// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/instruction-selector-unittest.h"
#include "src/compiler/node-matchers.h"
namespace v8 {
namespace internal {
namespace compiler {
// -----------------------------------------------------------------------------
// Conversions.
TEST_F(InstructionSelectorTest, ChangeFloat32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float32(), MachineType::Float64());
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat32ToFloat64, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, ChangeInt32ToInt64WithParameter) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
m.Return(m.ChangeInt32ToInt64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxlq, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, ChangeUint32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEUint32ToFloat64, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, ChangeUint32ToUint64WithParameter) {
StreamBuilder m(this, MachineType::Uint64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToUint64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float32());
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat64ToFloat32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
m.Return(m.TruncateInt64ToInt32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Loads and stores
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode load_opcode;
ArchOpcode store_opcode;
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
return os << memacc.type;
}
static const MemoryAccess kMemoryAccesses[] = {
{MachineType::Int8(), kX64Movsxbl, kX64Movb},
{MachineType::Uint8(), kX64Movzxbl, kX64Movb},
{MachineType::Int16(), kX64Movsxwl, kX64Movw},
{MachineType::Uint16(), kX64Movzxwl, kX64Movw},
{MachineType::Int32(), kX64Movl, kX64Movl},
{MachineType::Uint32(), kX64Movl, kX64Movl},
{MachineType::Int64(), kX64Movq, kX64Movq},
{MachineType::Uint64(), kX64Movq, kX64Movq},
{MachineType::Float32(), kX64Movss, kX64Movss},
{MachineType::Float64(), kX64Movsd, kX64Movsd}};
} // namespace
typedef InstructionSelectorTestWithParam<MemoryAccess>
InstructionSelectorMemoryAccessTest;
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, MachineType::Pointer(),
MachineType::Int32());
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(),
MachineType::Int32(), memacc.type);
m.Store(memacc.type.representation(), m.Parameter(0), m.Parameter(1),
m.Parameter(2), kNoWriteBarrier);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
// -----------------------------------------------------------------------------
// ChangeUint32ToUint64.
namespace {
typedef Node* (RawMachineAssembler::*Constructor)(Node*, Node*);
struct BinaryOperation {
Constructor constructor;
const char* constructor_name;
};
std::ostream& operator<<(std::ostream& os, const BinaryOperation& bop) {
return os << bop.constructor_name;
}
const BinaryOperation kWord32BinaryOperations[] = {
{&RawMachineAssembler::Word32And, "Word32And"},
{&RawMachineAssembler::Word32Or, "Word32Or"},
{&RawMachineAssembler::Word32Xor, "Word32Xor"},
{&RawMachineAssembler::Word32Shl, "Word32Shl"},
{&RawMachineAssembler::Word32Shr, "Word32Shr"},
{&RawMachineAssembler::Word32Sar, "Word32Sar"},
{&RawMachineAssembler::Word32Ror, "Word32Ror"},
{&RawMachineAssembler::Word32Equal, "Word32Equal"},
{&RawMachineAssembler::Int32Add, "Int32Add"},
{&RawMachineAssembler::Int32Sub, "Int32Sub"},
{&RawMachineAssembler::Int32Mul, "Int32Mul"},
{&RawMachineAssembler::Int32MulHigh, "Int32MulHigh"},
{&RawMachineAssembler::Int32Div, "Int32Div"},
{&RawMachineAssembler::Int32LessThan, "Int32LessThan"},
{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual"},
{&RawMachineAssembler::Int32Mod, "Int32Mod"},
{&RawMachineAssembler::Uint32Div, "Uint32Div"},
{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan"},
{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual"},
{&RawMachineAssembler::Uint32Mod, "Uint32Mod"}};
} // namespace
typedef InstructionSelectorTestWithParam<BinaryOperation>
InstructionSelectorChangeUint32ToUint64Test;
TEST_P(InstructionSelectorChangeUint32ToUint64Test, ChangeUint32ToUint64) {
const BinaryOperation& bop = GetParam();
StreamBuilder m(this, MachineType::Uint64(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.ChangeUint32ToUint64((m.*bop.constructor)(p0, p1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorChangeUint32ToUint64Test,
::testing::ValuesIn(kWord32BinaryOperations));
// -----------------------------------------------------------------------------
// TruncateInt64ToInt32.
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Sar) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Sar(p, m.Int64Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Shr) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Shr(p, m.Int64Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Addition.
TEST_F(InstructionSelectorTest, Int32AddWithInt32ParametersLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const a0 = m.Int32Add(p0, p1);
// Additional uses of input to add chooses lea
Node* const a1 = m.Int32Div(p0, p1);
m.Return(m.Int32Div(a0, a1));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaSingle) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
Node* const v0 = m.Int32Add(p0, c0);
m.Return(v0);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(1);
// If there is only a single use of an add's input and the immediate constant
// for the add is 1, don't use an inc. It is much slower on modern Intel
// architectures.
m.Return(m.Int32Add(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaDouble) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// A second use of an add's input uses lea
Node* const a0 = m.Int32Add(p0, c0);
m.Return(m.Int32Div(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaSingle) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
m.Return(m.Int32Add(c0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaDouble) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// A second use of an add's input uses lea
Node* const a0 = m.Int32Add(c0, p0);
USE(a0);
m.Return(m.Int32Div(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddSimpleAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
m.Return(m.Int32Add(p0, p1));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddSimpleAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
// If all of of the add's operands are used multiple times, use an "leal".
Node* const v1 = m.Int32Add(p0, p1);
m.Return(m.Int32Add(m.Int32Add(v1, p1), p0));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle1) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(p0, m.Int32Add(s0, c0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle2) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(s0, m.Int32Add(c0, p0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle3) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(s0, c0), p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle4) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(c0, p0), s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle5) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32SubConstantAsSub) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(-1);
// If there is only a single use of on of the sub's non-constant input, use a
// "subl" instruction.
m.Return(m.Int32Sub(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32SubConstantAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(-1);
// If there are multiple uses of on of the sub's non-constant input, use a
// "leal" instruction.
Node* const v0 = m.Int32Sub(p0, c0);
m.Return(m.Int32Div(p0, v0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Other) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const a0 = m.Int32Add(s0, p2);
Node* const a1 = m.Int32Add(p0, a0);
m.Return(a1);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[0]->OutputAt(0)));
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a1), s.ToVreg(s[1]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Multiplication.
TEST_F(InstructionSelectorTest, Int32MulWithInt32MulWithParameters) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const m0 = m.Int32Mul(p0, p1);
m.Return(m.Int32Mul(m0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Imul32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kX64Imul32, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[1]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32MulHigh) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Int32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64ImulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(InstructionSelectorTest, Uint32MulHigh) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Uint32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64UmulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(InstructionSelectorTest, Int32Mul2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(2);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul3BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(3);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(4);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Mul5BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(5);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul8BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(8);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Mul9BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(9);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
// -----------------------------------------------------------------------------
// Word32Shl.
TEST_F(InstructionSelectorTest, Int32Shl1BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(1);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Shl2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(2);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Shl4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(3);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
// -----------------------------------------------------------------------------
// Floating point operations.
TEST_F(InstructionSelectorTest, Float32Abs) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kAVXFloat32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, Float64Abs) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kAVXFloat64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, Float64BinopArithmetic) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
Node* add = m.Float64Add(m.Parameter(0), m.Parameter(1));
Node* mul = m.Float64Mul(add, m.Parameter(1));
Node* sub = m.Float64Sub(mul, add);
Node* ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kAVXFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kAVXFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kAVXFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kAVXFloat64Div, s[3]->arch_opcode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
Node* add = m.Float64Add(m.Parameter(0), m.Parameter(1));
Node* mul = m.Float64Mul(add, m.Parameter(1));
Node* sub = m.Float64Sub(mul, add);
Node* ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kSSEFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kSSEFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kSSEFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kSSEFloat64Div, s[3]->arch_opcode());
}
}
TEST_F(InstructionSelectorTest, Float32SubWithMinusZeroAndParameter) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Sub(m.Float32Constant(-0.0f), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat32Neg, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Sub(m.Float32Constant(-0.0f), p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kAVXFloat32Neg, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, Float64SubWithMinusZeroAndParameter) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Sub(m.Float64Constant(-0.0), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat64Neg, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Sub(m.Float64Constant(-0.0), p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kAVXFloat64Neg, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
// -----------------------------------------------------------------------------
// Miscellaneous.
TEST_F(InstructionSelectorTest, Uint64LessThanWithLoadAndLoadStackPointer) {
StreamBuilder m(this, MachineType::Bool());
Node* const sl = m.Load(
MachineType::Pointer(),
m.ExternalConstant(ExternalReference::address_of_stack_limit(isolate())));
Node* const sp = m.LoadStackPointer();
Node* const n = m.Uint64LessThan(sl, sp);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64StackCheck, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kUnsignedGreaterThan, s[0]->flags_condition());
}
TEST_F(InstructionSelectorTest, Word64ShlWithChangeInt32ToInt64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeInt32ToInt64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64ShlWithChangeUint32ToUint64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeUint32ToUint64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32AndWith0xff) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(p0, m.Int32Constant(0xff));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(m.Int32Constant(0xff), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32AndWith0xffff) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(p0, m.Int32Constant(0xffff));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(m.Int32Constant(0xffff), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32Clz) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32Clz(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lzcnt32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
} // namespace compiler
} // namespace internal
} // namespace v8