// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_OPCODES_H_
#define V8_WASM_OPCODES_H_
#include "src/machine-type.h"
#include "src/signature.h"
namespace v8 {
namespace internal {
namespace wasm {
// Binary encoding of local types.
enum LocalTypeCode {
kLocalVoid = 0,
kLocalI32 = 1,
kLocalI64 = 2,
kLocalF32 = 3,
kLocalF64 = 4
};
// Binary encoding of memory types.
enum MemTypeCode {
kMemI8 = 0,
kMemU8 = 1,
kMemI16 = 2,
kMemU16 = 3,
kMemI32 = 4,
kMemU32 = 5,
kMemI64 = 6,
kMemU64 = 7,
kMemF32 = 8,
kMemF64 = 9
};
// We reuse the internal machine type to represent WebAssembly AST types.
// A typedef improves readability without adding a whole new type system.
typedef MachineRepresentation LocalType;
const LocalType kAstStmt = MachineRepresentation::kNone;
const LocalType kAstI32 = MachineRepresentation::kWord32;
const LocalType kAstI64 = MachineRepresentation::kWord64;
const LocalType kAstF32 = MachineRepresentation::kFloat32;
const LocalType kAstF64 = MachineRepresentation::kFloat64;
// We use kTagged here because kNone is already used by kAstStmt.
const LocalType kAstEnd = MachineRepresentation::kTagged;
// Functionality related to encoding memory accesses.
struct MemoryAccess {
// Atomicity annotations for access to the memory and globals.
enum Atomicity {
kNone = 0, // non-atomic
kSequential = 1, // sequential consistency
kAcquire = 2, // acquire semantics
kRelease = 3 // release semantics
};
// Alignment annotations for memory accesses.
enum Alignment { kAligned = 0, kUnaligned = 1 };
// Bitfields for the various annotations for memory accesses.
typedef BitField<Alignment, 7, 1> AlignmentField;
typedef BitField<Atomicity, 5, 2> AtomicityField;
typedef BitField<bool, 4, 1> OffsetField;
};
typedef Signature<LocalType> FunctionSig;
// Control expressions and blocks.
#define FOREACH_CONTROL_OPCODE(V) \
V(Nop, 0x00, _) \
V(Block, 0x01, _) \
V(Loop, 0x02, _) \
V(If, 0x03, _) \
V(IfElse, 0x04, _) \
V(Select, 0x05, _) \
V(Br, 0x06, _) \
V(BrIf, 0x07, _) \
V(TableSwitch, 0x08, _) \
V(Return, 0x14, _) \
V(Unreachable, 0x15, _)
// TODO(titzer): numbering
// Constants, locals, globals, and calls.
#define FOREACH_MISC_OPCODE(V) \
V(I8Const, 0x09, _) \
V(I32Const, 0x0a, _) \
V(I64Const, 0x0b, _) \
V(F64Const, 0x0c, _) \
V(F32Const, 0x0d, _) \
V(GetLocal, 0x0e, _) \
V(SetLocal, 0x0f, _) \
V(LoadGlobal, 0x10, _) \
V(StoreGlobal, 0x11, _) \
V(CallFunction, 0x12, _) \
V(CallIndirect, 0x13, _)
// Load memory expressions.
#define FOREACH_LOAD_MEM_OPCODE(V) \
V(I32LoadMem8S, 0x20, i_i) \
V(I32LoadMem8U, 0x21, i_i) \
V(I32LoadMem16S, 0x22, i_i) \
V(I32LoadMem16U, 0x23, i_i) \
V(I64LoadMem8S, 0x24, l_i) \
V(I64LoadMem8U, 0x25, l_i) \
V(I64LoadMem16S, 0x26, l_i) \
V(I64LoadMem16U, 0x27, l_i) \
V(I64LoadMem32S, 0x28, l_i) \
V(I64LoadMem32U, 0x29, l_i) \
V(I32LoadMem, 0x2a, i_i) \
V(I64LoadMem, 0x2b, l_i) \
V(F32LoadMem, 0x2c, f_i) \
V(F64LoadMem, 0x2d, d_i)
// Store memory expressions.
#define FOREACH_STORE_MEM_OPCODE(V) \
V(I32StoreMem8, 0x2e, i_ii) \
V(I32StoreMem16, 0x2f, i_ii) \
V(I64StoreMem8, 0x30, l_il) \
V(I64StoreMem16, 0x31, l_il) \
V(I64StoreMem32, 0x32, l_il) \
V(I32StoreMem, 0x33, i_ii) \
V(I64StoreMem, 0x34, l_il) \
V(F32StoreMem, 0x35, f_if) \
V(F64StoreMem, 0x36, d_id)
// Load memory expressions.
#define FOREACH_MISC_MEM_OPCODE(V) \
V(MemorySize, 0x3b, i_v) \
V(GrowMemory, 0x39, i_i)
// Expressions with signatures.
#define FOREACH_SIMPLE_OPCODE(V) \
V(I32Add, 0x40, i_ii) \
V(I32Sub, 0x41, i_ii) \
V(I32Mul, 0x42, i_ii) \
V(I32DivS, 0x43, i_ii) \
V(I32DivU, 0x44, i_ii) \
V(I32RemS, 0x45, i_ii) \
V(I32RemU, 0x46, i_ii) \
V(I32And, 0x47, i_ii) \
V(I32Ior, 0x48, i_ii) \
V(I32Xor, 0x49, i_ii) \
V(I32Shl, 0x4a, i_ii) \
V(I32ShrU, 0x4b, i_ii) \
V(I32ShrS, 0x4c, i_ii) \
V(I32Eq, 0x4d, i_ii) \
V(I32Ne, 0x4e, i_ii) \
V(I32LtS, 0x4f, i_ii) \
V(I32LeS, 0x50, i_ii) \
V(I32LtU, 0x51, i_ii) \
V(I32LeU, 0x52, i_ii) \
V(I32GtS, 0x53, i_ii) \
V(I32GeS, 0x54, i_ii) \
V(I32GtU, 0x55, i_ii) \
V(I32GeU, 0x56, i_ii) \
V(I32Clz, 0x57, i_i) \
V(I32Ctz, 0x58, i_i) \
V(I32Popcnt, 0x59, i_i) \
V(BoolNot, 0x5a, i_i) \
V(I64Add, 0x5b, l_ll) \
V(I64Sub, 0x5c, l_ll) \
V(I64Mul, 0x5d, l_ll) \
V(I64DivS, 0x5e, l_ll) \
V(I64DivU, 0x5f, l_ll) \
V(I64RemS, 0x60, l_ll) \
V(I64RemU, 0x61, l_ll) \
V(I64And, 0x62, l_ll) \
V(I64Ior, 0x63, l_ll) \
V(I64Xor, 0x64, l_ll) \
V(I64Shl, 0x65, l_ll) \
V(I64ShrU, 0x66, l_ll) \
V(I64ShrS, 0x67, l_ll) \
V(I64Eq, 0x68, i_ll) \
V(I64Ne, 0x69, i_ll) \
V(I64LtS, 0x6a, i_ll) \
V(I64LeS, 0x6b, i_ll) \
V(I64LtU, 0x6c, i_ll) \
V(I64LeU, 0x6d, i_ll) \
V(I64GtS, 0x6e, i_ll) \
V(I64GeS, 0x6f, i_ll) \
V(I64GtU, 0x70, i_ll) \
V(I64GeU, 0x71, i_ll) \
V(I64Clz, 0x72, l_l) \
V(I64Ctz, 0x73, l_l) \
V(I64Popcnt, 0x74, l_l) \
V(F32Add, 0x75, f_ff) \
V(F32Sub, 0x76, f_ff) \
V(F32Mul, 0x77, f_ff) \
V(F32Div, 0x78, f_ff) \
V(F32Min, 0x79, f_ff) \
V(F32Max, 0x7a, f_ff) \
V(F32Abs, 0x7b, f_f) \
V(F32Neg, 0x7c, f_f) \
V(F32CopySign, 0x7d, f_ff) \
V(F32Ceil, 0x7e, f_f) \
V(F32Floor, 0x7f, f_f) \
V(F32Trunc, 0x80, f_f) \
V(F32NearestInt, 0x81, f_f) \
V(F32Sqrt, 0x82, f_f) \
V(F32Eq, 0x83, i_ff) \
V(F32Ne, 0x84, i_ff) \
V(F32Lt, 0x85, i_ff) \
V(F32Le, 0x86, i_ff) \
V(F32Gt, 0x87, i_ff) \
V(F32Ge, 0x88, i_ff) \
V(F64Add, 0x89, d_dd) \
V(F64Sub, 0x8a, d_dd) \
V(F64Mul, 0x8b, d_dd) \
V(F64Div, 0x8c, d_dd) \
V(F64Min, 0x8d, d_dd) \
V(F64Max, 0x8e, d_dd) \
V(F64Abs, 0x8f, d_d) \
V(F64Neg, 0x90, d_d) \
V(F64CopySign, 0x91, d_dd) \
V(F64Ceil, 0x92, d_d) \
V(F64Floor, 0x93, d_d) \
V(F64Trunc, 0x94, d_d) \
V(F64NearestInt, 0x95, d_d) \
V(F64Sqrt, 0x96, d_d) \
V(F64Eq, 0x97, i_dd) \
V(F64Ne, 0x98, i_dd) \
V(F64Lt, 0x99, i_dd) \
V(F64Le, 0x9a, i_dd) \
V(F64Gt, 0x9b, i_dd) \
V(F64Ge, 0x9c, i_dd) \
V(I32SConvertF32, 0x9d, i_f) \
V(I32SConvertF64, 0x9e, i_d) \
V(I32UConvertF32, 0x9f, i_f) \
V(I32UConvertF64, 0xa0, i_d) \
V(I32ConvertI64, 0xa1, i_l) \
V(I64SConvertF32, 0xa2, l_f) \
V(I64SConvertF64, 0xa3, l_d) \
V(I64UConvertF32, 0xa4, l_f) \
V(I64UConvertF64, 0xa5, l_d) \
V(I64SConvertI32, 0xa6, l_i) \
V(I64UConvertI32, 0xa7, l_i) \
V(F32SConvertI32, 0xa8, f_i) \
V(F32UConvertI32, 0xa9, f_i) \
V(F32SConvertI64, 0xaa, f_l) \
V(F32UConvertI64, 0xab, f_l) \
V(F32ConvertF64, 0xac, f_d) \
V(F32ReinterpretI32, 0xad, f_i) \
V(F64SConvertI32, 0xae, d_i) \
V(F64UConvertI32, 0xaf, d_i) \
V(F64SConvertI64, 0xb0, d_l) \
V(F64UConvertI64, 0xb1, d_l) \
V(F64ConvertF32, 0xb2, d_f) \
V(F64ReinterpretI64, 0xb3, d_l) \
V(I32ReinterpretF32, 0xb4, i_f) \
V(I64ReinterpretF64, 0xb5, l_d)
// All opcodes.
#define FOREACH_OPCODE(V) \
FOREACH_CONTROL_OPCODE(V) \
FOREACH_MISC_OPCODE(V) \
FOREACH_SIMPLE_OPCODE(V) \
FOREACH_STORE_MEM_OPCODE(V) \
FOREACH_LOAD_MEM_OPCODE(V) \
FOREACH_MISC_MEM_OPCODE(V)
// All signatures.
#define FOREACH_SIGNATURE(V) \
V(i_ii, kAstI32, kAstI32, kAstI32) \
V(i_i, kAstI32, kAstI32) \
V(i_v, kAstI32) \
V(i_ff, kAstI32, kAstF32, kAstF32) \
V(i_f, kAstI32, kAstF32) \
V(i_dd, kAstI32, kAstF64, kAstF64) \
V(i_d, kAstI32, kAstF64) \
V(i_l, kAstI32, kAstI64) \
V(l_ll, kAstI64, kAstI64, kAstI64) \
V(i_ll, kAstI32, kAstI64, kAstI64) \
V(l_l, kAstI64, kAstI64) \
V(l_i, kAstI64, kAstI32) \
V(l_f, kAstI64, kAstF32) \
V(l_d, kAstI64, kAstF64) \
V(f_ff, kAstF32, kAstF32, kAstF32) \
V(f_f, kAstF32, kAstF32) \
V(f_d, kAstF32, kAstF64) \
V(f_i, kAstF32, kAstI32) \
V(f_l, kAstF32, kAstI64) \
V(d_dd, kAstF64, kAstF64, kAstF64) \
V(d_d, kAstF64, kAstF64) \
V(d_f, kAstF64, kAstF32) \
V(d_i, kAstF64, kAstI32) \
V(d_l, kAstF64, kAstI64) \
V(d_id, kAstF64, kAstI32, kAstF64) \
V(f_if, kAstF32, kAstI32, kAstF32) \
V(l_il, kAstI64, kAstI32, kAstI64)
enum WasmOpcode {
// Declare expression opcodes.
#define DECLARE_NAMED_ENUM(name, opcode, sig) kExpr##name = opcode,
FOREACH_OPCODE(DECLARE_NAMED_ENUM)
#undef DECLARE_NAMED_ENUM
};
// A collection of opcode-related static methods.
class WasmOpcodes {
public:
static bool IsSupported(WasmOpcode opcode);
static const char* OpcodeName(WasmOpcode opcode);
static FunctionSig* Signature(WasmOpcode opcode);
static byte MemSize(MachineType type) {
return 1 << ElementSizeLog2Of(type.representation());
}
static LocalTypeCode LocalTypeCodeFor(LocalType type) {
switch (type) {
case kAstI32:
return kLocalI32;
case kAstI64:
return kLocalI64;
case kAstF32:
return kLocalF32;
case kAstF64:
return kLocalF64;
case kAstStmt:
return kLocalVoid;
default:
UNREACHABLE();
return kLocalVoid;
}
}
static MemTypeCode MemTypeCodeFor(MachineType type) {
if (type == MachineType::Int8()) {
return kMemI8;
} else if (type == MachineType::Uint8()) {
return kMemU8;
} else if (type == MachineType::Int16()) {
return kMemI16;
} else if (type == MachineType::Uint16()) {
return kMemU16;
} else if (type == MachineType::Int32()) {
return kMemI32;
} else if (type == MachineType::Uint32()) {
return kMemU32;
} else if (type == MachineType::Int64()) {
return kMemI64;
} else if (type == MachineType::Uint64()) {
return kMemU64;
} else if (type == MachineType::Float32()) {
return kMemF32;
} else if (type == MachineType::Float64()) {
return kMemF64;
} else {
UNREACHABLE();
return kMemI32;
}
}
static MachineType MachineTypeFor(LocalType type) {
switch (type) {
case kAstI32:
return MachineType::Int32();
case kAstI64:
return MachineType::Int64();
case kAstF32:
return MachineType::Float32();
case kAstF64:
return MachineType::Float64();
case kAstStmt:
return MachineType::None();
default:
UNREACHABLE();
return MachineType::None();
}
}
static LocalType LocalTypeFor(MachineType type) {
if (type == MachineType::Int8()) {
return kAstI32;
} else if (type == MachineType::Uint8()) {
return kAstI32;
} else if (type == MachineType::Int16()) {
return kAstI32;
} else if (type == MachineType::Uint16()) {
return kAstI32;
} else if (type == MachineType::Int32()) {
return kAstI32;
} else if (type == MachineType::Uint32()) {
return kAstI32;
} else if (type == MachineType::Int64()) {
return kAstI64;
} else if (type == MachineType::Uint64()) {
return kAstI64;
} else if (type == MachineType::Float32()) {
return kAstF32;
} else if (type == MachineType::Float64()) {
return kAstF64;
} else {
UNREACHABLE();
return kAstI32;
}
}
// TODO(titzer): remove this method
static WasmOpcode LoadStoreOpcodeOf(MachineType type, bool store) {
if (type == MachineType::Int8()) {
return store ? kExprI32StoreMem8 : kExprI32LoadMem8S;
} else if (type == MachineType::Uint8()) {
return store ? kExprI32StoreMem8 : kExprI32LoadMem8U;
} else if (type == MachineType::Int16()) {
return store ? kExprI32StoreMem16 : kExprI32LoadMem16S;
} else if (type == MachineType::Uint16()) {
return store ? kExprI32StoreMem16 : kExprI32LoadMem16U;
} else if (type == MachineType::Int32()) {
return store ? kExprI32StoreMem : kExprI32LoadMem;
} else if (type == MachineType::Uint32()) {
return store ? kExprI32StoreMem : kExprI32LoadMem;
} else if (type == MachineType::Int64()) {
return store ? kExprI64StoreMem : kExprI64LoadMem;
} else if (type == MachineType::Uint64()) {
return store ? kExprI64StoreMem : kExprI64LoadMem;
} else if (type == MachineType::Float32()) {
return store ? kExprF32StoreMem : kExprF32LoadMem;
} else if (type == MachineType::Float64()) {
return store ? kExprF64StoreMem : kExprF64LoadMem;
} else {
UNREACHABLE();
return kExprNop;
}
}
static byte LoadStoreAccessOf(bool with_offset) {
return MemoryAccess::OffsetField::encode(with_offset);
}
static char ShortNameOf(LocalType type) {
switch (type) {
case kAstI32:
return 'i';
case kAstI64:
return 'l';
case kAstF32:
return 'f';
case kAstF64:
return 'd';
case kAstStmt:
return 'v';
case kAstEnd:
return 'x';
default:
UNREACHABLE();
return '?';
}
}
static const char* TypeName(LocalType type) {
switch (type) {
case kAstI32:
return "i32";
case kAstI64:
return "i64";
case kAstF32:
return "f32";
case kAstF64:
return "f64";
case kAstStmt:
return "<stmt>";
case kAstEnd:
return "<end>";
default:
return "<unknown>";
}
}
};
} // namespace wasm
} // namespace internal
} // namespace v8
#endif // V8_WASM_OPCODES_H_