/*
** Copyright 2008, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "utils.h"
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/wait.h>
#if defined(__APPLE__)
#include <sys/mount.h>
#else
#include <sys/statfs.h>
#endif
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <cutils/fs.h>
#include <cutils/log.h>
#include <private/android_filesystem_config.h>
#include "globals.h" // extern variables.
#ifndef LOG_TAG
#define LOG_TAG "installd"
#endif
#define CACHE_NOISY(x) //x
using android::base::StringPrintf;
namespace android {
namespace installd {
/**
* Check that given string is valid filename, and that it attempts no
* parent or child directory traversal.
*/
static bool is_valid_filename(const std::string& name) {
if (name.empty() || (name == ".") || (name == "..")
|| (name.find('/') != std::string::npos)) {
return false;
} else {
return true;
}
}
static void check_package_name(const char* package_name) {
CHECK(is_valid_filename(package_name));
CHECK(is_valid_package_name(package_name) == 0);
}
/**
* Create the path name where package app contents should be stored for
* the given volume UUID and package name. An empty UUID is assumed to
* be internal storage.
*/
std::string create_data_app_package_path(const char* volume_uuid,
const char* package_name) {
check_package_name(package_name);
return StringPrintf("%s/%s",
create_data_app_path(volume_uuid).c_str(), package_name);
}
/**
* Create the path name where package data should be stored for the given
* volume UUID, package name, and user ID. An empty UUID is assumed to be
* internal storage.
*/
std::string create_data_user_ce_package_path(const char* volume_uuid,
userid_t user, const char* package_name) {
check_package_name(package_name);
return StringPrintf("%s/%s",
create_data_user_ce_path(volume_uuid, user).c_str(), package_name);
}
std::string create_data_user_ce_package_path(const char* volume_uuid, userid_t user,
const char* package_name, ino_t ce_data_inode) {
// For testing purposes, rely on the inode when defined; this could be
// optimized to use access() in the future.
auto fallback = create_data_user_ce_package_path(volume_uuid, user, package_name);
if (ce_data_inode != 0) {
auto user_path = create_data_user_ce_path(volume_uuid, user);
DIR* dir = opendir(user_path.c_str());
if (dir == nullptr) {
PLOG(ERROR) << "Failed to opendir " << user_path;
return fallback;
}
struct dirent* ent;
while ((ent = readdir(dir))) {
if (ent->d_ino == ce_data_inode) {
auto resolved = StringPrintf("%s/%s", user_path.c_str(), ent->d_name);
if (resolved != fallback) {
LOG(DEBUG) << "Resolved path " << resolved << " for inode " << ce_data_inode
<< " instead of " << fallback;
}
closedir(dir);
return resolved;
}
}
LOG(WARNING) << "Failed to resolve inode " << ce_data_inode << "; using " << fallback;
closedir(dir);
return fallback;
} else {
return fallback;
}
}
std::string create_data_user_de_package_path(const char* volume_uuid,
userid_t user, const char* package_name) {
check_package_name(package_name);
return StringPrintf("%s/%s",
create_data_user_de_path(volume_uuid, user).c_str(), package_name);
}
int create_pkg_path(char path[PKG_PATH_MAX], const char *pkgname,
const char *postfix, userid_t userid) {
if (is_valid_package_name(pkgname) != 0) {
path[0] = '\0';
return -1;
}
std::string _tmp(create_data_user_ce_package_path(nullptr, userid, pkgname) + postfix);
const char* tmp = _tmp.c_str();
if (strlen(tmp) >= PKG_PATH_MAX) {
path[0] = '\0';
return -1;
} else {
strcpy(path, tmp);
return 0;
}
}
std::string create_data_path(const char* volume_uuid) {
if (volume_uuid == nullptr) {
return "/data";
} else {
CHECK(is_valid_filename(volume_uuid));
return StringPrintf("/mnt/expand/%s", volume_uuid);
}
}
/**
* Create the path name for app data.
*/
std::string create_data_app_path(const char* volume_uuid) {
return StringPrintf("%s/app", create_data_path(volume_uuid).c_str());
}
/**
* Create the path name for user data for a certain userid.
*/
std::string create_data_user_ce_path(const char* volume_uuid, userid_t userid) {
std::string data(create_data_path(volume_uuid));
if (volume_uuid == nullptr) {
if (userid == 0) {
return StringPrintf("%s/data", data.c_str());
} else {
return StringPrintf("%s/user/%u", data.c_str(), userid);
}
} else {
return StringPrintf("%s/user/%u", data.c_str(), userid);
}
}
/**
* Create the path name for device encrypted user data for a certain userid.
*/
std::string create_data_user_de_path(const char* volume_uuid, userid_t userid) {
std::string data(create_data_path(volume_uuid));
return StringPrintf("%s/user_de/%u", data.c_str(), userid);
}
/**
* Create the path name for media for a certain userid.
*/
std::string create_data_media_path(const char* volume_uuid, userid_t userid) {
return StringPrintf("%s/media/%u", create_data_path(volume_uuid).c_str(), userid);
}
std::string create_data_misc_legacy_path(userid_t userid) {
return StringPrintf("%s/misc/user/%u", create_data_path(nullptr).c_str(), userid);
}
std::string create_data_user_profiles_path(userid_t userid) {
return StringPrintf("%s/cur/%u", android_profiles_dir.path, userid);
}
std::string create_data_user_profile_package_path(userid_t user, const char* package_name) {
check_package_name(package_name);
return StringPrintf("%s/%s",create_data_user_profiles_path(user).c_str(), package_name);
}
std::string create_data_ref_profile_package_path(const char* package_name) {
check_package_name(package_name);
return StringPrintf("%s/ref/%s", android_profiles_dir.path, package_name);
}
std::vector<userid_t> get_known_users(const char* volume_uuid) {
std::vector<userid_t> users;
// We always have an owner
users.push_back(0);
std::string path(create_data_path(volume_uuid) + "/" + SECONDARY_USER_PREFIX);
DIR* dir = opendir(path.c_str());
if (dir == NULL) {
// Unable to discover other users, but at least return owner
PLOG(ERROR) << "Failed to opendir " << path;
return users;
}
struct dirent* ent;
while ((ent = readdir(dir))) {
if (ent->d_type != DT_DIR) {
continue;
}
char* end;
userid_t user = strtol(ent->d_name, &end, 10);
if (*end == '\0' && user != 0) {
LOG(DEBUG) << "Found valid user " << user;
users.push_back(user);
}
}
closedir(dir);
return users;
}
int create_move_path(char path[PKG_PATH_MAX],
const char* pkgname,
const char* leaf,
userid_t userid ATTRIBUTE_UNUSED)
{
if ((android_data_dir.len + strlen(PRIMARY_USER_PREFIX) + strlen(pkgname) + strlen(leaf) + 1)
>= PKG_PATH_MAX) {
return -1;
}
sprintf(path, "%s%s%s/%s", android_data_dir.path, PRIMARY_USER_PREFIX, pkgname, leaf);
return 0;
}
/**
* Checks whether the package name is valid. Returns -1 on error and
* 0 on success.
*/
int is_valid_package_name(const char* pkgname) {
const char *x = pkgname;
int alpha = -1;
if (strlen(pkgname) > PKG_NAME_MAX) {
return -1;
}
while (*x) {
if (isalnum(*x) || (*x == '_')) {
/* alphanumeric or underscore are fine */
} else if (*x == '.') {
if ((x == pkgname) || (x[1] == '.') || (x[1] == 0)) {
/* periods must not be first, last, or doubled */
ALOGE("invalid package name '%s'\n", pkgname);
return -1;
}
} else if (*x == '-') {
/* Suffix -X is fine to let versioning of packages.
But whatever follows should be alphanumeric.*/
alpha = 1;
} else {
/* anything not A-Z, a-z, 0-9, _, or . is invalid */
ALOGE("invalid package name '%s'\n", pkgname);
return -1;
}
x++;
}
if (alpha == 1) {
// Skip current character
x++;
while (*x) {
if (!isalnum(*x)) {
ALOGE("invalid package name '%s' should include only numbers after -\n", pkgname);
return -1;
}
x++;
}
}
return 0;
}
static int _delete_dir_contents(DIR *d,
int (*exclusion_predicate)(const char *name, const int is_dir))
{
int result = 0;
struct dirent *de;
int dfd;
dfd = dirfd(d);
if (dfd < 0) return -1;
while ((de = readdir(d))) {
const char *name = de->d_name;
/* check using the exclusion predicate, if provided */
if (exclusion_predicate && exclusion_predicate(name, (de->d_type == DT_DIR))) {
continue;
}
if (de->d_type == DT_DIR) {
int subfd;
DIR *subdir;
/* always skip "." and ".." */
if (name[0] == '.') {
if (name[1] == 0) continue;
if ((name[1] == '.') && (name[2] == 0)) continue;
}
subfd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC);
if (subfd < 0) {
ALOGE("Couldn't openat %s: %s\n", name, strerror(errno));
result = -1;
continue;
}
subdir = fdopendir(subfd);
if (subdir == NULL) {
ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno));
close(subfd);
result = -1;
continue;
}
if (_delete_dir_contents(subdir, exclusion_predicate)) {
result = -1;
}
closedir(subdir);
if (unlinkat(dfd, name, AT_REMOVEDIR) < 0) {
ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno));
result = -1;
}
} else {
if (unlinkat(dfd, name, 0) < 0) {
ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno));
result = -1;
}
}
}
return result;
}
int delete_dir_contents(const std::string& pathname, bool ignore_if_missing) {
return delete_dir_contents(pathname.c_str(), 0, NULL, ignore_if_missing);
}
int delete_dir_contents_and_dir(const std::string& pathname, bool ignore_if_missing) {
return delete_dir_contents(pathname.c_str(), 1, NULL, ignore_if_missing);
}
int delete_dir_contents(const char *pathname,
int also_delete_dir,
int (*exclusion_predicate)(const char*, const int),
bool ignore_if_missing)
{
int res = 0;
DIR *d;
d = opendir(pathname);
if (d == NULL) {
if (ignore_if_missing && (errno == ENOENT)) {
return 0;
}
ALOGE("Couldn't opendir %s: %s\n", pathname, strerror(errno));
return -errno;
}
res = _delete_dir_contents(d, exclusion_predicate);
closedir(d);
if (also_delete_dir) {
if (rmdir(pathname)) {
ALOGE("Couldn't rmdir %s: %s\n", pathname, strerror(errno));
res = -1;
}
}
return res;
}
int delete_dir_contents_fd(int dfd, const char *name)
{
int fd, res;
DIR *d;
fd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC);
if (fd < 0) {
ALOGE("Couldn't openat %s: %s\n", name, strerror(errno));
return -1;
}
d = fdopendir(fd);
if (d == NULL) {
ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno));
close(fd);
return -1;
}
res = _delete_dir_contents(d, 0);
closedir(d);
return res;
}
static int _copy_owner_permissions(int srcfd, int dstfd)
{
struct stat st;
if (fstat(srcfd, &st) != 0) {
return -1;
}
if (fchmod(dstfd, st.st_mode) != 0) {
return -1;
}
return 0;
}
static int _copy_dir_files(int sdfd, int ddfd, uid_t owner, gid_t group)
{
int result = 0;
if (_copy_owner_permissions(sdfd, ddfd) != 0) {
ALOGE("_copy_dir_files failed to copy dir permissions\n");
}
if (fchown(ddfd, owner, group) != 0) {
ALOGE("_copy_dir_files failed to change dir owner\n");
}
DIR *ds = fdopendir(sdfd);
if (ds == NULL) {
ALOGE("Couldn't fdopendir: %s\n", strerror(errno));
return -1;
}
struct dirent *de;
while ((de = readdir(ds))) {
if (de->d_type != DT_REG) {
continue;
}
const char *name = de->d_name;
int fsfd = openat(sdfd, name, O_RDONLY | O_NOFOLLOW | O_CLOEXEC);
int fdfd = openat(ddfd, name, O_WRONLY | O_NOFOLLOW | O_CLOEXEC | O_CREAT, 0600);
if (fsfd == -1 || fdfd == -1) {
ALOGW("Couldn't copy %s: %s\n", name, strerror(errno));
} else {
if (_copy_owner_permissions(fsfd, fdfd) != 0) {
ALOGE("Failed to change file permissions\n");
}
if (fchown(fdfd, owner, group) != 0) {
ALOGE("Failed to change file owner\n");
}
char buf[8192];
ssize_t size;
while ((size = read(fsfd, buf, sizeof(buf))) > 0) {
write(fdfd, buf, size);
}
if (size < 0) {
ALOGW("Couldn't copy %s: %s\n", name, strerror(errno));
result = -1;
}
}
close(fdfd);
close(fsfd);
}
return result;
}
int copy_dir_files(const char *srcname,
const char *dstname,
uid_t owner,
uid_t group)
{
int res = 0;
DIR *ds = NULL;
DIR *dd = NULL;
ds = opendir(srcname);
if (ds == NULL) {
ALOGE("Couldn't opendir %s: %s\n", srcname, strerror(errno));
return -errno;
}
mkdir(dstname, 0600);
dd = opendir(dstname);
if (dd == NULL) {
ALOGE("Couldn't opendir %s: %s\n", dstname, strerror(errno));
closedir(ds);
return -errno;
}
int sdfd = dirfd(ds);
int ddfd = dirfd(dd);
if (sdfd != -1 && ddfd != -1) {
res = _copy_dir_files(sdfd, ddfd, owner, group);
} else {
res = -errno;
}
closedir(dd);
closedir(ds);
return res;
}
int64_t data_disk_free(const std::string& data_path)
{
struct statfs sfs;
if (statfs(data_path.c_str(), &sfs) == 0) {
return sfs.f_bavail * sfs.f_bsize;
} else {
PLOG(ERROR) << "Couldn't statfs " << data_path;
return -1;
}
}
cache_t* start_cache_collection()
{
cache_t* cache = (cache_t*)calloc(1, sizeof(cache_t));
return cache;
}
#define CACHE_BLOCK_SIZE (512*1024)
static void* _cache_malloc(cache_t* cache, size_t len)
{
len = (len+3)&~3;
if (len > (CACHE_BLOCK_SIZE/2)) {
// It doesn't make sense to try to put this allocation into one
// of our blocks, because it is so big. Instead, make a new dedicated
// block for it.
int8_t* res = (int8_t*)malloc(len+sizeof(void*));
if (res == NULL) {
return NULL;
}
CACHE_NOISY(ALOGI("Allocated large cache mem block: %p size %d", res, len));
// Link it into our list of blocks, not disrupting the current one.
if (cache->memBlocks == NULL) {
*(void**)res = NULL;
cache->memBlocks = res;
} else {
*(void**)res = *(void**)cache->memBlocks;
*(void**)cache->memBlocks = res;
}
return res + sizeof(void*);
}
int8_t* res = cache->curMemBlockAvail;
int8_t* nextPos = res + len;
if (cache->memBlocks == NULL || nextPos > cache->curMemBlockEnd) {
int8_t* newBlock = (int8_t*) malloc(CACHE_BLOCK_SIZE);
if (newBlock == NULL) {
return NULL;
}
CACHE_NOISY(ALOGI("Allocated new cache mem block: %p", newBlock));
*(void**)newBlock = cache->memBlocks;
cache->memBlocks = newBlock;
res = cache->curMemBlockAvail = newBlock + sizeof(void*);
cache->curMemBlockEnd = newBlock + CACHE_BLOCK_SIZE;
nextPos = res + len;
}
CACHE_NOISY(ALOGI("cache_malloc: ret %p size %d, block=%p, nextPos=%p",
res, len, cache->memBlocks, nextPos));
cache->curMemBlockAvail = nextPos;
return res;
}
static void* _cache_realloc(cache_t* cache, void* cur, size_t origLen, size_t len)
{
// This isn't really a realloc, but it is good enough for our purposes here.
void* alloc = _cache_malloc(cache, len);
if (alloc != NULL && cur != NULL) {
memcpy(alloc, cur, origLen < len ? origLen : len);
}
return alloc;
}
static void _inc_num_cache_collected(cache_t* cache)
{
cache->numCollected++;
if ((cache->numCollected%20000) == 0) {
ALOGI("Collected cache so far: %zd directories, %zd files",
cache->numDirs, cache->numFiles);
}
}
static cache_dir_t* _add_cache_dir_t(cache_t* cache, cache_dir_t* parent, const char *name)
{
size_t nameLen = strlen(name);
cache_dir_t* dir = (cache_dir_t*)_cache_malloc(cache, sizeof(cache_dir_t)+nameLen+1);
if (dir != NULL) {
dir->parent = parent;
dir->childCount = 0;
dir->hiddenCount = 0;
dir->deleted = 0;
strcpy(dir->name, name);
if (cache->numDirs >= cache->availDirs) {
size_t newAvail = cache->availDirs < 1000 ? 1000 : cache->availDirs*2;
cache_dir_t** newDirs = (cache_dir_t**)_cache_realloc(cache, cache->dirs,
cache->availDirs*sizeof(cache_dir_t*), newAvail*sizeof(cache_dir_t*));
if (newDirs == NULL) {
ALOGE("Failure growing cache dirs array for %s\n", name);
return NULL;
}
cache->availDirs = newAvail;
cache->dirs = newDirs;
}
cache->dirs[cache->numDirs] = dir;
cache->numDirs++;
if (parent != NULL) {
parent->childCount++;
}
_inc_num_cache_collected(cache);
} else {
ALOGE("Failure allocating cache_dir_t for %s\n", name);
}
return dir;
}
static cache_file_t* _add_cache_file_t(cache_t* cache, cache_dir_t* dir, time_t modTime,
const char *name)
{
size_t nameLen = strlen(name);
cache_file_t* file = (cache_file_t*)_cache_malloc(cache, sizeof(cache_file_t)+nameLen+1);
if (file != NULL) {
file->dir = dir;
file->modTime = modTime;
strcpy(file->name, name);
if (cache->numFiles >= cache->availFiles) {
size_t newAvail = cache->availFiles < 1000 ? 1000 : cache->availFiles*2;
cache_file_t** newFiles = (cache_file_t**)_cache_realloc(cache, cache->files,
cache->availFiles*sizeof(cache_file_t*), newAvail*sizeof(cache_file_t*));
if (newFiles == NULL) {
ALOGE("Failure growing cache file array for %s\n", name);
return NULL;
}
cache->availFiles = newAvail;
cache->files = newFiles;
}
CACHE_NOISY(ALOGI("Setting file %p at position %d in array %p", file,
cache->numFiles, cache->files));
cache->files[cache->numFiles] = file;
cache->numFiles++;
dir->childCount++;
_inc_num_cache_collected(cache);
} else {
ALOGE("Failure allocating cache_file_t for %s\n", name);
}
return file;
}
static int _add_cache_files(cache_t *cache, cache_dir_t *parentDir, const char *dirName,
DIR* dir, char *pathBase, char *pathPos, size_t pathAvailLen)
{
struct dirent *de;
cache_dir_t* cacheDir = NULL;
int dfd;
CACHE_NOISY(ALOGI("_add_cache_files: parent=%p dirName=%s dir=%p pathBase=%s",
parentDir, dirName, dir, pathBase));
dfd = dirfd(dir);
if (dfd < 0) return 0;
// Sub-directories always get added to the data structure, so if they
// are empty we will know about them to delete them later.
cacheDir = _add_cache_dir_t(cache, parentDir, dirName);
while ((de = readdir(dir))) {
const char *name = de->d_name;
if (de->d_type == DT_DIR) {
int subfd;
DIR *subdir;
/* always skip "." and ".." */
if (name[0] == '.') {
if (name[1] == 0) continue;
if ((name[1] == '.') && (name[2] == 0)) continue;
}
subfd = openat(dfd, name, O_RDONLY | O_DIRECTORY | O_NOFOLLOW | O_CLOEXEC);
if (subfd < 0) {
ALOGE("Couldn't openat %s: %s\n", name, strerror(errno));
continue;
}
subdir = fdopendir(subfd);
if (subdir == NULL) {
ALOGE("Couldn't fdopendir %s: %s\n", name, strerror(errno));
close(subfd);
continue;
}
if (cacheDir == NULL) {
cacheDir = _add_cache_dir_t(cache, parentDir, dirName);
}
if (cacheDir != NULL) {
// Update pathBase for the new path... this may change dirName
// if that is also pointing to the path, but we are done with it
// now.
size_t finallen = snprintf(pathPos, pathAvailLen, "/%s", name);
CACHE_NOISY(ALOGI("Collecting dir %s\n", pathBase));
if (finallen < pathAvailLen) {
_add_cache_files(cache, cacheDir, name, subdir, pathBase,
pathPos+finallen, pathAvailLen-finallen);
} else {
// Whoops, the final path is too long! We'll just delete
// this directory.
ALOGW("Cache dir %s truncated in path %s; deleting dir\n",
name, pathBase);
_delete_dir_contents(subdir, NULL);
if (unlinkat(dfd, name, AT_REMOVEDIR) < 0) {
ALOGE("Couldn't unlinkat %s: %s\n", name, strerror(errno));
}
}
}
closedir(subdir);
} else if (de->d_type == DT_REG) {
// Skip files that start with '.'; they will be deleted if
// their entire directory is deleted. This allows for metadata
// like ".nomedia" to remain in the directory until the entire
// directory is deleted.
if (cacheDir == NULL) {
cacheDir = _add_cache_dir_t(cache, parentDir, dirName);
}
if (name[0] == '.') {
cacheDir->hiddenCount++;
continue;
}
if (cacheDir != NULL) {
// Build final full path for file... this may change dirName
// if that is also pointing to the path, but we are done with it
// now.
size_t finallen = snprintf(pathPos, pathAvailLen, "/%s", name);
CACHE_NOISY(ALOGI("Collecting file %s\n", pathBase));
if (finallen < pathAvailLen) {
struct stat s;
if (stat(pathBase, &s) >= 0) {
_add_cache_file_t(cache, cacheDir, s.st_mtime, name);
} else {
ALOGW("Unable to stat cache file %s; deleting\n", pathBase);
if (unlink(pathBase) < 0) {
ALOGE("Couldn't unlink %s: %s\n", pathBase, strerror(errno));
}
}
} else {
// Whoops, the final path is too long! We'll just delete
// this file.
ALOGW("Cache file %s truncated in path %s; deleting\n",
name, pathBase);
if (unlinkat(dfd, name, 0) < 0) {
*pathPos = 0;
ALOGE("Couldn't unlinkat %s in %s: %s\n", name, pathBase,
strerror(errno));
}
}
}
} else {
cacheDir->hiddenCount++;
}
}
return 0;
}
void add_cache_files(cache_t* cache, const std::string& data_path) {
DIR *d;
struct dirent *de;
char dirname[PATH_MAX];
const char* basepath = data_path.c_str();
CACHE_NOISY(ALOGI("add_cache_files: basepath=%s\n", basepath));
d = opendir(basepath);
if (d == NULL) {
return;
}
while ((de = readdir(d))) {
if (de->d_type == DT_DIR) {
DIR* subdir;
const char *name = de->d_name;
char* pathpos;
/* always skip "." and ".." */
if (name[0] == '.') {
if (name[1] == 0) continue;
if ((name[1] == '.') && (name[2] == 0)) continue;
}
strcpy(dirname, basepath);
pathpos = dirname + strlen(dirname);
if ((*(pathpos-1)) != '/') {
*pathpos = '/';
pathpos++;
*pathpos = 0;
}
// TODO: also try searching using xattr when CE is locked
snprintf(pathpos, sizeof(dirname)-(pathpos-dirname), "%s/cache", name);
CACHE_NOISY(ALOGI("Adding cache files from dir: %s\n", dirname));
subdir = opendir(dirname);
if (subdir != NULL) {
size_t dirnameLen = strlen(dirname);
_add_cache_files(cache, NULL, dirname, subdir, dirname, dirname+dirnameLen,
PATH_MAX - dirnameLen);
closedir(subdir);
}
}
}
closedir(d);
}
static char *create_dir_path(char path[PATH_MAX], cache_dir_t* dir)
{
char *pos = path;
if (dir->parent != NULL) {
pos = create_dir_path(path, dir->parent);
}
// Note that we don't need to worry about going beyond the buffer,
// since when we were constructing the cache entries our maximum
// buffer size for full paths was PATH_MAX.
strcpy(pos, dir->name);
pos += strlen(pos);
*pos = '/';
pos++;
*pos = 0;
return pos;
}
static void delete_cache_dir(char path[PATH_MAX], cache_dir_t* dir)
{
if (dir->parent != NULL) {
create_dir_path(path, dir);
ALOGI("DEL DIR %s\n", path);
if (dir->hiddenCount <= 0) {
if (rmdir(path)) {
ALOGE("Couldn't rmdir %s: %s\n", path, strerror(errno));
return;
}
} else {
// The directory contains hidden files so we need to delete
// them along with the directory itself.
if (delete_dir_contents(path, 1, NULL)) {
return;
}
}
dir->parent->childCount--;
dir->deleted = 1;
if (dir->parent->childCount <= 0) {
delete_cache_dir(path, dir->parent);
}
} else if (dir->hiddenCount > 0) {
// This is a root directory, but it has hidden files. Get rid of
// all of those files, but not the directory itself.
create_dir_path(path, dir);
ALOGI("DEL CONTENTS %s\n", path);
delete_dir_contents(path, 0, NULL);
}
}
static int cache_modtime_sort(const void *lhsP, const void *rhsP)
{
const cache_file_t *lhs = *(const cache_file_t**)lhsP;
const cache_file_t *rhs = *(const cache_file_t**)rhsP;
return lhs->modTime < rhs->modTime ? -1 : (lhs->modTime > rhs->modTime ? 1 : 0);
}
void clear_cache_files(const std::string& data_path, cache_t* cache, int64_t free_size)
{
size_t i;
int skip = 0;
char path[PATH_MAX];
ALOGI("Collected cache files: %zd directories, %zd files",
cache->numDirs, cache->numFiles);
CACHE_NOISY(ALOGI("Sorting files..."));
qsort(cache->files, cache->numFiles, sizeof(cache_file_t*),
cache_modtime_sort);
CACHE_NOISY(ALOGI("Cleaning empty directories..."));
for (i=cache->numDirs; i>0; i--) {
cache_dir_t* dir = cache->dirs[i-1];
if (dir->childCount <= 0 && !dir->deleted) {
delete_cache_dir(path, dir);
}
}
CACHE_NOISY(ALOGI("Trimming files..."));
for (i=0; i<cache->numFiles; i++) {
skip++;
if (skip > 10) {
if (data_disk_free(data_path) > free_size) {
return;
}
skip = 0;
}
cache_file_t* file = cache->files[i];
strcpy(create_dir_path(path, file->dir), file->name);
ALOGI("DEL (mod %d) %s\n", (int)file->modTime, path);
if (unlink(path) < 0) {
ALOGE("Couldn't unlink %s: %s\n", path, strerror(errno));
}
file->dir->childCount--;
if (file->dir->childCount <= 0) {
delete_cache_dir(path, file->dir);
}
}
}
void finish_cache_collection(cache_t* cache)
{
CACHE_NOISY(size_t i;)
CACHE_NOISY(ALOGI("clear_cache_files: %d dirs, %d files\n", cache->numDirs, cache->numFiles));
CACHE_NOISY(
for (i=0; i<cache->numDirs; i++) {
cache_dir_t* dir = cache->dirs[i];
ALOGI("dir #%d: %p %s parent=%p\n", i, dir, dir->name, dir->parent);
})
CACHE_NOISY(
for (i=0; i<cache->numFiles; i++) {
cache_file_t* file = cache->files[i];
ALOGI("file #%d: %p %s time=%d dir=%p\n", i, file, file->name,
(int)file->modTime, file->dir);
})
void* block = cache->memBlocks;
while (block != NULL) {
void* nextBlock = *(void**)block;
CACHE_NOISY(ALOGI("Freeing cache mem block: %p", block));
free(block);
block = nextBlock;
}
free(cache);
}
/**
* Validate that the path is valid in the context of the provided directory.
* The path is allowed to have at most one subdirectory and no indirections
* to top level directories (i.e. have "..").
*/
static int validate_path(const dir_rec_t* dir, const char* path, int maxSubdirs) {
size_t dir_len = dir->len;
const char* subdir = strchr(path + dir_len, '/');
// Only allow the path to have at most one subdirectory.
if (subdir != NULL) {
++subdir;
if ((--maxSubdirs == 0) && strchr(subdir, '/') != NULL) {
ALOGE("invalid apk path '%s' (subdir?)\n", path);
return -1;
}
}
// Directories can't have a period directly after the directory markers to prevent "..".
if ((path[dir_len] == '.') || ((subdir != NULL) && (*subdir == '.'))) {
ALOGE("invalid apk path '%s' (trickery)\n", path);
return -1;
}
return 0;
}
/**
* Checks whether a path points to a system app (.apk file). Returns 0
* if it is a system app or -1 if it is not.
*/
int validate_system_app_path(const char* path) {
size_t i;
for (i = 0; i < android_system_dirs.count; i++) {
const size_t dir_len = android_system_dirs.dirs[i].len;
if (!strncmp(path, android_system_dirs.dirs[i].path, dir_len)) {
return validate_path(android_system_dirs.dirs + i, path, 1);
}
}
return -1;
}
/**
* Get the contents of a environment variable that contains a path. Caller
* owns the string that is inserted into the directory record. Returns
* 0 on success and -1 on error.
*/
int get_path_from_env(dir_rec_t* rec, const char* var) {
const char* path = getenv(var);
int ret = get_path_from_string(rec, path);
if (ret < 0) {
ALOGW("Problem finding value for environment variable %s\n", var);
}
return ret;
}
/**
* Puts the string into the record as a directory. Appends '/' to the end
* of all paths. Caller owns the string that is inserted into the directory
* record. A null value will result in an error.
*
* Returns 0 on success and -1 on error.
*/
int get_path_from_string(dir_rec_t* rec, const char* path) {
if (path == NULL) {
return -1;
} else {
const size_t path_len = strlen(path);
if (path_len <= 0) {
return -1;
}
// Make sure path is absolute.
if (path[0] != '/') {
return -1;
}
if (path[path_len - 1] == '/') {
// Path ends with a forward slash. Make our own copy.
rec->path = strdup(path);
if (rec->path == NULL) {
return -1;
}
rec->len = path_len;
} else {
// Path does not end with a slash. Generate a new string.
char *dst;
// Add space for slash and terminating null.
size_t dst_size = path_len + 2;
rec->path = (char*) malloc(dst_size);
if (rec->path == NULL) {
return -1;
}
dst = rec->path;
if (append_and_increment(&dst, path, &dst_size) < 0
|| append_and_increment(&dst, "/", &dst_size)) {
ALOGE("Error canonicalizing path");
return -1;
}
rec->len = dst - rec->path;
}
}
return 0;
}
int copy_and_append(dir_rec_t* dst, const dir_rec_t* src, const char* suffix) {
dst->len = src->len + strlen(suffix);
const size_t dstSize = dst->len + 1;
dst->path = (char*) malloc(dstSize);
if (dst->path == NULL
|| snprintf(dst->path, dstSize, "%s%s", src->path, suffix)
!= (ssize_t) dst->len) {
ALOGE("Could not allocate memory to hold appended path; aborting\n");
return -1;
}
return 0;
}
/**
* Check whether path points to a valid path for an APK file. The path must
* begin with a whitelisted prefix path and must be no deeper than |maxSubdirs| within
* that path. Returns -1 when an invalid path is encountered and 0 when a valid path
* is encountered.
*/
static int validate_apk_path_internal(const char *path, int maxSubdirs) {
const dir_rec_t* dir = NULL;
if (!strncmp(path, android_app_dir.path, android_app_dir.len)) {
dir = &android_app_dir;
} else if (!strncmp(path, android_app_private_dir.path, android_app_private_dir.len)) {
dir = &android_app_private_dir;
} else if (!strncmp(path, android_app_ephemeral_dir.path, android_app_ephemeral_dir.len)) {
dir = &android_app_ephemeral_dir;
} else if (!strncmp(path, android_asec_dir.path, android_asec_dir.len)) {
dir = &android_asec_dir;
} else if (!strncmp(path, android_mnt_expand_dir.path, android_mnt_expand_dir.len)) {
dir = &android_mnt_expand_dir;
if (maxSubdirs < 2) {
maxSubdirs = 2;
}
} else {
return -1;
}
return validate_path(dir, path, maxSubdirs);
}
int validate_apk_path(const char* path) {
return validate_apk_path_internal(path, 1 /* maxSubdirs */);
}
int validate_apk_path_subdirs(const char* path) {
return validate_apk_path_internal(path, 3 /* maxSubdirs */);
}
int append_and_increment(char** dst, const char* src, size_t* dst_size) {
ssize_t ret = strlcpy(*dst, src, *dst_size);
if (ret < 0 || (size_t) ret >= *dst_size) {
return -1;
}
*dst += ret;
*dst_size -= ret;
return 0;
}
char *build_string2(const char *s1, const char *s2) {
if (s1 == NULL || s2 == NULL) return NULL;
int len_s1 = strlen(s1);
int len_s2 = strlen(s2);
int len = len_s1 + len_s2 + 1;
char *result = (char *) malloc(len);
if (result == NULL) return NULL;
strcpy(result, s1);
strcpy(result + len_s1, s2);
return result;
}
char *build_string3(const char *s1, const char *s2, const char *s3) {
if (s1 == NULL || s2 == NULL || s3 == NULL) return NULL;
int len_s1 = strlen(s1);
int len_s2 = strlen(s2);
int len_s3 = strlen(s3);
int len = len_s1 + len_s2 + len_s3 + 1;
char *result = (char *) malloc(len);
if (result == NULL) return NULL;
strcpy(result, s1);
strcpy(result + len_s1, s2);
strcpy(result + len_s1 + len_s2, s3);
return result;
}
int ensure_config_user_dirs(userid_t userid) {
// writable by system, readable by any app within the same user
const int uid = multiuser_get_uid(userid, AID_SYSTEM);
const int gid = multiuser_get_uid(userid, AID_EVERYBODY);
// Ensure /data/misc/user/<userid> exists
auto path = create_data_misc_legacy_path(userid);
return fs_prepare_dir(path.c_str(), 0750, uid, gid);
}
int wait_child(pid_t pid)
{
int status;
pid_t got_pid;
while (1) {
got_pid = waitpid(pid, &status, 0);
if (got_pid == -1 && errno == EINTR) {
printf("waitpid interrupted, retrying\n");
} else {
break;
}
}
if (got_pid != pid) {
ALOGW("waitpid failed: wanted %d, got %d: %s\n",
(int) pid, (int) got_pid, strerror(errno));
return 1;
}
if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
return 0;
} else {
return status; /* always nonzero */
}
}
} // namespace installd
} // namespace android