/*
* Copyright (C) 2011-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RS_HAL_H
#define RS_HAL_H
#include <rsInternalDefines.h>
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* !! Major version number of the driver. This is used to ensure that
* !! the driver (e.g., libRSDriver) is compatible with the shell
* !! (i.e., libRS_internal) responsible for loading the driver.
* !! There is no notion of backwards compatibility -- the driver and
* !! the shell must agree on the major version number.
* !!
* !! The version number must change whenever there is a semantic change
* !! to the HAL such as adding or removing an entry point or changing
* !! the meaning of an entry point. By convention it is monotonically
* !! increasing across all branches (e.g., aosp/master and all internal
* !! branches).
* !!
* !! Be very careful when merging or cherry picking between branches!
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
#define RS_HAL_VERSION 100
/**
* The interface for loading RenderScript drivers
*
* The startup sequence is
*
* 1: dlopen driver
* 2: Query driver version with rsdHalQueryVersion() and verify
* that the driver (e.g., libRSDriver) is compatible with the shell
* (i.e., libRS_internal) responsible for loading the driver
* 3: Fill in HAL pointer table with calls to rsdHalQueryHAL()
* 4: Initialize the context with rsdHalInit()
*
* If any of these functions return false, the loading of the
* driver will abort and the reference driver will be used.
* rsdHalAbort() will be called to clean up any partially
* allocated state.
*
* A driver should return FALSE for any conditions that will
* prevent the driver from working normally.
*
*
* If these are successful, the driver will be loaded and used
* normally. Teardown will use the normal
* context->mHal.funcs.shutdown() path. There will be no call
* to rsdHalAbort().
*
*
*/
struct ANativeWindow;
namespace android {
namespace renderscript {
class Context;
class ObjectBase;
class Element;
class Type;
class Allocation;
class Script;
class ScriptKernelID;
class ScriptFieldID;
class ScriptMethodID;
class ScriptC;
class ScriptGroup;
class ScriptGroupBase;
class Path;
class Program;
class ProgramStore;
class ProgramRaster;
class ProgramVertex;
class ProgramFragment;
class Mesh;
class Sampler;
class FBOCache;
/**
* Define the internal object types. This ia a mirror of the
* definition in rs_types.rsh except with the p value typed
* correctly.
*
* p = pointer to internal object implementation
* r = reserved by libRS runtime
* v1 = Mirror of p->mHal.drv
* v2 = reserved for use by vendor drivers
*/
#ifndef __LP64__
#define RS_BASE_OBJ(_t_) typedef struct { const _t_* p; } __attribute__((packed, aligned(4)))
#else
#define RS_BASE_OBJ(_t_) typedef struct { const _t_* p; const void* r; const void* v1; const void* v2; }
#endif
RS_BASE_OBJ(ObjectBase) rs_object_base;
RS_BASE_OBJ(Element) rs_element;
RS_BASE_OBJ(Type) rs_type;
RS_BASE_OBJ(Allocation) rs_allocation;
RS_BASE_OBJ(Sampler) rs_sampler;
RS_BASE_OBJ(Script) rs_script;
RS_BASE_OBJ(ScriptGroup) rs_script_group;
#ifndef __LP64__
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_mesh;
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_program_fragment;
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_program_vertex;
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_program_raster;
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_program_store;
typedef struct { const int* p; } __attribute__((packed, aligned(4))) rs_font;
#endif // __LP64__
typedef void *(*RsHalSymbolLookupFunc)(void *usrptr, char const *symbolName);
/**
* Script management functions
*/
typedef struct {
bool (*initGraphics)(const Context *);
void (*shutdownGraphics)(const Context *);
bool (*setSurface)(const Context *, uint32_t w, uint32_t h, RsNativeWindow);
void (*swap)(const Context *);
void (*shutdownDriver)(Context *);
void (*setPriority)(const Context *, int32_t priority);
void* (*allocRuntimeMem)(size_t size, uint32_t flags);
void (*freeRuntimeMem)(void* ptr);
struct {
bool (*init)(const Context *rsc, ScriptC *s,
char const *resName,
char const *cacheDir,
uint8_t const *bitcode,
size_t bitcodeSize,
uint32_t flags);
bool (*initIntrinsic)(const Context *rsc, Script *s,
RsScriptIntrinsicID iid,
Element *e);
void (*invokeFunction)(const Context *rsc, Script *s,
uint32_t slot,
const void *params,
size_t paramLength);
int (*invokeRoot)(const Context *rsc, Script *s);
void (*invokeForEach)(const Context *rsc,
Script *s,
uint32_t slot,
const Allocation * ain,
Allocation * aout,
const void * usr,
size_t usrLen,
const RsScriptCall *sc);
void (*invokeReduce)(const Context *rsc, Script *s,
uint32_t slot,
const Allocation ** ains, size_t inLen,
Allocation *aout,
const RsScriptCall *sc);
void (*invokeInit)(const Context *rsc, Script *s);
void (*invokeFreeChildren)(const Context *rsc, Script *s);
void (*setGlobalVar)(const Context *rsc, const Script *s,
uint32_t slot,
void *data,
size_t dataLength);
void (*getGlobalVar)(const Context *rsc, const Script *s,
uint32_t slot,
void *data,
size_t dataLength);
void (*setGlobalVarWithElemDims)(const Context *rsc, const Script *s,
uint32_t slot,
void *data,
size_t dataLength,
const Element *e,
const uint32_t *dims,
size_t dimLength);
void (*setGlobalBind)(const Context *rsc, const Script *s,
uint32_t slot,
Allocation *data);
void (*setGlobalObj)(const Context *rsc, const Script *s,
uint32_t slot,
ObjectBase *data);
void (*destroy)(const Context *rsc, Script *s);
void (*invokeForEachMulti)(const Context *rsc,
Script *s,
uint32_t slot,
const Allocation ** ains,
size_t inLen,
Allocation * aout,
const void * usr,
size_t usrLen,
const RsScriptCall *sc);
void (*updateCachedObject)(const Context *rsc, const Script *, rs_script *obj);
} script;
struct {
bool (*init)(const Context *rsc, Allocation *alloc, bool forceZero);
bool (*initOem)(const Context *rsc, Allocation *alloc, bool forceZero, void *usrPtr);
bool (*initAdapter)(const Context *rsc, Allocation *alloc);
void (*destroy)(const Context *rsc, Allocation *alloc);
uint32_t (*grallocBits)(const Context *rsc, Allocation *alloc);
void (*resize)(const Context *rsc, const Allocation *alloc, const Type *newType,
bool zeroNew);
void (*syncAll)(const Context *rsc, const Allocation *alloc, RsAllocationUsageType src);
void (*markDirty)(const Context *rsc, const Allocation *alloc);
void (*setSurface)(const Context *rsc, Allocation *alloc, ANativeWindow *sur);
void (*ioSend)(const Context *rsc, Allocation *alloc);
/**
* A new gralloc buffer is in use. The pointers and strides in
* mHal.drvState.lod[0-2] will be updated with the new values.
*
* The new gralloc handle is provided in mHal.state.nativeBuffer
*
*/
void (*ioReceive)(const Context *rsc, Allocation *alloc);
void (*data1D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count,
const void *data, size_t sizeBytes);
void (*data2D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod,
RsAllocationCubemapFace face, uint32_t w, uint32_t h,
const void *data, size_t sizeBytes, size_t stride);
void (*data3D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod,
uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes,
size_t stride);
void (*read1D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count,
void *data, size_t sizeBytes);
void (*read2D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod,
RsAllocationCubemapFace face, uint32_t w, uint32_t h,
void *data, size_t sizeBytes, size_t stride);
void (*read3D)(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod,
uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes,
size_t stride);
// Lock and unlock make a 1D region of memory available to the CPU
// for direct access by pointer. Once unlock is called control is
// returned to the SOC driver.
void * (*lock1D)(const Context *rsc, const Allocation *alloc);
void (*unlock1D)(const Context *rsc, const Allocation *alloc);
// Allocation to allocation copies
void (*allocData1D)(const Context *rsc,
const Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstLod, size_t count,
const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcLod);
void (*allocData2D)(const Context *rsc,
const Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod,
RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h,
const Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod,
RsAllocationCubemapFace srcFace);
void (*allocData3D)(const Context *rsc,
const Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff,
uint32_t dstLod,
uint32_t w, uint32_t h, uint32_t d,
const Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff,
uint32_t srcLod);
void (*elementData)(const Context *rsc, const Allocation *alloc,
uint32_t x, uint32_t y, uint32_t z,
const void *data, uint32_t elementOff, size_t sizeBytes);
void (*elementRead)(const Context *rsc, const Allocation *alloc,
uint32_t x, uint32_t y, uint32_t z,
void *data, uint32_t elementOff, size_t sizeBytes);
void (*generateMipmaps)(const Context *rsc, const Allocation *alloc);
void (*updateCachedObject)(const Context *rsc, const Allocation *alloc, rs_allocation *obj);
void (*adapterOffset)(const Context *rsc, const Allocation *alloc);
void (*getPointer)(const Context *rsc, const Allocation *alloc,
uint32_t lod, RsAllocationCubemapFace face,
uint32_t z, uint32_t array);
#ifdef RS_COMPATIBILITY_LIB
bool (*initStrided)(const Context *rsc, Allocation *alloc, bool forceZero, size_t requiredAlignment);
#endif
} allocation;
struct {
bool (*init)(const Context *rsc, const ProgramStore *ps);
void (*setActive)(const Context *rsc, const ProgramStore *ps);
void (*destroy)(const Context *rsc, const ProgramStore *ps);
} store;
struct {
bool (*init)(const Context *rsc, const ProgramRaster *ps);
void (*setActive)(const Context *rsc, const ProgramRaster *ps);
void (*destroy)(const Context *rsc, const ProgramRaster *ps);
} raster;
struct {
bool (*init)(const Context *rsc, const ProgramVertex *pv,
const char* shader, size_t shaderLen,
const char** textureNames, size_t textureNamesCount,
const size_t *textureNamesLength);
void (*setActive)(const Context *rsc, const ProgramVertex *pv);
void (*destroy)(const Context *rsc, const ProgramVertex *pv);
} vertex;
struct {
bool (*init)(const Context *rsc, const ProgramFragment *pf,
const char* shader, size_t shaderLen,
const char** textureNames, size_t textureNamesCount,
const size_t *textureNamesLength);
void (*setActive)(const Context *rsc, const ProgramFragment *pf);
void (*destroy)(const Context *rsc, const ProgramFragment *pf);
} fragment;
struct {
bool (*init)(const Context *rsc, const Mesh *m);
void (*draw)(const Context *rsc, const Mesh *m, uint32_t primIndex, uint32_t start, uint32_t len);
void (*destroy)(const Context *rsc, const Mesh *m);
} mesh;
struct {
bool (*init)(const Context *rsc, const Sampler *m);
void (*destroy)(const Context *rsc, const Sampler *m);
void (*updateCachedObject)(const Context *rsc, const Sampler *s, rs_sampler *obj);
} sampler;
struct {
bool (*init)(const Context *rsc, const FBOCache *fb);
void (*setActive)(const Context *rsc, const FBOCache *fb);
void (*destroy)(const Context *rsc, const FBOCache *fb);
} framebuffer;
struct {
bool (*init)(const Context *rsc, ScriptGroupBase *sg);
void (*setInput)(const Context *rsc, const ScriptGroup *sg,
const ScriptKernelID *kid, Allocation *);
void (*setOutput)(const Context *rsc, const ScriptGroup *sg,
const ScriptKernelID *kid, Allocation *);
void (*execute)(const Context *rsc, const ScriptGroupBase *sg);
void (*destroy)(const Context *rsc, const ScriptGroupBase *sg);
void (*updateCachedObject)(const Context *rsc, const ScriptGroup *sg, rs_script_group *obj);
} scriptgroup;
struct {
bool (*init)(const Context *rsc, const Type *m);
void (*destroy)(const Context *rsc, const Type *m);
void (*updateCachedObject)(const Context *rsc, const Type *s, rs_type *obj);
} type;
struct {
bool (*init)(const Context *rsc, const Element *m);
void (*destroy)(const Context *rsc, const Element *m);
void (*updateCachedObject)(const Context *rsc, const Element *s, rs_element *obj);
} element;
void (*finish)(const Context *rsc);
} RsdHalFunctions;
enum RsHalInitEnums {
RS_HAL_CORE_SHUTDOWN = 1,
RS_HAL_CORE_SET_PRIORITY = 2,
RS_HAL_CORE_ALLOC_RUNTIME_MEM = 3,
RS_HAL_CORE_FREE_RUNTIME_MEM = 4,
RS_HAL_CORE_FINISH = 5,
RS_HAL_SCRIPT_INIT = 1000,
RS_HAL_SCRIPT_INIT_INTRINSIC = 1001,
RS_HAL_SCRIPT_INVOKE_FUNCTION = 1002,
RS_HAL_SCRIPT_INVOKE_ROOT = 1003,
RS_HAL_SCRIPT_INVOKE_FOR_EACH = 1004,
RS_HAL_SCRIPT_INVOKE_INIT = 1005,
RS_HAL_SCRIPT_INVOKE_FREE_CHILDREN = 1006,
RS_HAL_SCRIPT_SET_GLOBAL_VAR = 1007,
RS_HAL_SCRIPT_GET_GLOBAL_VAR = 1008,
RS_HAL_SCRIPT_SET_GLOBAL_VAR_WITH_ELEMENT_DIM = 1009,
RS_HAL_SCRIPT_SET_GLOBAL_BIND = 1010,
RS_HAL_SCRIPT_SET_GLOBAL_OBJECT = 1011,
RS_HAL_SCRIPT_DESTROY = 1012,
RS_HAL_SCRIPT_INVOKE_FOR_EACH_MULTI = 1013,
RS_HAL_SCRIPT_UPDATE_CACHED_OBJECT = 1014,
RS_HAL_SCRIPT_INVOKE_REDUCE = 1015,
RS_HAL_ALLOCATION_INIT = 2000,
RS_HAL_ALLOCATION_INIT_ADAPTER = 2001,
RS_HAL_ALLOCATION_DESTROY = 2002,
RS_HAL_ALLOCATION_GET_GRALLOC_BITS = 2003,
RS_HAL_ALLOCATION_RESIZE = 2004,
RS_HAL_ALLOCATION_SYNC_ALL = 2005,
RS_HAL_ALLOCATION_MARK_DIRTY = 2006,
RS_HAL_ALLOCATION_SET_SURFACE = 2007,
RS_HAL_ALLOCATION_IO_SEND = 2008,
RS_HAL_ALLOCATION_IO_RECEIVE = 2009,
RS_HAL_ALLOCATION_DATA_1D = 2010,
RS_HAL_ALLOCATION_DATA_2D = 2011,
RS_HAL_ALLOCATION_DATA_3D = 2012,
RS_HAL_ALLOCATION_READ_1D = 2013,
RS_HAL_ALLOCATION_READ_2D = 2014,
RS_HAL_ALLOCATION_READ_3D = 2015,
RS_HAL_ALLOCATION_LOCK_1D = 2016,
RS_HAL_ALLOCATION_UNLOCK_1D = 2017,
RS_HAL_ALLOCATION_COPY_1D = 2018,
RS_HAL_ALLOCATION_COPY_2D = 2019,
RS_HAL_ALLOCATION_COPY_3D = 2020,
RS_HAL_ALLOCATION_ELEMENT_DATA = 2021,
RS_HAL_ALLOCATION_ELEMENT_READ = 2022,
RS_HAL_ALLOCATION_GENERATE_MIPMAPS = 2023,
RS_HAL_ALLOCATION_UPDATE_CACHED_OBJECT = 2024,
RS_HAL_ALLOCATION_ADAPTER_OFFSET = 2025,
RS_HAL_ALLOCATION_INIT_OEM = 2026,
RS_HAL_ALLOCATION_GET_POINTER = 2027,
#ifdef RS_COMPATIBILITY_LIB
RS_HAL_ALLOCATION_INIT_STRIDED = 2999,
#endif
RS_HAL_SAMPLER_INIT = 3000,
RS_HAL_SAMPLER_DESTROY = 3001,
RS_HAL_SAMPLER_UPDATE_CACHED_OBJECT = 3002,
RS_HAL_TYPE_INIT = 4000,
RS_HAL_TYPE_DESTROY = 4001,
RS_HAL_TYPE_UPDATE_CACHED_OBJECT = 4002,
RS_HAL_ELEMENT_INIT = 5000,
RS_HAL_ELEMENT_DESTROY = 5001,
RS_HAL_ELEMENT_UPDATE_CACHED_OBJECT = 5002,
RS_HAL_SCRIPT_GROUP_INIT = 6000,
RS_HAL_SCRIPT_GROUP_DESTROY = 6001,
RS_HAL_SCRIPT_GROUP_UPDATE_CACHED_OBJECT = 6002,
RS_HAL_SCRIPT_GROUP_SET_INPUT = 6003,
RS_HAL_SCRIPT_GROUP_SET_OUTPUT = 6004,
RS_HAL_SCRIPT_GROUP_EXECUTE = 6005,
RS_HAL_GRAPHICS_INIT = 100001,
RS_HAL_GRAPHICS_SHUTDOWN = 100002,
RS_HAL_GRAPHICS_SWAP = 100003,
RS_HAL_GRAPHICS_SET_SURFACE = 100004,
RS_HAL_GRAPHICS_RASTER_INIT = 101000,
RS_HAL_GRAPHICS_RASTER_SET_ACTIVE = 101001,
RS_HAL_GRAPHICS_RASTER_DESTROY = 101002,
RS_HAL_GRAPHICS_VERTEX_INIT = 102000,
RS_HAL_GRAPHICS_VERTEX_SET_ACTIVE = 102001,
RS_HAL_GRAPHICS_VERTEX_DESTROY = 102002,
RS_HAL_GRAPHICS_FRAGMENT_INIT = 103000,
RS_HAL_GRAPHICS_FRAGMENT_SET_ACTIVE = 103001,
RS_HAL_GRAPHICS_FRAGMENT_DESTROY = 103002,
RS_HAL_GRAPHICS_MESH_INIT = 104000,
RS_HAL_GRAPHICS_MESH_DRAW = 104001,
RS_HAL_GRAPHICS_MESH_DESTROY = 104002,
RS_HAL_GRAPHICS_FB_INIT = 105000,
RS_HAL_GRAPHICS_FB_SET_ACTIVE = 105001,
RS_HAL_GRAPHICS_FB_DESTROY = 105002,
RS_HAL_GRAPHICS_STORE_INIT = 106000,
RS_HAL_GRAPHICS_STORE_SET_ACTIVE = 106001,
RS_HAL_GRAPHICS_STORE_DESTROY = 106002,
};
}
}
#ifdef __cplusplus
extern "C" {
#endif
/**
* Get the major version number of the driver. The major
* version should be the RS_HAL_VERSION against which the
* driver was built
*
* The Minor version number is vendor specific
*
* The caller should ensure that *version_major is the same as
* RS_HAL_VERSION -- i.e., that the driver (e.g., libRSDriver)
* is compatible with the shell (i.e., libRS_internal) responsible
* for loading the driver
*
* return: False will abort loading the driver, true indicates
* success
*/
bool rsdHalQueryVersion(uint32_t *version_major, uint32_t *version_minor);
/**
* Get an entry point in the driver HAL
*
* The driver should set the function pointer to its
* implementation of the function. If it does not have an entry
* for an enum, its should set the function pointer to NULL
*
* Returning NULL is expected in cases during development as new
* entry points are added that a driver may not understand. If
* the runtime receives a NULL it will decide if the function is
* required and will either continue loading or abort as needed.
*
*
* return: False will abort loading the driver, true indicates
* success
*
*/
bool rsdHalQueryHal(android::renderscript::RsHalInitEnums entry, void **fnPtr);
/**
* Called to initialize the context for use with a driver.
*
* return: False will abort loading the driver, true indicates
* success
*/
bool rsdHalInit(RsContext, uint32_t version_major, uint32_t version_minor);
/**
* Called if one of the loading functions above returns false.
* This is to clean up any resources allocated during an error
* condition. If this path is called it means the normal
* context->mHal.funcs.shutdown() will not be called.
*/
void rsdHalAbort(RsContext);
#ifdef __cplusplus
}
#endif
#endif