// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/ia32/assembler-ia32.h"
#include <cstring>
#if V8_TARGET_ARCH_IA32
#if V8_LIBC_MSVCRT
#include <intrin.h> // _xgetbv()
#endif
#if V8_OS_MACOSX
#include <sys/sysctl.h>
#endif
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/disassembler.h"
#include "src/macro-assembler.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Implementation of CpuFeatures
namespace {
#if !V8_LIBC_MSVCRT
V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
unsigned eax, edx;
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler
// used.
__asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
}
#define _XCR_XFEATURE_ENABLED_MASK 0
#endif // !V8_LIBC_MSVCRT
bool OSHasAVXSupport() {
#if V8_OS_MACOSX
// Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
// caused by ISRs, so we detect that here and disable AVX in that case.
char buffer[128];
size_t buffer_size = arraysize(buffer);
int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
}
// The buffer now contains a string of the form XX.YY.ZZ, where
// XX is the major kernel version component.
char* period_pos = strchr(buffer, '.');
DCHECK_NOT_NULL(period_pos);
*period_pos = '\0';
long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT
if (kernel_version_major <= 13) return false;
#endif // V8_OS_MACOSX
// Check whether OS claims to support AVX.
uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
return (feature_mask & 0x6) == 0x6;
}
} // namespace
void CpuFeatures::ProbeImpl(bool cross_compile) {
base::CPU cpu;
CHECK(cpu.has_sse2()); // SSE2 support is mandatory.
CHECK(cpu.has_cmov()); // CMOV support is mandatory.
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
OSHasAVXSupport()) {
supported_ |= 1u << AVX;
}
if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
OSHasAVXSupport()) {
supported_ |= 1u << FMA3;
}
if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
if (strcmp(FLAG_mcpu, "auto") == 0) {
if (cpu.is_atom()) supported_ |= 1u << ATOM;
} else if (strcmp(FLAG_mcpu, "atom") == 0) {
supported_ |= 1u << ATOM;
}
}
void CpuFeatures::PrintTarget() { }
void CpuFeatures::PrintFeatures() {
printf(
"SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
"ATOM=%d\n",
CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
CpuFeatures::IsSupported(ATOM));
}
// -----------------------------------------------------------------------------
// Implementation of Displacement
void Displacement::init(Label* L, Type type) {
DCHECK(!L->is_bound());
int next = 0;
if (L->is_linked()) {
next = L->pos();
DCHECK(next > 0); // Displacements must be at positions > 0
}
// Ensure that we _never_ overflow the next field.
DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
data_ = NextField::encode(next) | TypeField::encode(type);
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask =
RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
RelocInfo::kDebugBreakSlotMask;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on IA32 means that it is a relative address, as used by
// branch instructions. These are also the ones that need changing when a
// code object moves.
return (1 << rmode_) & kApplyMask;
}
bool RelocInfo::IsInConstantPool() {
return false;
}
// -----------------------------------------------------------------------------
// Implementation of Operand
Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
// [base + disp/r]
if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
// [base]
set_modrm(0, base);
if (base.is(esp)) set_sib(times_1, esp, base);
} else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
// [base + disp8]
set_modrm(1, base);
if (base.is(esp)) set_sib(times_1, esp, base);
set_disp8(disp);
} else {
// [base + disp/r]
set_modrm(2, base);
if (base.is(esp)) set_sib(times_1, esp, base);
set_dispr(disp, rmode);
}
}
Operand::Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode) {
DCHECK(!index.is(esp)); // illegal addressing mode
// [base + index*scale + disp/r]
if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
// [base + index*scale]
set_modrm(0, esp);
set_sib(scale, index, base);
} else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
// [base + index*scale + disp8]
set_modrm(1, esp);
set_sib(scale, index, base);
set_disp8(disp);
} else {
// [base + index*scale + disp/r]
set_modrm(2, esp);
set_sib(scale, index, base);
set_dispr(disp, rmode);
}
}
Operand::Operand(Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode) {
DCHECK(!index.is(esp)); // illegal addressing mode
// [index*scale + disp/r]
set_modrm(0, esp);
set_sib(scale, index, ebp);
set_dispr(disp, rmode);
}
bool Operand::is_reg(Register reg) const {
return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
&& ((buf_[0] & 0x07) == reg.code()); // register codes match.
}
bool Operand::is_reg_only() const {
return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
}
Register Operand::reg() const {
DCHECK(is_reg_only());
return Register::from_code(buf_[0] & 0x07);
}
// -----------------------------------------------------------------------------
// Implementation of Assembler.
// Emit a single byte. Must always be inlined.
#define EMIT(x) \
*pc_++ = (x)
#ifdef GENERATED_CODE_COVERAGE
static void InitCoverageLog();
#endif
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
: AssemblerBase(isolate, buffer, buffer_size),
positions_recorder_(this) {
// Clear the buffer in debug mode unless it was provided by the
// caller in which case we can't be sure it's okay to overwrite
// existing code in it; see CodePatcher::CodePatcher(...).
#ifdef DEBUG
if (own_buffer_) {
memset(buffer_, 0xCC, buffer_size_); // int3
}
#endif
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
#ifdef GENERATED_CODE_COVERAGE
InitCoverageLog();
#endif
}
void Assembler::GetCode(CodeDesc* desc) {
// Finalize code (at this point overflow() may be true, but the gap ensures
// that we are still not overlapping instructions and relocation info).
reloc_info_writer.Finish();
DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
// Set up code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
desc->origin = this;
desc->constant_pool_size = 0;
}
void Assembler::Align(int m) {
DCHECK(base::bits::IsPowerOfTwo32(m));
int mask = m - 1;
int addr = pc_offset();
Nop((m - (addr & mask)) & mask);
}
bool Assembler::IsNop(Address addr) {
Address a = addr;
while (*a == 0x66) a++;
if (*a == 0x90) return true;
if (a[0] == 0xf && a[1] == 0x1f) return true;
return false;
}
void Assembler::Nop(int bytes) {
EnsureSpace ensure_space(this);
// Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
while (bytes > 0) {
switch (bytes) {
case 2:
EMIT(0x66);
case 1:
EMIT(0x90);
return;
case 3:
EMIT(0xf);
EMIT(0x1f);
EMIT(0);
return;
case 4:
EMIT(0xf);
EMIT(0x1f);
EMIT(0x40);
EMIT(0);
return;
case 6:
EMIT(0x66);
case 5:
EMIT(0xf);
EMIT(0x1f);
EMIT(0x44);
EMIT(0);
EMIT(0);
return;
case 7:
EMIT(0xf);
EMIT(0x1f);
EMIT(0x80);
EMIT(0);
EMIT(0);
EMIT(0);
EMIT(0);
return;
default:
case 11:
EMIT(0x66);
bytes--;
case 10:
EMIT(0x66);
bytes--;
case 9:
EMIT(0x66);
bytes--;
case 8:
EMIT(0xf);
EMIT(0x1f);
EMIT(0x84);
EMIT(0);
EMIT(0);
EMIT(0);
EMIT(0);
EMIT(0);
bytes -= 8;
}
}
}
void Assembler::CodeTargetAlign() {
Align(16); // Preferred alignment of jump targets on ia32.
}
void Assembler::cpuid() {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xA2);
}
void Assembler::pushad() {
EnsureSpace ensure_space(this);
EMIT(0x60);
}
void Assembler::popad() {
EnsureSpace ensure_space(this);
EMIT(0x61);
}
void Assembler::pushfd() {
EnsureSpace ensure_space(this);
EMIT(0x9C);
}
void Assembler::popfd() {
EnsureSpace ensure_space(this);
EMIT(0x9D);
}
void Assembler::push(const Immediate& x) {
EnsureSpace ensure_space(this);
if (x.is_int8()) {
EMIT(0x6a);
EMIT(x.x_);
} else {
EMIT(0x68);
emit(x);
}
}
void Assembler::push_imm32(int32_t imm32) {
EnsureSpace ensure_space(this);
EMIT(0x68);
emit(imm32);
}
void Assembler::push(Register src) {
EnsureSpace ensure_space(this);
EMIT(0x50 | src.code());
}
void Assembler::push(const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xFF);
emit_operand(esi, src);
}
void Assembler::pop(Register dst) {
DCHECK(reloc_info_writer.last_pc() != NULL);
EnsureSpace ensure_space(this);
EMIT(0x58 | dst.code());
}
void Assembler::pop(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0x8F);
emit_operand(eax, dst);
}
void Assembler::enter(const Immediate& size) {
EnsureSpace ensure_space(this);
EMIT(0xC8);
emit_w(size);
EMIT(0);
}
void Assembler::leave() {
EnsureSpace ensure_space(this);
EMIT(0xC9);
}
void Assembler::mov_b(Register dst, const Operand& src) {
CHECK(dst.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x8A);
emit_operand(dst, src);
}
void Assembler::mov_b(const Operand& dst, const Immediate& src) {
EnsureSpace ensure_space(this);
EMIT(0xC6);
emit_operand(eax, dst);
EMIT(static_cast<int8_t>(src.x_));
}
void Assembler::mov_b(const Operand& dst, Register src) {
CHECK(src.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x88);
emit_operand(src, dst);
}
void Assembler::mov_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x8B);
emit_operand(dst, src);
}
void Assembler::mov_w(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x89);
emit_operand(src, dst);
}
void Assembler::mov_w(const Operand& dst, const Immediate& src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0xC7);
emit_operand(eax, dst);
EMIT(static_cast<int8_t>(src.x_ & 0xff));
EMIT(static_cast<int8_t>(src.x_ >> 8));
}
void Assembler::mov(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
EMIT(0xB8 | dst.code());
emit(imm32);
}
void Assembler::mov(Register dst, const Immediate& x) {
EnsureSpace ensure_space(this);
EMIT(0xB8 | dst.code());
emit(x);
}
void Assembler::mov(Register dst, Handle<Object> handle) {
EnsureSpace ensure_space(this);
EMIT(0xB8 | dst.code());
emit(handle);
}
void Assembler::mov(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x8B);
emit_operand(dst, src);
}
void Assembler::mov(Register dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x89);
EMIT(0xC0 | src.code() << 3 | dst.code());
}
void Assembler::mov(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
EMIT(0xC7);
emit_operand(eax, dst);
emit(x);
}
void Assembler::mov(const Operand& dst, Handle<Object> handle) {
EnsureSpace ensure_space(this);
EMIT(0xC7);
emit_operand(eax, dst);
emit(handle);
}
void Assembler::mov(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x89);
emit_operand(src, dst);
}
void Assembler::movsx_b(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xBE);
emit_operand(dst, src);
}
void Assembler::movsx_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xBF);
emit_operand(dst, src);
}
void Assembler::movzx_b(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xB6);
emit_operand(dst, src);
}
void Assembler::movzx_w(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xB7);
emit_operand(dst, src);
}
void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
// Opcode: 0f 40 + cc /r.
EMIT(0x0F);
EMIT(0x40 + cc);
emit_operand(dst, src);
}
void Assembler::cld() {
EnsureSpace ensure_space(this);
EMIT(0xFC);
}
void Assembler::rep_movs() {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0xA5);
}
void Assembler::rep_stos() {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0xAB);
}
void Assembler::stos() {
EnsureSpace ensure_space(this);
EMIT(0xAB);
}
void Assembler::xchg(Register dst, Register src) {
EnsureSpace ensure_space(this);
if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
} else {
EMIT(0x87);
EMIT(0xC0 | src.code() << 3 | dst.code());
}
}
void Assembler::xchg(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x87);
emit_operand(dst, src);
}
void Assembler::adc(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
emit_arith(2, Operand(dst), Immediate(imm32));
}
void Assembler::adc(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x13);
emit_operand(dst, src);
}
void Assembler::add(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x03);
emit_operand(dst, src);
}
void Assembler::add(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x01);
emit_operand(src, dst);
}
void Assembler::add(const Operand& dst, const Immediate& x) {
DCHECK(reloc_info_writer.last_pc() != NULL);
EnsureSpace ensure_space(this);
emit_arith(0, dst, x);
}
void Assembler::and_(Register dst, int32_t imm32) {
and_(dst, Immediate(imm32));
}
void Assembler::and_(Register dst, const Immediate& x) {
EnsureSpace ensure_space(this);
emit_arith(4, Operand(dst), x);
}
void Assembler::and_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x23);
emit_operand(dst, src);
}
void Assembler::and_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
emit_arith(4, dst, x);
}
void Assembler::and_(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x21);
emit_operand(src, dst);
}
void Assembler::cmpb(const Operand& op, int8_t imm8) {
EnsureSpace ensure_space(this);
if (op.is_reg(eax)) {
EMIT(0x3C);
} else {
EMIT(0x80);
emit_operand(edi, op); // edi == 7
}
EMIT(imm8);
}
void Assembler::cmpb(const Operand& op, Register reg) {
CHECK(reg.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x38);
emit_operand(reg, op);
}
void Assembler::cmpb(Register reg, const Operand& op) {
CHECK(reg.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x3A);
emit_operand(reg, op);
}
void Assembler::cmpw(const Operand& op, Immediate imm16) {
DCHECK(imm16.is_int16());
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x81);
emit_operand(edi, op);
emit_w(imm16);
}
void Assembler::cmp(Register reg, int32_t imm32) {
EnsureSpace ensure_space(this);
emit_arith(7, Operand(reg), Immediate(imm32));
}
void Assembler::cmp(Register reg, Handle<Object> handle) {
EnsureSpace ensure_space(this);
emit_arith(7, Operand(reg), Immediate(handle));
}
void Assembler::cmp(Register reg, const Operand& op) {
EnsureSpace ensure_space(this);
EMIT(0x3B);
emit_operand(reg, op);
}
void Assembler::cmp(const Operand& op, const Immediate& imm) {
EnsureSpace ensure_space(this);
emit_arith(7, op, imm);
}
void Assembler::cmp(const Operand& op, Handle<Object> handle) {
EnsureSpace ensure_space(this);
emit_arith(7, op, Immediate(handle));
}
void Assembler::cmpb_al(const Operand& op) {
EnsureSpace ensure_space(this);
EMIT(0x38); // CMP r/m8, r8
emit_operand(eax, op); // eax has same code as register al.
}
void Assembler::cmpw_ax(const Operand& op) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x39); // CMP r/m16, r16
emit_operand(eax, op); // eax has same code as register ax.
}
void Assembler::dec_b(Register dst) {
CHECK(dst.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0xFE);
EMIT(0xC8 | dst.code());
}
void Assembler::dec_b(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xFE);
emit_operand(ecx, dst);
}
void Assembler::dec(Register dst) {
EnsureSpace ensure_space(this);
EMIT(0x48 | dst.code());
}
void Assembler::dec(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xFF);
emit_operand(ecx, dst);
}
void Assembler::cdq() {
EnsureSpace ensure_space(this);
EMIT(0x99);
}
void Assembler::idiv(const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
emit_operand(edi, src);
}
void Assembler::div(const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
emit_operand(esi, src);
}
void Assembler::imul(Register reg) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
EMIT(0xE8 | reg.code());
}
void Assembler::imul(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xAF);
emit_operand(dst, src);
}
void Assembler::imul(Register dst, Register src, int32_t imm32) {
imul(dst, Operand(src), imm32);
}
void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
EnsureSpace ensure_space(this);
if (is_int8(imm32)) {
EMIT(0x6B);
emit_operand(dst, src);
EMIT(imm32);
} else {
EMIT(0x69);
emit_operand(dst, src);
emit(imm32);
}
}
void Assembler::inc(Register dst) {
EnsureSpace ensure_space(this);
EMIT(0x40 | dst.code());
}
void Assembler::inc(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xFF);
emit_operand(eax, dst);
}
void Assembler::lea(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x8D);
emit_operand(dst, src);
}
void Assembler::mul(Register src) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
EMIT(0xE0 | src.code());
}
void Assembler::neg(Register dst) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
EMIT(0xD8 | dst.code());
}
void Assembler::neg(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
emit_operand(ebx, dst);
}
void Assembler::not_(Register dst) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
EMIT(0xD0 | dst.code());
}
void Assembler::not_(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xF7);
emit_operand(edx, dst);
}
void Assembler::or_(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
emit_arith(1, Operand(dst), Immediate(imm32));
}
void Assembler::or_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0B);
emit_operand(dst, src);
}
void Assembler::or_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
emit_arith(1, dst, x);
}
void Assembler::or_(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x09);
emit_operand(src, dst);
}
void Assembler::rcl(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
EMIT(0xD0 | dst.code());
} else {
EMIT(0xC1);
EMIT(0xD0 | dst.code());
EMIT(imm8);
}
}
void Assembler::rcr(Register dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
EMIT(0xD8 | dst.code());
} else {
EMIT(0xC1);
EMIT(0xD8 | dst.code());
EMIT(imm8);
}
}
void Assembler::ror(const Operand& dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
emit_operand(ecx, dst);
} else {
EMIT(0xC1);
emit_operand(ecx, dst);
EMIT(imm8);
}
}
void Assembler::ror_cl(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xD3);
emit_operand(ecx, dst);
}
void Assembler::sar(const Operand& dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
emit_operand(edi, dst);
} else {
EMIT(0xC1);
emit_operand(edi, dst);
EMIT(imm8);
}
}
void Assembler::sar_cl(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xD3);
emit_operand(edi, dst);
}
void Assembler::sbb(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x1B);
emit_operand(dst, src);
}
void Assembler::shld(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xA5);
emit_operand(dst, src);
}
void Assembler::shl(const Operand& dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
emit_operand(esp, dst);
} else {
EMIT(0xC1);
emit_operand(esp, dst);
EMIT(imm8);
}
}
void Assembler::shl_cl(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xD3);
emit_operand(esp, dst);
}
void Assembler::shrd(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xAD);
emit_operand(dst, src);
}
void Assembler::shr(const Operand& dst, uint8_t imm8) {
EnsureSpace ensure_space(this);
DCHECK(is_uint5(imm8)); // illegal shift count
if (imm8 == 1) {
EMIT(0xD1);
emit_operand(ebp, dst);
} else {
EMIT(0xC1);
emit_operand(ebp, dst);
EMIT(imm8);
}
}
void Assembler::shr_cl(const Operand& dst) {
EnsureSpace ensure_space(this);
EMIT(0xD3);
emit_operand(ebp, dst);
}
void Assembler::sub(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
emit_arith(5, dst, x);
}
void Assembler::sub(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x2B);
emit_operand(dst, src);
}
void Assembler::sub(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x29);
emit_operand(src, dst);
}
void Assembler::test(Register reg, const Immediate& imm) {
if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
test_b(reg, imm.x_);
return;
}
EnsureSpace ensure_space(this);
// This is not using emit_arith because test doesn't support
// sign-extension of 8-bit operands.
if (reg.is(eax)) {
EMIT(0xA9);
} else {
EMIT(0xF7);
EMIT(0xC0 | reg.code());
}
emit(imm);
}
void Assembler::test(Register reg, const Operand& op) {
EnsureSpace ensure_space(this);
EMIT(0x85);
emit_operand(reg, op);
}
void Assembler::test_b(Register reg, const Operand& op) {
CHECK(reg.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x84);
emit_operand(reg, op);
}
void Assembler::test(const Operand& op, const Immediate& imm) {
if (op.is_reg_only()) {
test(op.reg(), imm);
return;
}
if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
return test_b(op, imm.x_);
}
EnsureSpace ensure_space(this);
EMIT(0xF7);
emit_operand(eax, op);
emit(imm);
}
void Assembler::test_b(Register reg, uint8_t imm8) {
EnsureSpace ensure_space(this);
// Only use test against byte for registers that have a byte
// variant: eax, ebx, ecx, and edx.
if (reg.is(eax)) {
EMIT(0xA8);
EMIT(imm8);
} else if (reg.is_byte_register()) {
emit_arith_b(0xF6, 0xC0, reg, imm8);
} else {
EMIT(0xF7);
EMIT(0xC0 | reg.code());
emit(imm8);
}
}
void Assembler::test_b(const Operand& op, uint8_t imm8) {
if (op.is_reg_only()) {
test_b(op.reg(), imm8);
return;
}
EnsureSpace ensure_space(this);
EMIT(0xF6);
emit_operand(eax, op);
EMIT(imm8);
}
void Assembler::xor_(Register dst, int32_t imm32) {
EnsureSpace ensure_space(this);
emit_arith(6, Operand(dst), Immediate(imm32));
}
void Assembler::xor_(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x33);
emit_operand(dst, src);
}
void Assembler::xor_(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x31);
emit_operand(src, dst);
}
void Assembler::xor_(const Operand& dst, const Immediate& x) {
EnsureSpace ensure_space(this);
emit_arith(6, dst, x);
}
void Assembler::bt(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xA3);
emit_operand(src, dst);
}
void Assembler::bts(const Operand& dst, Register src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xAB);
emit_operand(src, dst);
}
void Assembler::bsr(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xBD);
emit_operand(dst, src);
}
void Assembler::bsf(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xBC);
emit_operand(dst, src);
}
void Assembler::hlt() {
EnsureSpace ensure_space(this);
EMIT(0xF4);
}
void Assembler::int3() {
EnsureSpace ensure_space(this);
EMIT(0xCC);
}
void Assembler::nop() {
EnsureSpace ensure_space(this);
EMIT(0x90);
}
void Assembler::ret(int imm16) {
EnsureSpace ensure_space(this);
DCHECK(is_uint16(imm16));
if (imm16 == 0) {
EMIT(0xC3);
} else {
EMIT(0xC2);
EMIT(imm16 & 0xFF);
EMIT((imm16 >> 8) & 0xFF);
}
}
void Assembler::ud2() {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x0B);
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the 32bit
// Displacement of the last instruction using the label.
void Assembler::print(Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l = *L;
PrintF("unbound label");
while (l.is_linked()) {
Displacement disp = disp_at(&l);
PrintF("@ %d ", l.pos());
disp.print();
PrintF("\n");
disp.next(&l);
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
EnsureSpace ensure_space(this);
DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
while (L->is_linked()) {
Displacement disp = disp_at(L);
int fixup_pos = L->pos();
if (disp.type() == Displacement::CODE_ABSOLUTE) {
long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
internal_reference_positions_.push_back(fixup_pos);
} else if (disp.type() == Displacement::CODE_RELATIVE) {
// Relative to Code* heap object pointer.
long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
} else {
if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
}
// Relative address, relative to point after address.
int imm32 = pos - (fixup_pos + sizeof(int32_t));
long_at_put(fixup_pos, imm32);
}
disp.next(L);
}
while (L->is_near_linked()) {
int fixup_pos = L->near_link_pos();
int offset_to_next =
static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
DCHECK(offset_to_next <= 0);
// Relative address, relative to point after address.
int disp = pos - fixup_pos - sizeof(int8_t);
CHECK(0 <= disp && disp <= 127);
set_byte_at(fixup_pos, disp);
if (offset_to_next < 0) {
L->link_to(fixup_pos + offset_to_next, Label::kNear);
} else {
L->UnuseNear();
}
}
L->bind_to(pos);
}
void Assembler::bind(Label* L) {
EnsureSpace ensure_space(this);
DCHECK(!L->is_bound()); // label can only be bound once
bind_to(L, pc_offset());
}
void Assembler::call(Label* L) {
positions_recorder()->WriteRecordedPositions();
EnsureSpace ensure_space(this);
if (L->is_bound()) {
const int long_size = 5;
int offs = L->pos() - pc_offset();
DCHECK(offs <= 0);
// 1110 1000 #32-bit disp.
EMIT(0xE8);
emit(offs - long_size);
} else {
// 1110 1000 #32-bit disp.
EMIT(0xE8);
emit_disp(L, Displacement::OTHER);
}
}
void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
positions_recorder()->WriteRecordedPositions();
EnsureSpace ensure_space(this);
DCHECK(!RelocInfo::IsCodeTarget(rmode));
EMIT(0xE8);
if (RelocInfo::IsRuntimeEntry(rmode)) {
emit(reinterpret_cast<uint32_t>(entry), rmode);
} else {
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
}
int Assembler::CallSize(const Operand& adr) {
// Call size is 1 (opcode) + adr.len_ (operand).
return 1 + adr.len_;
}
void Assembler::call(const Operand& adr) {
positions_recorder()->WriteRecordedPositions();
EnsureSpace ensure_space(this);
EMIT(0xFF);
emit_operand(edx, adr);
}
int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
}
void Assembler::call(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id) {
positions_recorder()->WriteRecordedPositions();
EnsureSpace ensure_space(this);
DCHECK(RelocInfo::IsCodeTarget(rmode)
|| rmode == RelocInfo::CODE_AGE_SEQUENCE);
EMIT(0xE8);
emit(code, rmode, ast_id);
}
void Assembler::jmp(Label* L, Label::Distance distance) {
EnsureSpace ensure_space(this);
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 5;
int offs = L->pos() - pc_offset();
DCHECK(offs <= 0);
if (is_int8(offs - short_size)) {
// 1110 1011 #8-bit disp.
EMIT(0xEB);
EMIT((offs - short_size) & 0xFF);
} else {
// 1110 1001 #32-bit disp.
EMIT(0xE9);
emit(offs - long_size);
}
} else if (distance == Label::kNear) {
EMIT(0xEB);
emit_near_disp(L);
} else {
// 1110 1001 #32-bit disp.
EMIT(0xE9);
emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
}
}
void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
DCHECK(!RelocInfo::IsCodeTarget(rmode));
EMIT(0xE9);
if (RelocInfo::IsRuntimeEntry(rmode)) {
emit(reinterpret_cast<uint32_t>(entry), rmode);
} else {
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
}
void Assembler::jmp(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xFF);
emit_operand(esp, adr);
}
void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
DCHECK(RelocInfo::IsCodeTarget(rmode));
EMIT(0xE9);
emit(code, rmode);
}
void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
EnsureSpace ensure_space(this);
DCHECK(0 <= cc && static_cast<int>(cc) < 16);
if (L->is_bound()) {
const int short_size = 2;
const int long_size = 6;
int offs = L->pos() - pc_offset();
DCHECK(offs <= 0);
if (is_int8(offs - short_size)) {
// 0111 tttn #8-bit disp
EMIT(0x70 | cc);
EMIT((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
EMIT(0x0F);
EMIT(0x80 | cc);
emit(offs - long_size);
}
} else if (distance == Label::kNear) {
EMIT(0x70 | cc);
emit_near_disp(L);
} else {
// 0000 1111 1000 tttn #32-bit disp
// Note: could eliminate cond. jumps to this jump if condition
// is the same however, seems to be rather unlikely case.
EMIT(0x0F);
EMIT(0x80 | cc);
emit_disp(L, Displacement::OTHER);
}
}
void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
// 0000 1111 1000 tttn #32-bit disp.
EMIT(0x0F);
EMIT(0x80 | cc);
if (RelocInfo::IsRuntimeEntry(rmode)) {
emit(reinterpret_cast<uint32_t>(entry), rmode);
} else {
emit(entry - (pc_ + sizeof(int32_t)), rmode);
}
}
void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
EnsureSpace ensure_space(this);
// 0000 1111 1000 tttn #32-bit disp
EMIT(0x0F);
EMIT(0x80 | cc);
emit(code, rmode);
}
// FPU instructions.
void Assembler::fld(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD9, 0xC0, i);
}
void Assembler::fstp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xD8, i);
}
void Assembler::fld1() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xE8);
}
void Assembler::fldpi() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xEB);
}
void Assembler::fldz() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xEE);
}
void Assembler::fldln2() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xED);
}
void Assembler::fld_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xD9);
emit_operand(eax, adr);
}
void Assembler::fld_d(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDD);
emit_operand(eax, adr);
}
void Assembler::fstp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xD9);
emit_operand(ebx, adr);
}
void Assembler::fst_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xD9);
emit_operand(edx, adr);
}
void Assembler::fstp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDD);
emit_operand(ebx, adr);
}
void Assembler::fst_d(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDD);
emit_operand(edx, adr);
}
void Assembler::fild_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDB);
emit_operand(eax, adr);
}
void Assembler::fild_d(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDF);
emit_operand(ebp, adr);
}
void Assembler::fistp_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDB);
emit_operand(ebx, adr);
}
void Assembler::fisttp_s(const Operand& adr) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
EMIT(0xDB);
emit_operand(ecx, adr);
}
void Assembler::fisttp_d(const Operand& adr) {
DCHECK(IsEnabled(SSE3));
EnsureSpace ensure_space(this);
EMIT(0xDD);
emit_operand(ecx, adr);
}
void Assembler::fist_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDB);
emit_operand(edx, adr);
}
void Assembler::fistp_d(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDF);
emit_operand(edi, adr);
}
void Assembler::fabs() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xE1);
}
void Assembler::fchs() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xE0);
}
void Assembler::fcos() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xFF);
}
void Assembler::fsin() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xFE);
}
void Assembler::fptan() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF2);
}
void Assembler::fyl2x() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF1);
}
void Assembler::f2xm1() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF0);
}
void Assembler::fscale() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xFD);
}
void Assembler::fninit() {
EnsureSpace ensure_space(this);
EMIT(0xDB);
EMIT(0xE3);
}
void Assembler::fadd(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xC0, i);
}
void Assembler::fadd_i(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD8, 0xC0, i);
}
void Assembler::fsub(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fsub_i(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD8, 0xE0, i);
}
void Assembler::fisub_s(const Operand& adr) {
EnsureSpace ensure_space(this);
EMIT(0xDA);
emit_operand(esp, adr);
}
void Assembler::fmul_i(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD8, 0xC8, i);
}
void Assembler::fmul(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fdiv(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xF8, i);
}
void Assembler::fdiv_i(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD8, 0xF0, i);
}
void Assembler::faddp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fsubp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xE8, i);
}
void Assembler::fsubrp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xE0, i);
}
void Assembler::fmulp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fdivp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDE, 0xF8, i);
}
void Assembler::fprem() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF8);
}
void Assembler::fprem1() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF5);
}
void Assembler::fxch(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fincstp() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xF7);
}
void Assembler::ffree(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xC0, i);
}
void Assembler::ftst() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xE4);
}
void Assembler::fucomp(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDD, 0xE8, i);
}
void Assembler::fucompp() {
EnsureSpace ensure_space(this);
EMIT(0xDA);
EMIT(0xE9);
}
void Assembler::fucomi(int i) {
EnsureSpace ensure_space(this);
EMIT(0xDB);
EMIT(0xE8 + i);
}
void Assembler::fucomip() {
EnsureSpace ensure_space(this);
EMIT(0xDF);
EMIT(0xE9);
}
void Assembler::fcompp() {
EnsureSpace ensure_space(this);
EMIT(0xDE);
EMIT(0xD9);
}
void Assembler::fnstsw_ax() {
EnsureSpace ensure_space(this);
EMIT(0xDF);
EMIT(0xE0);
}
void Assembler::fwait() {
EnsureSpace ensure_space(this);
EMIT(0x9B);
}
void Assembler::frndint() {
EnsureSpace ensure_space(this);
EMIT(0xD9);
EMIT(0xFC);
}
void Assembler::fnclex() {
EnsureSpace ensure_space(this);
EMIT(0xDB);
EMIT(0xE2);
}
void Assembler::sahf() {
EnsureSpace ensure_space(this);
EMIT(0x9E);
}
void Assembler::setcc(Condition cc, Register reg) {
DCHECK(reg.is_byte_register());
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x90 | cc);
EMIT(0xC0 | reg.code());
}
void Assembler::cvttss2si(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x2C);
emit_operand(dst, src);
}
void Assembler::cvttsd2si(Register dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x2C);
emit_operand(dst, src);
}
void Assembler::cvtsd2si(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x2D);
emit_sse_operand(dst, src);
}
void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x2A);
emit_sse_operand(dst, src);
}
void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x5A);
emit_sse_operand(dst, src);
}
void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5A);
emit_sse_operand(dst, src);
}
void Assembler::addsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x58);
emit_sse_operand(dst, src);
}
void Assembler::mulsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x59);
emit_sse_operand(dst, src);
}
void Assembler::subsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5C);
emit_sse_operand(dst, src);
}
void Assembler::divsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5E);
emit_sse_operand(dst, src);
}
void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x57);
emit_sse_operand(dst, src);
}
void Assembler::andps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x54);
emit_sse_operand(dst, src);
}
void Assembler::orps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x56);
emit_sse_operand(dst, src);
}
void Assembler::xorps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x57);
emit_sse_operand(dst, src);
}
void Assembler::addps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x58);
emit_sse_operand(dst, src);
}
void Assembler::subps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x5C);
emit_sse_operand(dst, src);
}
void Assembler::mulps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x59);
emit_sse_operand(dst, src);
}
void Assembler::divps(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x5E);
emit_sse_operand(dst, src);
}
void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x51);
emit_sse_operand(dst, src);
}
void Assembler::andpd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x54);
emit_sse_operand(dst, src);
}
void Assembler::orpd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x56);
emit_sse_operand(dst, src);
}
void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x2E);
emit_sse_operand(dst, src);
}
void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x0A);
emit_sse_operand(dst, src);
// Mask precision exeption.
EMIT(static_cast<byte>(mode) | 0x8);
}
void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x0B);
emit_sse_operand(dst, src);
// Mask precision exeption.
EMIT(static_cast<byte>(mode) | 0x8);
}
void Assembler::movmskpd(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x50);
emit_sse_operand(dst, src);
}
void Assembler::movmskps(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x50);
emit_sse_operand(dst, src);
}
void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x76);
emit_sse_operand(dst, src);
}
void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x62);
emit_sse_operand(dst, src);
}
void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x6A);
emit_sse_operand(dst, src);
}
void Assembler::maxsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5F);
emit_sse_operand(dst, src);
}
void Assembler::minsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0x5D);
emit_sse_operand(dst, src);
}
void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0xF2);
EMIT(0x0F);
EMIT(0xC2);
emit_sse_operand(dst, src);
EMIT(1); // LT == 1
}
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x28);
emit_sse_operand(dst, src);
}
void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
DCHECK(is_uint8(imm8));
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0xC6);
emit_sse_operand(dst, src);
EMIT(imm8);
}
void Assembler::movdqa(const Operand& dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::movdqa(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::movdqu(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x6F);
emit_sse_operand(dst, src);
}
void Assembler::prefetch(const Operand& src, int level) {
DCHECK(is_uint2(level));
EnsureSpace ensure_space(this);
EMIT(0x0F);
EMIT(0x18);
// Emit hint number in Reg position of RegR/M.
XMMRegister code = XMMRegister::from_code(level);
emit_sse_operand(code, src);
}
void Assembler::movsd(const Operand& dst, XMMRegister src ) {
EnsureSpace ensure_space(this);
EMIT(0xF2); // double
EMIT(0x0F);
EMIT(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF2); // double
EMIT(0x0F);
EMIT(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movss(const Operand& dst, XMMRegister src ) {
EnsureSpace ensure_space(this);
EMIT(0xF3); // float
EMIT(0x0F);
EMIT(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3); // float
EMIT(0x0F);
EMIT(0x10); // load
emit_sse_operand(dst, src);
}
void Assembler::movd(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x6E);
emit_sse_operand(dst, src);
}
void Assembler::movd(const Operand& dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
DCHECK(IsEnabled(SSE4_1));
DCHECK(is_uint8(imm8));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x17);
emit_sse_operand(src, dst);
EMIT(imm8);
}
void Assembler::pand(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0xDB);
emit_sse_operand(dst, src);
}
void Assembler::pxor(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0xEF);
emit_sse_operand(dst, src);
}
void Assembler::por(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0xEB);
emit_sse_operand(dst, src);
}
void Assembler::ptest(XMMRegister dst, XMMRegister src) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x38);
EMIT(0x17);
emit_sse_operand(dst, src);
}
void Assembler::pslld(XMMRegister reg, int8_t shift) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x72);
emit_sse_operand(esi, reg); // esi == 6
EMIT(shift);
}
void Assembler::psrld(XMMRegister reg, int8_t shift) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x72);
emit_sse_operand(edx, reg); // edx == 2
EMIT(shift);
}
void Assembler::psllq(XMMRegister reg, int8_t shift) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x73);
emit_sse_operand(esi, reg); // esi == 6
EMIT(shift);
}
void Assembler::psllq(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0xF3);
emit_sse_operand(dst, src);
}
void Assembler::psrlq(XMMRegister reg, int8_t shift) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x73);
emit_sse_operand(edx, reg); // edx == 2
EMIT(shift);
}
void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0xD3);
emit_sse_operand(dst, src);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x70);
emit_sse_operand(dst, src);
EMIT(shuffle);
}
void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x16);
emit_sse_operand(src, dst);
EMIT(offset);
}
void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
DCHECK(IsEnabled(SSE4_1));
EnsureSpace ensure_space(this);
EMIT(0x66);
EMIT(0x0F);
EMIT(0x3A);
EMIT(0x22);
emit_sse_operand(dst, src);
EMIT(offset);
}
void Assembler::addss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x58);
emit_sse_operand(dst, src);
}
void Assembler::subss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x5C);
emit_sse_operand(dst, src);
}
void Assembler::mulss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x59);
emit_sse_operand(dst, src);
}
void Assembler::divss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x5E);
emit_sse_operand(dst, src);
}
void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x51);
emit_sse_operand(dst, src);
}
void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0x0f);
EMIT(0x2e);
emit_sse_operand(dst, src);
}
void Assembler::maxss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x5F);
emit_sse_operand(dst, src);
}
void Assembler::minss(XMMRegister dst, const Operand& src) {
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0x5D);
emit_sse_operand(dst, src);
}
// AVX instructions
void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(FMA3));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(FMA3));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
const Operand& src2) {
DCHECK(IsEnabled(AVX));
EnsureSpace ensure_space(this);
emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
EMIT(op);
emit_sse_operand(dst, src2);
}
void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
EMIT(op);
emit_operand(reg, rm);
}
void Assembler::tzcnt(Register dst, const Operand& src) {
DCHECK(IsEnabled(BMI1));
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0xBC);
emit_operand(dst, src);
}
void Assembler::lzcnt(Register dst, const Operand& src) {
DCHECK(IsEnabled(LZCNT));
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0xBD);
emit_operand(dst, src);
}
void Assembler::popcnt(Register dst, const Operand& src) {
DCHECK(IsEnabled(POPCNT));
EnsureSpace ensure_space(this);
EMIT(0xF3);
EMIT(0x0F);
EMIT(0xB8);
emit_operand(dst, src);
}
void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
const Operand& rm) {
DCHECK(IsEnabled(BMI2));
EnsureSpace ensure_space(this);
emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
EMIT(op);
emit_operand(reg, rm);
}
void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
DCHECK(IsEnabled(BMI2));
DCHECK(is_uint8(imm8));
Register vreg = {0}; // VEX.vvvv unused
EnsureSpace ensure_space(this);
emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
EMIT(0xF0);
emit_operand(dst, src);
EMIT(imm8);
}
void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
Register ireg = { reg.code() };
emit_operand(ireg, adr);
}
void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
EMIT(0xC0 | dst.code() << 3 | src.code());
}
void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
EMIT(0xC0 | dst.code() << 3 | src.code());
}
void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
EMIT(0xC0 | (dst.code() << 3) | src.code());
}
void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
LeadingOpcode mm, VexW w) {
if (mm != k0F || w != kW0) {
EMIT(0xc4);
// Change RXB from "110" to "111" to align with gdb disassembler.
EMIT(0xe0 | mm);
EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
} else {
EMIT(0xc5);
EMIT(((~vreg.code()) << 3) | l | pp);
}
}
void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
LeadingOpcode mm, VexW w) {
XMMRegister ivreg = {vreg.code()};
emit_vex_prefix(ivreg, l, pp, mm, w);
}
void Assembler::GrowBuffer() {
DCHECK(buffer_overflow());
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
desc.buffer_size = 2 * buffer_size_;
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if ((desc.buffer_size > kMaximalBufferSize) ||
(desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
}
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.origin = this;
desc.instr_size = pc_offset();
desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
// Clear the buffer in debug mode. Use 'int3' instructions to make
// sure to get into problems if we ever run uninitialized code.
#ifdef DEBUG
memset(desc.buffer, 0xCC, desc.buffer_size);
#endif
// Copy the data.
int pc_delta = desc.buffer - buffer_;
int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
MemMove(desc.buffer, buffer_, desc.instr_size);
MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Relocate internal references.
for (auto pos : internal_reference_positions_) {
int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
*p += pc_delta;
}
DCHECK(!buffer_overflow());
}
void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
DCHECK(is_uint8(imm8));
DCHECK((op1 & 0x01) == 0); // should be 8bit operation
EMIT(op1);
EMIT(op2 | dst.code());
EMIT(imm8);
}
void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
DCHECK((0 <= sel) && (sel <= 7));
Register ireg = { sel };
if (x.is_int8()) {
EMIT(0x83); // using a sign-extended 8-bit immediate.
emit_operand(ireg, dst);
EMIT(x.x_ & 0xFF);
} else if (dst.is_reg(eax)) {
EMIT((sel << 3) | 0x05); // short form if the destination is eax.
emit(x);
} else {
EMIT(0x81); // using a literal 32-bit immediate.
emit_operand(ireg, dst);
emit(x);
}
}
void Assembler::emit_operand(Register reg, const Operand& adr) {
const unsigned length = adr.len_;
DCHECK(length > 0);
// Emit updated ModRM byte containing the given register.
pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
// Emit the rest of the encoded operand.
for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
pc_ += length;
// Emit relocation information if necessary.
if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
RecordRelocInfo(adr.rmode_);
if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
emit_label(*reinterpret_cast<Label**>(pc_));
} else {
pc_ += sizeof(int32_t);
}
}
}
void Assembler::emit_label(Label* label) {
if (label->is_bound()) {
internal_reference_positions_.push_back(pc_offset());
emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
} else {
emit_disp(label, Displacement::CODE_ABSOLUTE);
}
}
void Assembler::emit_farith(int b1, int b2, int i) {
DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
DCHECK(0 <= i && i < 8); // illegal stack offset
EMIT(b1);
EMIT(b2 + i);
}
void Assembler::db(uint8_t data) {
EnsureSpace ensure_space(this);
EMIT(data);
}
void Assembler::dd(uint32_t data) {
EnsureSpace ensure_space(this);
emit(data);
}
void Assembler::dq(uint64_t data) {
EnsureSpace ensure_space(this);
emit_q(data);
}
void Assembler::dd(Label* label) {
EnsureSpace ensure_space(this);
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
emit_label(label);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
DCHECK(!RelocInfo::IsNone(rmode));
// Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
!serializer_enabled() && !emit_debug_code()) {
return;
}
RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
reloc_info_writer.Write(&rinfo);
}
#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;
static void InitCoverageLog() {
char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
if (file_name != NULL) {
coverage_log = fopen(file_name, "aw+");
}
}
void LogGeneratedCodeCoverage(const char* file_line) {
const char* return_address = (&file_line)[-1];
char* push_insn = const_cast<char*>(return_address - 12);
push_insn[0] = 0xeb; // Relative branch insn.
push_insn[1] = 13; // Skip over coverage insns.
if (coverage_log != NULL) {
fprintf(coverage_log, "%s\n", file_line);
fflush(coverage_log);
}
}
#endif
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32