C++程序  |  263行  |  7.89 KB

/******************************************************************************
 *
 *  Copyright (C) 2006-2015 Broadcom Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at:
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 ******************************************************************************/

 /******************************************************************************
  *
  *  This file contains simple pairing algorithms using Elliptic Curve Cryptography for private public key
  *
  ******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "p_256_ecc_pp.h"
#include "p_256_multprecision.h"

elliptic_curve_t curve;
elliptic_curve_t curve_p256;

static void p_256_init_point(Point *q)
{
    memset(q, 0, sizeof(Point));
}

static void p_256_copy_point(Point *q, Point *p)
{
    memcpy(q, p, sizeof(Point));
}

// q=2q
static void ECC_Double(Point *q, Point *p, uint32_t keyLength)
{
    DWORD t1[KEY_LENGTH_DWORDS_P256];
    DWORD t2[KEY_LENGTH_DWORDS_P256];
    DWORD t3[KEY_LENGTH_DWORDS_P256];
    DWORD *x1;
    DWORD *x3;
    DWORD *y1;
    DWORD *y3;
    DWORD *z1;
    DWORD *z3;

    if (multiprecision_iszero(p->z, keyLength))
    {
        multiprecision_init(q->z, keyLength);
        return;                                     // return infinity
    }

    x1=p->x; y1=p->y; z1=p->z;
    x3=q->x; y3=q->y; z3=q->z;

    multiprecision_mersenns_squa_mod(t1, z1, keyLength);  // t1=z1^2
    multiprecision_sub_mod(t2, x1, t1, keyLength);  // t2=x1-t1
    multiprecision_add_mod(t1, x1, t1, keyLength);  // t1=x1+t1
    multiprecision_mersenns_mult_mod(t2, t1, t2, keyLength);  // t2=t2*t1
    multiprecision_lshift_mod(t3, t2, keyLength);
    multiprecision_add_mod(t2, t3, t2, keyLength);  // t2=3t2

    multiprecision_mersenns_mult_mod(z3, y1, z1, keyLength);  // z3=y1*z1
    multiprecision_lshift_mod(z3, z3, keyLength);

    multiprecision_mersenns_squa_mod(y3, y1, keyLength);  // y3=y1^2
    multiprecision_lshift_mod(y3, y3, keyLength);
    multiprecision_mersenns_mult_mod(t3, y3, x1, keyLength);  // t3=y3*x1=x1*y1^2
    multiprecision_lshift_mod(t3, t3, keyLength);
    multiprecision_mersenns_squa_mod(y3, y3, keyLength);  // y3=y3^2=y1^4
    multiprecision_lshift_mod(y3, y3, keyLength);

    multiprecision_mersenns_squa_mod(x3, t2, keyLength);  // x3=t2^2
    multiprecision_lshift_mod(t1, t3, keyLength);                // t1=2t3
    multiprecision_sub_mod(x3, x3, t1, keyLength);               // x3=x3-t1
    multiprecision_sub_mod(t1, t3, x3, keyLength);               // t1=t3-x3
    multiprecision_mersenns_mult_mod(t1, t1, t2, keyLength);  // t1=t1*t2
    multiprecision_sub_mod(y3, t1, y3, keyLength);               // y3=t1-y3
}

// q=q+p,     zp must be 1
static void ECC_Add(Point *r, Point *p, Point *q, uint32_t keyLength)
{
    DWORD t1[KEY_LENGTH_DWORDS_P256];
    DWORD t2[KEY_LENGTH_DWORDS_P256];
    DWORD *x1;
    DWORD *x2;
    DWORD *x3;
    DWORD *y1;
    DWORD *y2;
    DWORD *y3;
    DWORD *z1;
    DWORD *z2;
    DWORD *z3;

    x1=p->x; y1=p->y; z1=p->z;
    x2=q->x; y2=q->y; z2=q->z;
    x3=r->x; y3=r->y; z3=r->z;

    // if Q=infinity, return p
    if (multiprecision_iszero(z2, keyLength))
    {
        p_256_copy_point(r, p);
        return;
    }

    // if P=infinity, return q
    if (multiprecision_iszero(z1, keyLength))
    {
        p_256_copy_point(r, q);
        return;
    }

    multiprecision_mersenns_squa_mod(t1, z1, keyLength);      // t1=z1^2
    multiprecision_mersenns_mult_mod(t2, z1, t1, keyLength);  // t2=t1*z1
    multiprecision_mersenns_mult_mod(t1, x2, t1, keyLength);  // t1=t1*x2
    multiprecision_mersenns_mult_mod(t2, y2, t2, keyLength);  // t2=t2*y2

    multiprecision_sub_mod(t1, t1, x1, keyLength);  // t1=t1-x1
    multiprecision_sub_mod(t2, t2, y1, keyLength);  // t2=t2-y1

    if (multiprecision_iszero(t1, keyLength))
    {
        if (multiprecision_iszero(t2, keyLength))
        {
            ECC_Double(r, q, keyLength) ;
            return;
        }
        else
        {
            multiprecision_init(z3, keyLength);
            return;                             // return infinity
        }
    }

    multiprecision_mersenns_mult_mod(z3, z1, t1, keyLength);  // z3=z1*t1
    multiprecision_mersenns_squa_mod(y3, t1, keyLength);      // t3=t1^2
    multiprecision_mersenns_mult_mod(z1, y3, t1, keyLength);  // t4=t3*t1
    multiprecision_mersenns_mult_mod(y3, y3, x1, keyLength);  // t3=t3*x1
    multiprecision_lshift_mod(t1, y3, keyLength);            // t1=2*t3
    multiprecision_mersenns_squa_mod(x3, t2, keyLength);      // x3=t2^2
    multiprecision_sub_mod(x3, x3, t1, keyLength);           // x3=x3-t1
    multiprecision_sub_mod(x3, x3, z1, keyLength);           // x3=x3-t4
    multiprecision_sub_mod(y3, y3, x3, keyLength);           // t3=t3-x3
    multiprecision_mersenns_mult_mod(y3, y3, t2, keyLength);  // t3=t3*t2
    multiprecision_mersenns_mult_mod(z1, z1, y1, keyLength);  // t4=t4*t1
    multiprecision_sub_mod(y3, y3, z1, keyLength);
}

// Computing the Non-Adjacent Form of a positive integer
static void ECC_NAF(uint8_t *naf, uint32_t *NumNAF, DWORD *k, uint32_t keyLength)
{
    uint32_t sign;
    int i=0;
    int j;
    uint32_t var;

    while ((var = multiprecision_most_signbits(k, keyLength))>=1)
    {
        if (k[0] & 0x01)  // k is odd
        {
            sign = (k[0] & 0x03);  // 1 or 3

            // k = k-naf[i]
            if (sign == 1)
                k[0] = k[0] & 0xFFFFFFFE;
            else
            {
                k[0] = k[0] + 1;
                if (k[0] == 0)  //overflow
                {
                    j = 1;
                    do
                    {
                        k[j]++;
                    } while (k[j++]==0);  //overflow
                }
            }
        }
        else
            sign = 0;

        multiprecision_rshift(k, k, keyLength);
        naf[i / 4] |= (sign) << ((i % 4) * 2);
        i++;
    }

    *NumNAF=i;
}

// Binary Non-Adjacent Form for point multiplication
void ECC_PointMult_Bin_NAF(Point *q, Point *p, DWORD *n, uint32_t keyLength)
{
    uint32_t sign;
    UINT8 naf[256 / 4 +1];
    uint32_t NumNaf;
    Point minus_p;
    Point r;
    DWORD *modp;

    if (keyLength == KEY_LENGTH_DWORDS_P256)
    {
        modp = curve_p256.p;
    }
    else
    {
        modp = curve.p;
    }

    p_256_init_point(&r);
    multiprecision_init(p->z, keyLength);
    p->z[0] = 1;

    // initialization
    p_256_init_point(q);

    // -p
    multiprecision_copy(minus_p.x, p->x, keyLength);
    multiprecision_sub(minus_p.y, modp, p->y, keyLength);

    multiprecision_init(minus_p.z, keyLength);
    minus_p.z[0]=1;

    // NAF
    memset(naf, 0, sizeof(naf));
    ECC_NAF(naf, &NumNaf, n, keyLength);

    for (int i = NumNaf - 1; i >= 0; i--)
    {
        p_256_copy_point(&r, q);
        ECC_Double(q, &r, keyLength);
        sign = (naf[i / 4] >> ((i % 4) * 2)) & 0x03;

        if (sign == 1)
        {
            p_256_copy_point(&r, q);
            ECC_Add(q, &r, p, keyLength);
        }
        else if (sign == 3)
        {
            p_256_copy_point(&r, q);
            ECC_Add(q, &r, &minus_p, keyLength);
        }
    }

    multiprecision_inv_mod(minus_p.x, q->z, keyLength);
    multiprecision_mersenns_squa_mod(q->z, minus_p.x, keyLength);
    multiprecision_mersenns_mult_mod(q->x, q->x, q->z, keyLength);
    multiprecision_mersenns_mult_mod(q->z, q->z, minus_p.x, keyLength);
    multiprecision_mersenns_mult_mod(q->y, q->y, q->z, keyLength);
}