/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <functional>
#include "DMGpuSupport.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkDevice.h"
#include "SkImageEncoder.h"
#include "SkImageGenerator.h"
#include "SkImage_Base.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkUtils.h"
#include "Test.h"
static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
SkImage* b) {
const int widthA = subsetA ? subsetA->width() : a->width();
const int heightA = subsetA ? subsetA->height() : a->height();
REPORTER_ASSERT(reporter, widthA == b->width());
REPORTER_ASSERT(reporter, heightA == b->height());
#if 0
// see https://bug.skia.org/3965
bool AO = a->isOpaque();
bool BO = b->isOpaque();
REPORTER_ASSERT(reporter, AO == BO);
#endif
SkImageInfo info = SkImageInfo::MakeN32(widthA, heightA,
a->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
SkAutoPixmapStorage pmapA, pmapB;
pmapA.alloc(info);
pmapB.alloc(info);
const int srcX = subsetA ? subsetA->x() : 0;
const int srcY = subsetA ? subsetA->y() : 0;
REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));
const size_t widthBytes = widthA * info.bytesPerPixel();
for (int y = 0; y < heightA; ++y) {
REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
}
}
static void draw_image_test_pattern(SkCanvas* canvas) {
canvas->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint);
}
static SkImage* create_image() {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
draw_image_test_pattern(surface->getCanvas());
return surface->newImageSnapshot();
}
static SkData* create_image_data(SkImageInfo* info) {
*info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
const size_t rowBytes = info->minRowBytes();
SkAutoTUnref<SkData> data(SkData::NewUninitialized(rowBytes * info->height()));
{
SkBitmap bm;
bm.installPixels(*info, data->writable_data(), rowBytes);
SkCanvas canvas(bm);
draw_image_test_pattern(&canvas);
}
return data.release();
}
static SkImage* create_data_image() {
SkImageInfo info;
SkAutoTUnref<SkData> data(create_image_data(&info));
return SkImage::NewRasterData(info, data, info.minRowBytes());
}
#if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests
static SkImage* create_picture_image() {
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(10, 10);
canvas->clear(SK_ColorCYAN);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
return SkImage::NewFromPicture(picture, SkISize::Make(10, 10), nullptr, nullptr);
};
#endif
// Want to ensure that our Release is called when the owning image is destroyed
struct RasterDataHolder {
RasterDataHolder() : fReleaseCount(0) {}
SkAutoTUnref<SkData> fData;
int fReleaseCount;
static void Release(const void* pixels, void* context) {
RasterDataHolder* self = static_cast<RasterDataHolder*>(context);
self->fReleaseCount++;
self->fData.reset();
}
};
static SkImage* create_rasterproc_image(RasterDataHolder* dataHolder) {
SkASSERT(dataHolder);
SkImageInfo info;
SkAutoTUnref<SkData> data(create_image_data(&info));
dataHolder->fData.reset(SkRef(data.get()));
return SkImage::NewFromRaster(info, data->data(), info.minRowBytes(),
RasterDataHolder::Release, dataHolder);
}
static SkImage* create_codec_image() {
SkImageInfo info;
SkAutoTUnref<SkData> data(create_image_data(&info));
SkBitmap bitmap;
bitmap.installPixels(info, data->writable_data(), info.minRowBytes());
SkAutoTUnref<SkData> src(
SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100));
return SkImage::NewFromEncoded(src);
}
#if SK_SUPPORT_GPU
static SkImage* create_gpu_image(GrContext* context) {
const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTarget(context, SkBudgeted::kNo,
info));
draw_image_test_pattern(surface->getCanvas());
return surface->newImageSnapshot();
}
#endif
static void test_encode(skiatest::Reporter* reporter, SkImage* image) {
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
SkAutoTUnref<SkData> origEncoded(image->encode());
REPORTER_ASSERT(reporter, origEncoded);
REPORTER_ASSERT(reporter, origEncoded->size() > 0);
SkAutoTUnref<SkImage> decoded(SkImage::NewFromEncoded(origEncoded));
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, nullptr, decoded);
// Now see if we can instantiate an image from a subset of the surface/origEncoded
decoded.reset(SkImage::NewFromEncoded(origEncoded, &ir));
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, image, &ir, decoded);
}
DEF_TEST(ImageEncode, reporter) {
SkAutoTUnref<SkImage> image(create_image());
test_encode(reporter, image);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, context) {
SkAutoTUnref<SkImage> image(create_gpu_image(context));
test_encode(reporter, image);
}
#endif
namespace {
const char* kSerializedData = "serialized";
class MockSerializer : public SkPixelSerializer {
public:
MockSerializer(SkData* (*func)()) : fFunc(func), fDidEncode(false) { }
bool didEncode() const { return fDidEncode; }
protected:
bool onUseEncodedData(const void*, size_t) override {
return false;
}
SkData* onEncode(const SkPixmap&) override {
fDidEncode = true;
return fFunc();
}
private:
SkData* (*fFunc)();
bool fDidEncode;
typedef SkPixelSerializer INHERITED;
};
} // anonymous namespace
// Test that SkImage encoding observes custom pixel serializers.
DEF_TEST(Image_Encode_Serializer, reporter) {
MockSerializer serializer([]() -> SkData* { return SkData::NewWithCString(kSerializedData); });
SkAutoTUnref<SkImage> image(create_image());
SkAutoTUnref<SkData> encoded(image->encode(&serializer));
SkAutoTUnref<SkData> reference(SkData::NewWithCString(kSerializedData));
REPORTER_ASSERT(reporter, serializer.didEncode());
REPORTER_ASSERT(reporter, encoded);
REPORTER_ASSERT(reporter, encoded->size() > 0);
REPORTER_ASSERT(reporter, encoded->equals(reference));
}
// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(100, 100));
surface->getCanvas()->clear(SK_ColorGREEN);
SkAutoTUnref<SkImage> image(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawImage(image, 0, 0);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
REPORTER_ASSERT(reporter, picture);
REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);
MockSerializer emptySerializer([]() -> SkData* { return SkData::NewEmpty(); });
MockSerializer nullSerializer([]() -> SkData* { return nullptr; });
MockSerializer* serializers[] = { &emptySerializer, &nullSerializer };
for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) {
SkDynamicMemoryWStream wstream;
REPORTER_ASSERT(reporter, !serializers[i]->didEncode());
picture->serialize(&wstream, serializers[i]);
REPORTER_ASSERT(reporter, serializers[i]->didEncode());
SkAutoTDelete<SkStream> rstream(wstream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rstream));
REPORTER_ASSERT(reporter, deserialized);
REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
}
}
DEF_TEST(Image_NewRasterCopy, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
const SkPMColor blue = SkPackARGB32(0xFF, 0, 0, 0xFF);
SkPMColor colors[] = { red, green, blue, 0 };
SkAutoTUnref<SkColorTable> ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
// The colortable made a copy, so we can trash the original colors
memset(colors, 0xFF, sizeof(colors));
const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType);
const size_t srcRowBytes = 2 * sizeof(uint8_t);
uint8_t indices[] = { 0, 1, 2, 3 };
SkAutoTUnref<SkImage> image(SkImage::NewRasterCopy(srcInfo, indices, srcRowBytes, ctable));
// The image made a copy, so we can trash the original indices
memset(indices, 0xFF, sizeof(indices));
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0);
REPORTER_ASSERT(reporter, red == pixels[0]);
REPORTER_ASSERT(reporter, green == pixels[1]);
REPORTER_ASSERT(reporter, blue == pixels[2]);
REPORTER_ASSERT(reporter, 0 == pixels[3]);
}
// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
surface->getCanvas()->clear(0xFF00FF00);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkAutoTUnref<SkImage> image1(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
REPORTER_ASSERT(reporter, pixels[i] == green);
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
paint.setColor(SK_ColorRED);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);
SkAutoTUnref<SkImage> image2(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
REPORTER_ASSERT(reporter, pixels[0] == green);
REPORTER_ASSERT(reporter, pixels[1] == green);
REPORTER_ASSERT(reporter, pixels[2] == green);
REPORTER_ASSERT(reporter, pixels[3] == red);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
static void make_bitmap_mutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
}
static void make_bitmap_immutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
bm->setImmutable();
}
DEF_TEST(image_newfrombitmap, reporter) {
const struct {
void (*fMakeProc)(SkBitmap*);
bool fExpectPeekSuccess;
bool fExpectSharedID;
bool fExpectLazy;
} rec[] = {
{ make_bitmap_mutable, true, false, false },
{ make_bitmap_immutable, true, true, false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
SkBitmap bm;
rec[i].fMakeProc(&bm);
SkAutoTUnref<SkImage> image(SkImage::NewFromBitmap(bm));
SkPixmap pmap;
const bool sharedID = (image->uniqueID() == bm.getGenerationID());
REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);
const bool peekSuccess = image->peekPixels(&pmap);
REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);
const bool lazy = image->isLazyGenerated();
REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "SkBitmapCache.h"
/*
* This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
* We cache it for performance when drawing into a raster surface.
*
* A cleaner test would know if each drawImage call triggered a read-back from the gpu,
* but we don't have that facility (at the moment) so we use a little internal knowledge
* of *how* the raster version is cached, and look for that.
*/
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_Gpu2Cpu, reporter, context) {
SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
SkAutoTUnref<SkImage> image(create_gpu_image(context));
const uint32_t uniqueID = image->uniqueID();
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
// now we can test drawing a gpu-backed image into a cpu-backed surface
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
surface->getCanvas()->drawImage(image, 0, 0);
{
SkBitmap cachedBitmap;
if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) {
REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID);
REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
} else {
// unexpected, but not really a bug, since the cache is global and this test may be
// run w/ other threads competing for its budget.
SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
}
}
image.reset(nullptr);
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
}
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_newTextureImage, reporter, context, glContext) {
GrContextFactory otherFactory;
GrContextFactory::ContextInfo otherContextInfo =
otherFactory.getContextInfo(GrContextFactory::kNative_GLContextType);
glContext->makeCurrent();
std::function<SkImage*()> imageFactories[] = {
create_image,
create_codec_image,
create_data_image,
// Create an image from a picture.
create_picture_image,
// Create a texture image.
[context] { return create_gpu_image(context); },
// Create a texture image in a another GrContext.
[glContext, otherContextInfo] {
otherContextInfo.fGLContext->makeCurrent();
SkImage* otherContextImage = create_gpu_image(otherContextInfo.fGrContext);
glContext->makeCurrent();
return otherContextImage;
}
};
for (auto factory : imageFactories) {
SkAutoTUnref<SkImage> image(factory());
if (!image) {
ERRORF(reporter, "Error creating image.");
continue;
}
GrTexture* origTexture = as_IB(image)->peekTexture();
SkAutoTUnref<SkImage> texImage(image->newTextureImage(context));
if (!texImage) {
// We execpt to fail if image comes from a different GrContext.
if (!origTexture || origTexture->getContext() == context) {
ERRORF(reporter, "newTextureImage failed.");
}
continue;
}
GrTexture* copyTexture = as_IB(texImage)->peekTexture();
if (!copyTexture) {
ERRORF(reporter, "newTextureImage returned non-texture image.");
continue;
}
if (origTexture) {
if (origTexture != copyTexture) {
ERRORF(reporter, "newTextureImage made unnecessary texture copy.");
}
}
if (image->width() != texImage->width() || image->height() != texImage->height()) {
ERRORF(reporter, "newTextureImage changed the image size.");
}
if (image->isOpaque() != texImage->isOpaque()) {
ERRORF(reporter, "newTextureImage changed image opaqueness.");
}
}
}
#endif
// https://bug.skia.org/4390
DEF_TEST(ImageFromIndex8Bitmap, r) {
SkPMColor pmColors[1] = {SkPreMultiplyColor(SK_ColorWHITE)};
SkBitmap bm;
SkAutoTUnref<SkColorTable> ctable(
new SkColorTable(pmColors, SK_ARRAY_COUNT(pmColors)));
SkImageInfo info =
SkImageInfo::Make(1, 1, kIndex_8_SkColorType, kPremul_SkAlphaType);
bm.allocPixels(info, nullptr, ctable);
SkAutoLockPixels autoLockPixels(bm);
*bm.getAddr8(0, 0) = 0;
SkAutoTUnref<SkImage> img(SkImage::NewFromBitmap(bm));
REPORTER_ASSERT(r, img.get() != nullptr);
}
class EmptyGenerator : public SkImageGenerator {
public:
EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {}
};
DEF_TEST(ImageEmpty, reporter) {
const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType);
REPORTER_ASSERT(reporter, nullptr == SkImage::NewRasterCopy(info, nullptr, 0));
REPORTER_ASSERT(reporter, nullptr == SkImage::NewRasterData(info, nullptr, 0));
REPORTER_ASSERT(reporter, nullptr == SkImage::NewFromRaster(info, nullptr, 0, nullptr, nullptr));
REPORTER_ASSERT(reporter, nullptr == SkImage::NewFromGenerator(new EmptyGenerator));
}
DEF_TEST(ImageDataRef, reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
SkData* data = SkData::NewUninitialized(size);
REPORTER_ASSERT(reporter, data->unique());
SkImage* image = SkImage::NewRasterData(info, data, rowBytes);
REPORTER_ASSERT(reporter, !data->unique());
image->unref();
REPORTER_ASSERT(reporter, data->unique());
data->unref();
}
static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) {
for (int i = 0; i < count; ++i) {
if (pixels[i] != expected) {
return false;
}
}
return true;
}
static void test_read_pixels(skiatest::Reporter* reporter, SkImage* image) {
const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE);
const SkPMColor notExpected = ~expected;
const int w = 2, h = 2;
const size_t rowBytes = w * sizeof(SkPMColor);
SkPMColor pixels[w*h];
SkImageInfo info;
info = SkImageInfo::MakeUnknown(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0));
// out-of-bounds should fail
info = SkImageInfo::MakeN32Premul(w, h);
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0));
REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height()));
// top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - w, image->height() - h));
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));
// partial top-left should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1));
REPORTER_ASSERT(reporter, pixels[3] == expected);
REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected));
// partial bottom-right should succeed
sk_memset32(pixels, notExpected, w*h);
REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
image->width() - 1, image->height() - 1));
REPORTER_ASSERT(reporter, pixels[0] == expected);
REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected));
}
DEF_TEST(ImageReadPixels, reporter) {
SkAutoTUnref<SkImage> image(create_image());
test_read_pixels(reporter, image);
image.reset(create_data_image());
test_read_pixels(reporter, image);
RasterDataHolder dataHolder;
image.reset(create_rasterproc_image(&dataHolder));
test_read_pixels(reporter, image);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image.reset(create_codec_image());
test_read_pixels(reporter, image);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, context) {
SkAutoTUnref<SkImage> image(create_gpu_image(context));
test_read_pixels(reporter, image);
}
#endif
static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image,
const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) {
REPORTER_ASSERT(reporter, image->width() == bitmap.width());
REPORTER_ASSERT(reporter, image->height() == bitmap.height());
REPORTER_ASSERT(reporter, image->isOpaque() == bitmap.isOpaque());
if (SkImage::kRO_LegacyBitmapMode == mode) {
REPORTER_ASSERT(reporter, bitmap.isImmutable());
}
SkAutoLockPixels alp(bitmap);
REPORTER_ASSERT(reporter, bitmap.getPixels());
const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType());
SkPMColor imageColor;
REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0));
REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0));
}
static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) {
SkBitmap bitmap;
REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode));
check_legacy_bitmap(reporter, image, bitmap, mode);
// Test subsetting to exercise the rowBytes logic.
SkBitmap tmp;
REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2,
image->height() / 2)));
SkAutoTUnref<SkImage> subsetImage(SkImage::NewFromBitmap(tmp));
REPORTER_ASSERT(reporter, subsetImage);
SkBitmap subsetBitmap;
REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode));
check_legacy_bitmap(reporter, subsetImage, subsetBitmap, mode);
}
DEF_TEST(ImageLegacyBitmap, reporter) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
SkAutoTUnref<SkImage> image(create_image());
test_legacy_bitmap(reporter, image, mode);
image.reset(create_data_image());
test_legacy_bitmap(reporter, image, mode);
RasterDataHolder dataHolder;
image.reset(create_rasterproc_image(&dataHolder));
test_legacy_bitmap(reporter, image, mode);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image.reset(create_codec_image());
test_legacy_bitmap(reporter, image, mode);
}
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, context) {
const SkImage::LegacyBitmapMode modes[] = {
SkImage::kRO_LegacyBitmapMode,
SkImage::kRW_LegacyBitmapMode,
};
for (auto& mode : modes) {
SkAutoTUnref<SkImage> image(create_gpu_image(context));
test_legacy_bitmap(reporter, image, mode);
}
}
#endif
static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) {
SkImageInfo info;
size_t rowBytes;
const void* addr = image->peekPixels(&info, &rowBytes);
bool success = SkToBool(addr);
REPORTER_ASSERT(reporter, expectPeekSuccess == success);
if (success) {
REPORTER_ASSERT(reporter, 20 == info.width());
REPORTER_ASSERT(reporter, 20 == info.height());
REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType());
REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() ||
kOpaque_SkAlphaType == info.alphaType());
REPORTER_ASSERT(reporter, info.minRowBytes() <= rowBytes);
REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *(const SkPMColor*)addr);
}
}
DEF_TEST(ImagePeek, reporter) {
SkAutoTUnref<SkImage> image(create_image());
test_peek(reporter, image, true);
image.reset(create_data_image());
test_peek(reporter, image, true);
RasterDataHolder dataHolder;
image.reset(create_rasterproc_image(&dataHolder));
test_peek(reporter, image, true);
image.reset();
REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);
image.reset(create_codec_image());
test_peek(reporter, image, false);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, context) {
SkAutoTUnref<SkImage> image(create_gpu_image(context));
test_peek(reporter, image, false);
}
#endif
#if SK_SUPPORT_GPU
struct TextureReleaseChecker {
TextureReleaseChecker() : fReleaseCount(0) {}
int fReleaseCount;
static void Release(void* self) {
static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
}
};
static void check_image_color(skiatest::Reporter* reporter, SkImage* image, SkPMColor expected) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
SkPMColor pixel;
REPORTER_ASSERT(reporter, image->readPixels(info, &pixel, sizeof(pixel), 0, 0));
REPORTER_ASSERT(reporter, pixel == expected);
}
DEF_GPUTEST_FOR_NATIVE_CONTEXT(SkImage_NewFromTexture, reporter, context) {
GrTextureProvider* provider = context->textureProvider();
const int w = 10;
const int h = 10;
SkPMColor storage[w * h];
const SkPMColor expected0 = SkPreMultiplyColor(SK_ColorRED);
sk_memset32(storage, expected0, w * h);
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag; // needs to be a rendertarget for readpixels();
desc.fOrigin = kDefault_GrSurfaceOrigin;
desc.fWidth = w;
desc.fHeight = h;
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fSampleCnt = 0;
SkAutoTUnref<GrTexture> tex(provider->createTexture(desc, SkBudgeted::kNo, storage, w * 4));
if (!tex) {
REPORTER_ASSERT(reporter, false);
return;
}
GrBackendTextureDesc backendDesc;
backendDesc.fConfig = kSkia8888_GrPixelConfig;
backendDesc.fFlags = kRenderTarget_GrBackendTextureFlag;
backendDesc.fWidth = w;
backendDesc.fHeight = h;
backendDesc.fSampleCnt = 0;
backendDesc.fTextureHandle = tex->getTextureHandle();
TextureReleaseChecker releaseChecker;
SkAutoTUnref<SkImage> refImg(
SkImage::NewFromTexture(context, backendDesc, kPremul_SkAlphaType,
TextureReleaseChecker::Release, &releaseChecker));
SkAutoTUnref<SkImage> cpyImg(SkImage::NewFromTextureCopy(context, backendDesc,
kPremul_SkAlphaType));
check_image_color(reporter, refImg, expected0);
check_image_color(reporter, cpyImg, expected0);
// Now lets jam new colors into our "external" texture, and see if the images notice
const SkPMColor expected1 = SkPreMultiplyColor(SK_ColorBLUE);
sk_memset32(storage, expected1, w * h);
tex->writePixels(0, 0, w, h, kSkia8888_GrPixelConfig, storage, GrContext::kFlushWrites_PixelOp);
// The cpy'd one should still see the old color
#if 0
// There is no guarantee that refImg sees the new color. We are free to have made a copy. Our
// write pixels call violated the contract with refImg and refImg is now undefined.
check_image_color(reporter, refImg, expected1);
#endif
check_image_color(reporter, cpyImg, expected0);
// Now exercise the release proc
REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount);
refImg.reset(nullptr); // force a release of the image
REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount);
}
#endif