/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <gtest/gtest.h>
#include "AlarmTestHarness.h"
extern "C" {
#include "osi/include/alarm.h"
#include "osi/include/fixed_queue.h"
#include "osi/include/osi.h"
#include "osi/include/semaphore.h"
#include "osi/include/thread.h"
}
static semaphore_t *semaphore;
static int cb_counter;
static int cb_misordered_counter;
static const uint64_t EPSILON_MS = 5;
static void msleep(uint64_t ms) {
usleep(ms * 1000);
}
class AlarmTest : public AlarmTestHarness {
protected:
virtual void SetUp() {
AlarmTestHarness::SetUp();
cb_counter = 0;
cb_misordered_counter = 0;
semaphore = semaphore_new(0);
}
virtual void TearDown() {
semaphore_free(semaphore);
AlarmTestHarness::TearDown();
}
};
static void cb(UNUSED_ATTR void *data) {
++cb_counter;
semaphore_post(semaphore);
}
static void ordered_cb(void *data) {
int i = PTR_TO_INT(data);
if (i != cb_counter)
cb_misordered_counter++;
++cb_counter;
semaphore_post(semaphore);
}
TEST_F(AlarmTest, test_new_free_simple) {
alarm_t *alarm = alarm_new("alarm_test.test_new_free_simple");
ASSERT_TRUE(alarm != NULL);
alarm_free(alarm);
}
TEST_F(AlarmTest, test_free_null) {
alarm_free(NULL);
}
TEST_F(AlarmTest, test_simple_cancel) {
alarm_t *alarm = alarm_new("alarm_test.test_simple_cancel");
alarm_cancel(alarm);
alarm_free(alarm);
}
TEST_F(AlarmTest, test_cancel) {
alarm_t *alarm = alarm_new("alarm_test.test_cancel");
alarm_set(alarm, 10, cb, NULL);
alarm_cancel(alarm);
msleep(10 + EPSILON_MS);
EXPECT_EQ(cb_counter, 0);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
TEST_F(AlarmTest, test_cancel_idempotent) {
alarm_t *alarm = alarm_new("alarm_test.test_cancel_idempotent");
alarm_set(alarm, 10, cb, NULL);
alarm_cancel(alarm);
alarm_cancel(alarm);
alarm_cancel(alarm);
alarm_free(alarm);
}
TEST_F(AlarmTest, test_set_short) {
alarm_t *alarm = alarm_new("alarm_test.test_set_short");
alarm_set(alarm, 10, cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_TRUE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 1);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
TEST_F(AlarmTest, test_set_short_periodic) {
alarm_t *alarm = alarm_new_periodic("alarm_test.test_set_short_periodic");
alarm_set(alarm, 10, cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_TRUE(WakeLockHeld());
for (int i = 1; i <= 10; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
EXPECT_TRUE(WakeLockHeld());
}
alarm_cancel(alarm);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
TEST_F(AlarmTest, test_set_zero_periodic) {
alarm_t *alarm = alarm_new_periodic("alarm_test.test_set_zero_periodic");
alarm_set(alarm, 0, cb, NULL);
EXPECT_TRUE(WakeLockHeld());
for (int i = 1; i <= 10; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
EXPECT_TRUE(WakeLockHeld());
}
alarm_cancel(alarm);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
TEST_F(AlarmTest, test_set_long) {
alarm_t *alarm = alarm_new("alarm_test.test_set_long");
alarm_set(alarm, TIMER_INTERVAL_FOR_WAKELOCK_IN_MS + EPSILON_MS, cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_FALSE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 1);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
TEST_F(AlarmTest, test_set_short_short) {
alarm_t *alarm[2] = {
alarm_new("alarm_test.test_set_short_short_0"),
alarm_new("alarm_test.test_set_short_short_1")
};
alarm_set(alarm[0], 10, cb, NULL);
alarm_set(alarm[1], 20, cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_TRUE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 1);
EXPECT_TRUE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 2);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm[0]);
alarm_free(alarm[1]);
}
TEST_F(AlarmTest, test_set_short_long) {
alarm_t *alarm[2] = {
alarm_new("alarm_test.test_set_short_long_0"),
alarm_new("alarm_test.test_set_short_long_1")
};
alarm_set(alarm[0], 10, cb, NULL);
alarm_set(alarm[1], 10 + TIMER_INTERVAL_FOR_WAKELOCK_IN_MS + EPSILON_MS, cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_TRUE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 1);
EXPECT_FALSE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 2);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm[0]);
alarm_free(alarm[1]);
}
TEST_F(AlarmTest, test_set_long_long) {
alarm_t *alarm[2] = {
alarm_new("alarm_test.test_set_long_long_0"),
alarm_new("alarm_test.test_set_long_long_1")
};
alarm_set(alarm[0], TIMER_INTERVAL_FOR_WAKELOCK_IN_MS + EPSILON_MS, cb, NULL);
alarm_set(alarm[1], 2 * (TIMER_INTERVAL_FOR_WAKELOCK_IN_MS + EPSILON_MS), cb, NULL);
EXPECT_EQ(cb_counter, 0);
EXPECT_FALSE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 1);
EXPECT_FALSE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_EQ(cb_counter, 2);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm[0]);
alarm_free(alarm[1]);
}
TEST_F(AlarmTest, test_is_scheduled) {
alarm_t *alarm = alarm_new("alarm_test.test_is_scheduled");
EXPECT_FALSE(alarm_is_scheduled((alarm_t *)NULL));
EXPECT_FALSE(alarm_is_scheduled(alarm));
alarm_set(alarm, TIMER_INTERVAL_FOR_WAKELOCK_IN_MS + EPSILON_MS, cb, NULL);
EXPECT_TRUE(alarm_is_scheduled(alarm));
EXPECT_EQ(cb_counter, 0);
EXPECT_FALSE(WakeLockHeld());
semaphore_wait(semaphore);
EXPECT_FALSE(alarm_is_scheduled(alarm));
EXPECT_EQ(cb_counter, 1);
EXPECT_FALSE(WakeLockHeld());
alarm_free(alarm);
}
// Test whether the callbacks are invoked in the expected order
TEST_F(AlarmTest, test_callback_ordering) {
alarm_t *alarms[100];
for (int i = 0; i < 100; i++) {
const std::string alarm_name = "alarm_test.test_callback_ordering[" +
std::to_string(i) + "]";
alarms[i] = alarm_new(alarm_name.c_str());
}
for (int i = 0; i < 100; i++) {
alarm_set(alarms[i], 100, ordered_cb, INT_TO_PTR(i));
}
for (int i = 1; i <= 100; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
}
EXPECT_EQ(cb_counter, 100);
EXPECT_EQ(cb_misordered_counter, 0);
for (int i = 0; i < 100; i++)
alarm_free(alarms[i]);
EXPECT_FALSE(WakeLockHeld());
}
// Test whether the callbacks are involed in the expected order on a
// separate queue.
TEST_F(AlarmTest, test_callback_ordering_on_queue) {
alarm_t *alarms[100];
fixed_queue_t *queue = fixed_queue_new(SIZE_MAX);
thread_t *thread = thread_new("timers.test_callback_ordering_on_queue.thread");
alarm_register_processing_queue(queue, thread);
for (int i = 0; i < 100; i++) {
const std::string alarm_name =
"alarm_test.test_callback_ordering_on_queue[" +
std::to_string(i) + "]";
alarms[i] = alarm_new(alarm_name.c_str());
}
for (int i = 0; i < 100; i++) {
alarm_set_on_queue(alarms[i], 100, ordered_cb, INT_TO_PTR(i), queue);
}
for (int i = 1; i <= 100; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
}
EXPECT_EQ(cb_counter, 100);
EXPECT_EQ(cb_misordered_counter, 0);
for (int i = 0; i < 100; i++)
alarm_free(alarms[i]);
EXPECT_FALSE(WakeLockHeld());
alarm_unregister_processing_queue(queue);
fixed_queue_free(queue, NULL);
thread_free(thread);
}
// Test whether unregistering a processing queue cancels all timers using
// that queue.
TEST_F(AlarmTest, test_unregister_processing_queue) {
alarm_t *alarms[100];
fixed_queue_t *queue = fixed_queue_new(SIZE_MAX);
thread_t *thread =
thread_new("timers.test_unregister_processing_queue.thread");
alarm_register_processing_queue(queue, thread);
for (int i = 0; i < 100; i++) {
const std::string alarm_name =
"alarm_test.test_unregister_processing_queue[" +
std::to_string(i) + "]";
alarms[i] = alarm_new(alarm_name.c_str());
}
// Schedule half of the timers to expire soon, and the rest far in the future
for (int i = 0; i < 50; i++) {
alarm_set_on_queue(alarms[i], 100, ordered_cb, INT_TO_PTR(i), queue);
}
for (int i = 50; i < 100; i++) {
alarm_set_on_queue(alarms[i], 1000 * 1000, ordered_cb, INT_TO_PTR(i), queue);
}
// Wait until half of the timers have expired
for (int i = 1; i <= 50; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
}
EXPECT_EQ(cb_counter, 50);
EXPECT_EQ(cb_misordered_counter, 0);
// Test that only the expired timers are not scheduled
for (int i = 0; i < 50; i++) {
EXPECT_FALSE(alarm_is_scheduled(alarms[i]));
}
for (int i = 50; i < 100; i++) {
EXPECT_TRUE(alarm_is_scheduled(alarms[i]));
}
alarm_unregister_processing_queue(queue);
// Test that none of the timers are scheduled
for (int i = 0; i < 100; i++) {
EXPECT_FALSE(alarm_is_scheduled(alarms[i]));
}
for (int i = 0; i < 100; i++) {
alarm_free(alarms[i]);
}
EXPECT_FALSE(WakeLockHeld());
fixed_queue_free(queue, NULL);
thread_free(thread);
}
// Test whether unregistering a processing queue cancels all periodic timers
// using that queue.
TEST_F(AlarmTest, test_periodic_unregister_processing_queue) {
alarm_t *alarms[5];
fixed_queue_t *queue = fixed_queue_new(SIZE_MAX);
thread_t *thread =
thread_new("timers.test_periodic_unregister_processing_queue.thread");
alarm_register_processing_queue(queue, thread);
for (int i = 0; i < 5; i++) {
const std::string alarm_name =
"alarm_test.test_periodic_unregister_processing_queue[" +
std::to_string(i) + "]";
alarms[i] = alarm_new_periodic(alarm_name.c_str());
}
// Schedule each of the timers with different period
for (int i = 0; i < 5; i++) {
alarm_set_on_queue(alarms[i], 20 + i, cb, INT_TO_PTR(i), queue);
}
EXPECT_TRUE(WakeLockHeld());
for (int i = 1; i <= 20; i++) {
semaphore_wait(semaphore);
EXPECT_GE(cb_counter, i);
EXPECT_TRUE(WakeLockHeld());
}
// Test that all timers are still scheduled
for (int i = 0; i < 5; i++) {
EXPECT_TRUE(alarm_is_scheduled(alarms[i]));
}
alarm_unregister_processing_queue(queue);
int saved_cb_counter = cb_counter;
// Test that none of the timers are scheduled
for (int i = 0; i < 5; i++) {
EXPECT_FALSE(alarm_is_scheduled(alarms[i]));
}
// Sleep for 500ms and test again that the cb_counter hasn't been modified
usleep(500 * 1000);
EXPECT_TRUE(cb_counter == saved_cb_counter);
for (int i = 0; i < 5; i++) {
alarm_free(alarms[i]);
}
EXPECT_FALSE(WakeLockHeld());
fixed_queue_free(queue, NULL);
thread_free(thread);
}
// Try to catch any race conditions between the timer callback and |alarm_free|.
TEST_F(AlarmTest, test_callback_free_race) {
for (int i = 0; i < 1000; ++i) {
const std::string alarm_name = "alarm_test.test_callback_free_race[" +
std::to_string(i) + "]";
alarm_t *alarm = alarm_new(alarm_name.c_str());
alarm_set(alarm, 0, cb, NULL);
alarm_free(alarm);
}
alarm_cleanup();
}