t rowBytes = decodeInfo.minRowBytes();
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
nullptr, nullptr)) {
SkDebugf("[terminated] Could not install pixels.\n");
return 11;
}
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
&opts, colorPtr, colorCountPtr);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
SkDebugf("okay\n");
break;
case SkCodec::kInvalidConversion:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
SkDebugf("[terminated] Incompatible colortype conversion\n");
return 12;
}
// If the first subset succeeded, a later one should not fail.
// fall through to failure
case SkCodec::kUnimplemented:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
SkDebugf("[terminated] subset codec not supported\n");
return 13;
}
// If the first subset succeeded, why would a later one fail?
// fall through to failure
default:
SkDebugf("[terminated] subset codec failed to decode (%d, %d, %d, %d) "
"with dimensions (%d x %d)\t error %d\n",
x, y, decodeInfo.width(), decodeInfo.height(),
W, H, result);
return 14;
}
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
SkDebugf("[terminated] Success!\n");
break;
}
default:
SkDebugf("[terminated] Mode not implemented yet\n");
}
dump_png(bitmap);
return 0;
}
int fuzz_skp(SkData* bytes) {
SkMemoryStream stream(bytes);
SkDebugf("Decoding\n");
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(&stream));
if (!pic) {
SkDebugf("[terminated] Couldn't decode as a picture.\n");
return 3;
}
SkDebugf("Rendering\n");
SkBitmap bitmap;
if (!FLAGS_dump.isEmpty()) {
SkIRect size = pic->cullRect().roundOut();
bitmap.allocN32Pixels(size.width(), size.height());
}
SkCanvas canvas(bitmap);
canvas.drawPicture(pic);
SkDebugf("[terminated] Success! Decoded and rendered an SkPicture!\n");
dump_png(bitmap);
return 0;
}
Fuzz::Fuzz(SkData* bytes) : fBytes(SkSafeRef(bytes)), fNextByte(0) {}
void Fuzz::signalBug () { raise(SIGSEGV); }
void Fuzz::signalBoring() { exit(0); }
template <typename T>
T Fuzz::nextT() {
if (fNextByte + sizeof(T) > fBytes->size()) {
this->signalBoring();
}
T val;
memcpy(&val, fBytes->bytes() + fNextByte, sizeof(T));
fNextByte += sizeof(T);
return val;
}
uint8_t Fuzz::nextB() { return this->nextT<uint8_t >(); }
bool Fuzz::nextBool() { return nextB()&1; }
uint32_t Fuzz::nextU() { return this->nextT<uint32_t>(); }
float Fuzz::nextF() { return this->nextT<float >(); }
uint32_t Fuzz::nextRangeU(uint32_t min, uint32_t max) {
if (min > max) {
SkDebugf("Check mins and maxes (%d, %d)\n", min, max);
this->signalBoring();
}
uint32_t range = max - min + 1;
if (0 == range) {
return this->nextU();
} else {
return min + this->nextU() % range;
}
}
float Fuzz::nextRangeF(float min, float max) {
if (min > max) {
SkDebugf("Check mins and maxes (%f, %f)\n", min, max);
this->signalBoring();
}
float f = std::abs(this->nextF());
if (!std::isnormal(f) && f != 0.0) {
this->signalBoring();
}
return min + fmod(f, (max - min + 1));
}