// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_GC_TRACER_H_
#define V8_HEAP_GC_TRACER_H_
#include "src/base/platform/platform.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// A simple ring buffer class with maximum size known at compile time.
// The class only implements the functionality required in GCTracer.
template <typename T, size_t MAX_SIZE>
class RingBuffer {
public:
class const_iterator {
public:
const_iterator() : index_(0), elements_(NULL) {}
const_iterator(size_t index, const T* elements)
: index_(index), elements_(elements) {}
bool operator==(const const_iterator& rhs) const {
return elements_ == rhs.elements_ && index_ == rhs.index_;
}
bool operator!=(const const_iterator& rhs) const {
return elements_ != rhs.elements_ || index_ != rhs.index_;
}
operator const T*() const { return elements_ + index_; }
const T* operator->() const { return elements_ + index_; }
const T& operator*() const { return elements_[index_]; }
const_iterator& operator++() {
index_ = (index_ + 1) % (MAX_SIZE + 1);
return *this;
}
const_iterator& operator--() {
index_ = (index_ + MAX_SIZE) % (MAX_SIZE + 1);
return *this;
}
private:
size_t index_;
const T* elements_;
};
RingBuffer() : begin_(0), end_(0) {}
bool empty() const { return begin_ == end_; }
size_t size() const {
return (end_ - begin_ + MAX_SIZE + 1) % (MAX_SIZE + 1);
}
const_iterator begin() const { return const_iterator(begin_, elements_); }
const_iterator end() const { return const_iterator(end_, elements_); }
const_iterator back() const { return --end(); }
void push_back(const T& element) {
elements_[end_] = element;
end_ = (end_ + 1) % (MAX_SIZE + 1);
if (end_ == begin_) begin_ = (begin_ + 1) % (MAX_SIZE + 1);
}
void push_front(const T& element) {
begin_ = (begin_ + MAX_SIZE) % (MAX_SIZE + 1);
if (begin_ == end_) end_ = (end_ + MAX_SIZE) % (MAX_SIZE + 1);
elements_[begin_] = element;
}
void reset() {
begin_ = 0;
end_ = 0;
}
private:
T elements_[MAX_SIZE + 1];
size_t begin_;
size_t end_;
DISALLOW_COPY_AND_ASSIGN(RingBuffer);
};
enum ScavengeSpeedMode { kForAllObjects, kForSurvivedObjects };
// GCTracer collects and prints ONE line after each garbage collector
// invocation IFF --trace_gc is used.
// TODO(ernstm): Unit tests.
class GCTracer {
public:
class Scope {
public:
enum ScopeId {
EXTERNAL,
MC_CLEAR,
MC_CLEAR_CODE_FLUSH,
MC_CLEAR_DEPENDENT_CODE,
MC_CLEAR_GLOBAL_HANDLES,
MC_CLEAR_MAPS,
MC_CLEAR_SLOTS_BUFFER,
MC_CLEAR_STORE_BUFFER,
MC_CLEAR_STRING_TABLE,
MC_CLEAR_WEAK_CELLS,
MC_CLEAR_WEAK_COLLECTIONS,
MC_CLEAR_WEAK_LISTS,
MC_EVACUATE,
MC_EVACUATE_CANDIDATES,
MC_EVACUATE_CLEAN_UP,
MC_EVACUATE_NEW_SPACE,
MC_EVACUATE_UPDATE_POINTERS,
MC_EVACUATE_UPDATE_POINTERS_BETWEEN_EVACUATED,
MC_EVACUATE_UPDATE_POINTERS_TO_EVACUATED,
MC_EVACUATE_UPDATE_POINTERS_TO_NEW,
MC_EVACUATE_UPDATE_POINTERS_WEAK,
MC_FINISH,
MC_INCREMENTAL_FINALIZE,
MC_MARK,
MC_MARK_FINISH_INCREMENTAL,
MC_MARK_PREPARE_CODE_FLUSH,
MC_MARK_ROOTS,
MC_MARK_WEAK_CLOSURE,
MC_SWEEP,
MC_SWEEP_CODE,
MC_SWEEP_MAP,
MC_SWEEP_OLD,
SCAVENGER_CODE_FLUSH_CANDIDATES,
SCAVENGER_OBJECT_GROUPS,
SCAVENGER_OLD_TO_NEW_POINTERS,
SCAVENGER_ROOTS,
SCAVENGER_SCAVENGE,
SCAVENGER_SEMISPACE,
SCAVENGER_WEAK,
NUMBER_OF_SCOPES
};
Scope(GCTracer* tracer, ScopeId scope);
~Scope();
private:
GCTracer* tracer_;
ScopeId scope_;
double start_time_;
DISALLOW_COPY_AND_ASSIGN(Scope);
};
class AllocationEvent {
public:
// Default constructor leaves the event uninitialized.
AllocationEvent() {}
AllocationEvent(double duration, size_t allocation_in_bytes);
// Time spent in the mutator during the end of the last sample to the
// beginning of the next sample.
double duration_;
// Memory allocated in the new space during the end of the last sample
// to the beginning of the next sample
size_t allocation_in_bytes_;
};
class CompactionEvent {
public:
CompactionEvent() : duration(0), live_bytes_compacted(0) {}
CompactionEvent(double duration, intptr_t live_bytes_compacted)
: duration(duration), live_bytes_compacted(live_bytes_compacted) {}
double duration;
intptr_t live_bytes_compacted;
};
class ContextDisposalEvent {
public:
// Default constructor leaves the event uninitialized.
ContextDisposalEvent() {}
explicit ContextDisposalEvent(double time);
// Time when context disposal event happened.
double time_;
};
class SurvivalEvent {
public:
// Default constructor leaves the event uninitialized.
SurvivalEvent() {}
explicit SurvivalEvent(double survival_ratio);
double promotion_ratio_;
};
class Event {
public:
enum Type {
SCAVENGER = 0,
MARK_COMPACTOR = 1,
INCREMENTAL_MARK_COMPACTOR = 2,
START = 3
};
// Default constructor leaves the event uninitialized.
Event() {}
Event(Type type, const char* gc_reason, const char* collector_reason);
// Returns a string describing the event type.
const char* TypeName(bool short_name) const;
// Type of event
Type type;
const char* gc_reason;
const char* collector_reason;
// Timestamp set in the constructor.
double start_time;
// Timestamp set in the destructor.
double end_time;
// Memory reduction flag set.
bool reduce_memory;
// Size of objects in heap set in constructor.
intptr_t start_object_size;
// Size of objects in heap set in destructor.
intptr_t end_object_size;
// Size of memory allocated from OS set in constructor.
intptr_t start_memory_size;
// Size of memory allocated from OS set in destructor.
intptr_t end_memory_size;
// Total amount of space either wasted or contained in one of free lists
// before the current GC.
intptr_t start_holes_size;
// Total amount of space either wasted or contained in one of free lists
// after the current GC.
intptr_t end_holes_size;
// Size of new space objects in constructor.
intptr_t new_space_object_size;
// Size of survived new space objects in desctructor.
intptr_t survived_new_space_object_size;
// Number of incremental marking steps since creation of tracer.
// (value at start of event)
int cumulative_incremental_marking_steps;
// Incremental marking steps since
// - last event for SCAVENGER events
// - last INCREMENTAL_MARK_COMPACTOR event for INCREMENTAL_MARK_COMPACTOR
// events
int incremental_marking_steps;
// Bytes marked since creation of tracer (value at start of event).
intptr_t cumulative_incremental_marking_bytes;
// Bytes marked since
// - last event for SCAVENGER events
// - last INCREMENTAL_MARK_COMPACTOR event for INCREMENTAL_MARK_COMPACTOR
// events
intptr_t incremental_marking_bytes;
// Cumulative duration of incremental marking steps since creation of
// tracer. (value at start of event)
double cumulative_incremental_marking_duration;
// Duration of incremental marking steps since
// - last event for SCAVENGER events
// - last INCREMENTAL_MARK_COMPACTOR event for INCREMENTAL_MARK_COMPACTOR
// events
double incremental_marking_duration;
// Cumulative pure duration of incremental marking steps since creation of
// tracer. (value at start of event)
double cumulative_pure_incremental_marking_duration;
// Duration of pure incremental marking steps since
// - last event for SCAVENGER events
// - last INCREMENTAL_MARK_COMPACTOR event for INCREMENTAL_MARK_COMPACTOR
// events
double pure_incremental_marking_duration;
// Longest incremental marking step since start of marking.
// (value at start of event)
double longest_incremental_marking_step;
// Amounts of time spent in different scopes during GC.
double scopes[Scope::NUMBER_OF_SCOPES];
};
static const size_t kRingBufferMaxSize = 10;
typedef RingBuffer<Event, kRingBufferMaxSize> EventBuffer;
typedef RingBuffer<AllocationEvent, kRingBufferMaxSize> AllocationEventBuffer;
typedef RingBuffer<ContextDisposalEvent, kRingBufferMaxSize>
ContextDisposalEventBuffer;
typedef RingBuffer<CompactionEvent, kRingBufferMaxSize> CompactionEventBuffer;
typedef RingBuffer<SurvivalEvent, kRingBufferMaxSize> SurvivalEventBuffer;
static const int kThroughputTimeFrameMs = 5000;
explicit GCTracer(Heap* heap);
// Start collecting data.
void Start(GarbageCollector collector, const char* gc_reason,
const char* collector_reason);
// Stop collecting data and print results.
void Stop(GarbageCollector collector);
// Sample and accumulate bytes allocated since the last GC.
void SampleAllocation(double current_ms, size_t new_space_counter_bytes,
size_t old_generation_counter_bytes);
// Log the accumulated new space allocation bytes.
void AddAllocation(double current_ms);
void AddContextDisposalTime(double time);
void AddCompactionEvent(double duration, intptr_t live_bytes_compacted);
void AddSurvivalRatio(double survival_ratio);
// Log an incremental marking step.
void AddIncrementalMarkingStep(double duration, intptr_t bytes);
void AddIncrementalMarkingFinalizationStep(double duration);
// Log time spent in marking.
void AddMarkingTime(double duration) {
cumulative_marking_duration_ += duration;
}
// Time spent in marking.
double cumulative_marking_duration() const {
return cumulative_marking_duration_;
}
// Log time spent in sweeping on main thread.
void AddSweepingTime(double duration) {
cumulative_sweeping_duration_ += duration;
}
// Time spent in sweeping on main thread.
double cumulative_sweeping_duration() const {
return cumulative_sweeping_duration_;
}
// Compute the mean duration of the last scavenger events. Returns 0 if no
// events have been recorded.
double MeanScavengerDuration() const {
return MeanDuration(scavenger_events_);
}
// Compute the max duration of the last scavenger events. Returns 0 if no
// events have been recorded.
double MaxScavengerDuration() const { return MaxDuration(scavenger_events_); }
// Compute the mean duration of the last mark compactor events. Returns 0 if
// no events have been recorded.
double MeanMarkCompactorDuration() const {
return MeanDuration(mark_compactor_events_);
}
// Compute the max duration of the last mark compactor events. Return 0 if no
// events have been recorded.
double MaxMarkCompactorDuration() const {
return MaxDuration(mark_compactor_events_);
}
// Compute the mean duration of the last incremental mark compactor
// events. Returns 0 if no events have been recorded.
double MeanIncrementalMarkCompactorDuration() const {
return MeanDuration(incremental_mark_compactor_events_);
}
// Compute the mean step duration of the last incremental marking round.
// Returns 0 if no incremental marking round has been completed.
double MeanIncrementalMarkingDuration() const;
// Compute the max step duration of the last incremental marking round.
// Returns 0 if no incremental marking round has been completed.
double MaxIncrementalMarkingDuration() const;
// Compute the average incremental marking speed in bytes/millisecond.
// Returns 0 if no events have been recorded.
intptr_t IncrementalMarkingSpeedInBytesPerMillisecond() const;
// Compute the average scavenge speed in bytes/millisecond.
// Returns 0 if no events have been recorded.
intptr_t ScavengeSpeedInBytesPerMillisecond(
ScavengeSpeedMode mode = kForAllObjects) const;
// Compute the average compaction speed in bytes/millisecond.
// Returns 0 if not enough events have been recorded.
intptr_t CompactionSpeedInBytesPerMillisecond() const;
// Compute the average mark-sweep speed in bytes/millisecond.
// Returns 0 if no events have been recorded.
intptr_t MarkCompactSpeedInBytesPerMillisecond() const;
// Compute the average incremental mark-sweep finalize speed in
// bytes/millisecond.
// Returns 0 if no events have been recorded.
intptr_t FinalIncrementalMarkCompactSpeedInBytesPerMillisecond() const;
// Compute the overall mark compact speed including incremental steps
// and the final mark-compact step.
double CombinedMarkCompactSpeedInBytesPerMillisecond();
// Allocation throughput in the new space in bytes/millisecond.
// Returns 0 if no allocation events have been recorded.
size_t NewSpaceAllocationThroughputInBytesPerMillisecond(
double time_ms = 0) const;
// Allocation throughput in the old generation in bytes/millisecond in the
// last time_ms milliseconds.
// Returns 0 if no allocation events have been recorded.
size_t OldGenerationAllocationThroughputInBytesPerMillisecond(
double time_ms = 0) const;
// Allocation throughput in heap in bytes/millisecond in the last time_ms
// milliseconds.
// Returns 0 if no allocation events have been recorded.
size_t AllocationThroughputInBytesPerMillisecond(double time_ms) const;
// Allocation throughput in heap in bytes/milliseconds in the last
// kThroughputTimeFrameMs seconds.
// Returns 0 if no allocation events have been recorded.
size_t CurrentAllocationThroughputInBytesPerMillisecond() const;
// Allocation throughput in old generation in bytes/milliseconds in the last
// kThroughputTimeFrameMs seconds.
// Returns 0 if no allocation events have been recorded.
size_t CurrentOldGenerationAllocationThroughputInBytesPerMillisecond() const;
// Computes the context disposal rate in milliseconds. It takes the time
// frame of the first recorded context disposal to the current time and
// divides it by the number of recorded events.
// Returns 0 if no events have been recorded.
double ContextDisposalRateInMilliseconds() const;
// Computes the average survival ratio based on the last recorded survival
// events.
// Returns 0 if no events have been recorded.
double AverageSurvivalRatio() const;
// Returns true if at least one survival event was recorded.
bool SurvivalEventsRecorded() const;
// Discard all recorded survival events.
void ResetSurvivalEvents();
private:
// Print one detailed trace line in name=value format.
// TODO(ernstm): Move to Heap.
void PrintNVP() const;
// Print one trace line.
// TODO(ernstm): Move to Heap.
void Print() const;
// Prints a line and also adds it to the heap's ring buffer so that
// it can be included in later crash dumps.
void Output(const char* format, ...) const;
// Compute the mean duration of the events in the given ring buffer.
double MeanDuration(const EventBuffer& events) const;
// Compute the max duration of the events in the given ring buffer.
double MaxDuration(const EventBuffer& events) const;
void ClearMarkCompactStatistics() {
cumulative_incremental_marking_steps_ = 0;
cumulative_incremental_marking_bytes_ = 0;
cumulative_incremental_marking_duration_ = 0;
cumulative_pure_incremental_marking_duration_ = 0;
longest_incremental_marking_step_ = 0;
cumulative_incremental_marking_finalization_steps_ = 0;
cumulative_incremental_marking_finalization_duration_ = 0;
longest_incremental_marking_finalization_step_ = 0;
cumulative_marking_duration_ = 0;
cumulative_sweeping_duration_ = 0;
}
// Pointer to the heap that owns this tracer.
Heap* heap_;
// Current tracer event. Populated during Start/Stop cycle. Valid after Stop()
// has returned.
Event current_;
// Previous tracer event.
Event previous_;
// Previous INCREMENTAL_MARK_COMPACTOR event.
Event previous_incremental_mark_compactor_event_;
// RingBuffers for SCAVENGER events.
EventBuffer scavenger_events_;
// RingBuffers for MARK_COMPACTOR events.
EventBuffer mark_compactor_events_;
// RingBuffers for INCREMENTAL_MARK_COMPACTOR events.
EventBuffer incremental_mark_compactor_events_;
// RingBuffer for allocation events.
AllocationEventBuffer new_space_allocation_events_;
AllocationEventBuffer old_generation_allocation_events_;
// RingBuffer for context disposal events.
ContextDisposalEventBuffer context_disposal_events_;
// RingBuffer for compaction events.
CompactionEventBuffer compaction_events_;
// RingBuffer for survival events.
SurvivalEventBuffer survival_events_;
// Cumulative number of incremental marking steps since creation of tracer.
int cumulative_incremental_marking_steps_;
// Cumulative size of incremental marking steps (in bytes) since creation of
// tracer.
intptr_t cumulative_incremental_marking_bytes_;
// Cumulative duration of incremental marking steps since creation of tracer.
double cumulative_incremental_marking_duration_;
// Cumulative duration of pure incremental marking steps since creation of
// tracer.
double cumulative_pure_incremental_marking_duration_;
// Longest incremental marking step since start of marking.
double longest_incremental_marking_step_;
// Cumulative number of incremental marking finalization steps since creation
// of tracer.
int cumulative_incremental_marking_finalization_steps_;
// Cumulative duration of incremental marking finalization steps since
// creation of tracer.
double cumulative_incremental_marking_finalization_duration_;
// Longest incremental marking finalization step since start of marking.
double longest_incremental_marking_finalization_step_;
// Total marking time.
// This timer is precise when run with --print-cumulative-gc-stat
double cumulative_marking_duration_;
// Total sweeping time on the main thread.
// This timer is precise when run with --print-cumulative-gc-stat
// TODO(hpayer): Account for sweeping time on sweeper threads. Add a
// different field for that.
// TODO(hpayer): This timer right now just holds the sweeping time
// of the initial atomic sweeping pause. Make sure that it accumulates
// all sweeping operations performed on the main thread.
double cumulative_sweeping_duration_;
// Timestamp and allocation counter at the last sampled allocation event.
double allocation_time_ms_;
size_t new_space_allocation_counter_bytes_;
size_t old_generation_allocation_counter_bytes_;
// Accumulated duration and allocated bytes since the last GC.
double allocation_duration_since_gc_;
size_t new_space_allocation_in_bytes_since_gc_;
size_t old_generation_allocation_in_bytes_since_gc_;
double combined_mark_compact_speed_cache_;
// Counts how many tracers were started without stopping.
int start_counter_;
DISALLOW_COPY_AND_ASSIGN(GCTracer);
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_GC_TRACER_H_