HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.0
|
7.0.0_r31
下载
查看原文件
收藏
根目录
toolchain
binutils
binutils-2.25
gold
aarch64.cc
// aarch64.cc -- aarch64 target support for gold. // Copyright (C) 2014-2015 Free Software Foundation, Inc. // Written by Jing Yu
and Han Shen
. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include
#include
#include
#include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "aarch64.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "freebsd.h" #include "nacl.h" #include "gc.h" #include "icf.h" #include "aarch64-reloc-property.h" // The first three .got.plt entries are reserved. const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3; namespace { using namespace gold; template
class Output_data_plt_aarch64; template
class Output_data_plt_aarch64_standard; template
class Target_aarch64; template
class AArch64_relocate_functions; // Utility class dealing with insns. This is ported from macros in // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This // class is used in erratum sequence scanning. template
class AArch64_insn_utilities { public: typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; static const int BYTES_PER_INSN; // Zero register encoding - 31. static const unsigned int AARCH64_ZR; static unsigned int aarch64_bit(Insntype insn, int pos) { return ((1 << pos) & insn) >> pos; } static unsigned int aarch64_bits(Insntype insn, int pos, int l) { return (insn >> pos) & ((1 << l) - 1); } // Get the encoding field "op31" of 3-source data processing insns. "op31" is // the name defined in armv8 insn manual C3.5.9. static unsigned int aarch64_op31(Insntype insn) { return aarch64_bits(insn, 21, 3); } // Get the encoding field "ra" of 3-source data processing insns. "ra" is the // third source register. See armv8 insn manual C3.5.9. static unsigned int aarch64_ra(Insntype insn) { return aarch64_bits(insn, 10, 5); } static bool is_adr(const Insntype insn) { return (insn & 0x9F000000) == 0x10000000; } static bool is_adrp(const Insntype insn) { return (insn & 0x9F000000) == 0x90000000; } static unsigned int aarch64_rm(const Insntype insn) { return aarch64_bits(insn, 16, 5); } static unsigned int aarch64_rn(const Insntype insn) { return aarch64_bits(insn, 5, 5); } static unsigned int aarch64_rd(const Insntype insn) { return aarch64_bits(insn, 0, 5); } static unsigned int aarch64_rt(const Insntype insn) { return aarch64_bits(insn, 0, 5); } static unsigned int aarch64_rt2(const Insntype insn) { return aarch64_bits(insn, 10, 5); } // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M). static Insntype aarch64_adr_encode_imm(Insntype adr, int imm21) { gold_assert(is_adr(adr)); gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20)); const int mask19 = (1 << 19) - 1; const int mask2 = 3; adr &= ~((mask19 << 5) | (mask2 << 29)); adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5); return adr; } // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0. static int64_t aarch64_adrp_decode_imm(const Insntype adrp) { const int mask19 = (1 << 19) - 1; const int mask2 = 3; gold_assert(is_adrp(adrp)); // 21-bit imm encoded in adrp. uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2); // Retrieve msb of 21-bit-signed imm for sign extension. uint64_t msbt = (imm >> 20) & 1; // Real value is imm multipled by 4k. Value now has 33-bit information. int64_t value = imm << 12; // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it // with value. return ((((uint64_t)(1) << 32) - msbt) << 33) | value; } static bool aarch64_b(const Insntype insn) { return (insn & 0xFC000000) == 0x14000000; } static bool aarch64_bl(const Insntype insn) { return (insn & 0xFC000000) == 0x94000000; } static bool aarch64_blr(const Insntype insn) { return (insn & 0xFFFFFC1F) == 0xD63F0000; } static bool aarch64_br(const Insntype insn) { return (insn & 0xFFFFFC1F) == 0xD61F0000; } // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. static bool aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; } static bool aarch64_ldst(Insntype insn) { return (insn & 0x0a000000) == 0x08000000; } static bool aarch64_ldst_ex(Insntype insn) { return (insn & 0x3f000000) == 0x08000000; } static bool aarch64_ldst_pcrel(Insntype insn) { return (insn & 0x3b000000) == 0x18000000; } static bool aarch64_ldst_nap(Insntype insn) { return (insn & 0x3b800000) == 0x28000000; } static bool aarch64_ldstp_pi(Insntype insn) { return (insn & 0x3b800000) == 0x28800000; } static bool aarch64_ldstp_o(Insntype insn) { return (insn & 0x3b800000) == 0x29000000; } static bool aarch64_ldstp_pre(Insntype insn) { return (insn & 0x3b800000) == 0x29800000; } static bool aarch64_ldst_ui(Insntype insn) { return (insn & 0x3b200c00) == 0x38000000; } static bool aarch64_ldst_piimm(Insntype insn) { return (insn & 0x3b200c00) == 0x38000400; } static bool aarch64_ldst_u(Insntype insn) { return (insn & 0x3b200c00) == 0x38000800; } static bool aarch64_ldst_preimm(Insntype insn) { return (insn & 0x3b200c00) == 0x38000c00; } static bool aarch64_ldst_ro(Insntype insn) { return (insn & 0x3b200c00) == 0x38200800; } static bool aarch64_ldst_uimm(Insntype insn) { return (insn & 0x3b000000) == 0x39000000; } static bool aarch64_ldst_simd_m(Insntype insn) { return (insn & 0xbfbf0000) == 0x0c000000; } static bool aarch64_ldst_simd_m_pi(Insntype insn) { return (insn & 0xbfa00000) == 0x0c800000; } static bool aarch64_ldst_simd_s(Insntype insn) { return (insn & 0xbf9f0000) == 0x0d000000; } static bool aarch64_ldst_simd_s_pi(Insntype insn) { return (insn & 0xbf800000) == 0x0d800000; } // Classify an INSN if it is indeed a load/store. Return true if INSN is a // LD/ST instruction otherwise return false. For scalar LD/ST instructions // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair // instructions PAIR is TRUE, RT and RT2 are returned. static bool aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2, bool *pair, bool *load) { uint32_t opcode; unsigned int r; uint32_t opc = 0; uint32_t v = 0; uint32_t opc_v = 0; /* Bail out quickly if INSN doesn't fall into the the load-store encoding space. */ if (!aarch64_ldst (insn)) return false; *pair = false; *load = false; if (aarch64_ldst_ex (insn)) { *rt = aarch64_rt (insn); *rt2 = *rt; if (aarch64_bit (insn, 21) == 1) { *pair = true; *rt2 = aarch64_rt2 (insn); } *load = aarch64_ld (insn); return true; } else if (aarch64_ldst_nap (insn) || aarch64_ldstp_pi (insn) || aarch64_ldstp_o (insn) || aarch64_ldstp_pre (insn)) { *pair = true; *rt = aarch64_rt (insn); *rt2 = aarch64_rt2 (insn); *load = aarch64_ld (insn); return true; } else if (aarch64_ldst_pcrel (insn) || aarch64_ldst_ui (insn) || aarch64_ldst_piimm (insn) || aarch64_ldst_u (insn) || aarch64_ldst_preimm (insn) || aarch64_ldst_ro (insn) || aarch64_ldst_uimm (insn)) { *rt = aarch64_rt (insn); *rt2 = *rt; if (aarch64_ldst_pcrel (insn)) *load = true; opc = aarch64_bits (insn, 22, 2); v = aarch64_bit (insn, 26); opc_v = opc | (v << 2); *load = (opc_v == 1 || opc_v == 2 || opc_v == 3 || opc_v == 5 || opc_v == 7); return true; } else if (aarch64_ldst_simd_m (insn) || aarch64_ldst_simd_m_pi (insn)) { *rt = aarch64_rt (insn); *load = aarch64_bit (insn, 22); opcode = (insn >> 12) & 0xf; switch (opcode) { case 0: case 2: *rt2 = *rt + 3; break; case 4: case 6: *rt2 = *rt + 2; break; case 7: *rt2 = *rt; break; case 8: case 10: *rt2 = *rt + 1; break; default: return false; } return true; } else if (aarch64_ldst_simd_s (insn) || aarch64_ldst_simd_s_pi (insn)) { *rt = aarch64_rt (insn); r = (insn >> 21) & 1; *load = aarch64_bit (insn, 22); opcode = (insn >> 13) & 0x7; switch (opcode) { case 0: case 2: case 4: *rt2 = *rt + r; break; case 1: case 3: case 5: *rt2 = *rt + (r == 0 ? 2 : 3); break; case 6: *rt2 = *rt + r; break; case 7: *rt2 = *rt + (r == 0 ? 2 : 3); break; default: return false; } return true; } return false; } // End of "aarch64_mem_op_p". // Return true if INSN is mac insn. static bool aarch64_mac(Insntype insn) { return (insn & 0xff000000) == 0x9b000000; } // Return true if INSN is multiply-accumulate. // (This is similar to implementaton in elfnn-aarch64.c.) static bool aarch64_mlxl(Insntype insn) { uint32_t op31 = aarch64_op31(insn); if (aarch64_mac(insn) && (op31 == 0 || op31 == 1 || op31 == 5) /* Exclude MUL instructions which are encoded as a multiple-accumulate with RA = XZR. */ && aarch64_ra(insn) != AARCH64_ZR) { return true; } return false; } }; // End of "AArch64_insn_utilities". // Insn length in byte. template
const int AArch64_insn_utilities
::BYTES_PER_INSN = 4; // Zero register encoding - 31. template
const unsigned int AArch64_insn_utilities
::AARCH64_ZR = 0x1f; // Output_data_got_aarch64 class. template
class Output_data_got_aarch64 : public Output_data_got
{ public: typedef typename elfcpp::Elf_types
::Elf_Addr Valtype; Output_data_got_aarch64(Symbol_table* symtab, Layout* layout) : Output_data_got
(), symbol_table_(symtab), layout_(layout) { } // Add a static entry for the GOT entry at OFFSET. GSYM is a global // symbol and R_TYPE is the code of a dynamic relocation that needs to be // applied in a static link. void add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object // defining a local symbol with INDEX. R_TYPE is the code of a dynamic // relocation that needs to be applied in a static link. void add_static_reloc(unsigned int got_offset, unsigned int r_type, Sized_relobj_file
* relobj, unsigned int index) { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, index)); } protected: // Write out the GOT table. void do_write(Output_file* of) { // The first entry in the GOT is the address of the .dynamic section. gold_assert(this->data_size() >= size / 8); Output_section* dynamic = this->layout_->dynamic_section(); Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address(); this->replace_constant(0, dynamic_addr); Output_data_got
::do_write(of); // Handling static relocs if (this->static_relocs_.empty()) return; typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; gold_assert(parameters->doing_static_link()); const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); Output_segment* tls_segment = this->layout_->tls_segment(); gold_assert(tls_segment != NULL); AArch64_address aligned_tcb_address = align_address(Target_aarch64
::TCB_SIZE, tls_segment->maximum_alignment()); for (size_t i = 0; i < this->static_relocs_.size(); ++i) { Static_reloc& reloc(this->static_relocs_[i]); AArch64_address value; if (!reloc.symbol_is_global()) { Sized_relobj_file
* object = reloc.relobj(); const Symbol_value
* psymval = reloc.relobj()->local_symbol(reloc.index()); // We are doing static linking. Issue an error and skip this // relocation if the symbol is undefined or in a discarded_section. bool is_ordinary; unsigned int shndx = psymval->input_shndx(&is_ordinary); if ((shndx == elfcpp::SHN_UNDEF) || (is_ordinary && shndx != elfcpp::SHN_UNDEF && !object->is_section_included(shndx) && !this->symbol_table_->is_section_folded(object, shndx))) { gold_error(_("undefined or discarded local symbol %u from " " object %s in GOT"), reloc.index(), reloc.relobj()->name().c_str()); continue; } value = psymval->value(object, 0); } else { const Symbol* gsym = reloc.symbol(); gold_assert(gsym != NULL); if (gsym->is_forwarder()) gsym = this->symbol_table_->resolve_forwards(gsym); // We are doing static linking. Issue an error and skip this // relocation if the symbol is undefined or in a discarded_section // unless it is a weakly_undefined symbol. if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined()) && !gsym->is_weak_undefined()) { gold_error(_("undefined or discarded symbol %s in GOT"), gsym->name()); continue; } if (!gsym->is_weak_undefined()) { const Sized_symbol
* sym = static_cast
*>(gsym); value = sym->value(); } else value = 0; } unsigned got_offset = reloc.got_offset(); gold_assert(got_offset < oview_size); typedef typename elfcpp::Swap
::Valtype Valtype; Valtype* wv = reinterpret_cast
(oview + got_offset); Valtype x; switch (reloc.r_type()) { case elfcpp::R_AARCH64_TLS_DTPREL64: x = value; break; case elfcpp::R_AARCH64_TLS_TPREL64: x = value + aligned_tcb_address; break; default: gold_unreachable(); } elfcpp::Swap
::writeval(wv, x); } of->write_output_view(offset, oview_size, oview); } private: // Symbol table of the output object. Symbol_table* symbol_table_; // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT section. Layout* layout_; // This class represent dynamic relocations that need to be applied by // gold because we are using TLS relocations in a static link. class Static_reloc { public: Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) { this->u_.global.symbol = gsym; } Static_reloc(unsigned int got_offset, unsigned int r_type, Sized_relobj_file
* relobj, unsigned int index) : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) { this->u_.local.relobj = relobj; this->u_.local.index = index; } // Return the GOT offset. unsigned int got_offset() const { return this->got_offset_; } // Relocation type. unsigned int r_type() const { return this->r_type_; } // Whether the symbol is global or not. bool symbol_is_global() const { return this->symbol_is_global_; } // For a relocation against a global symbol, the global symbol. Symbol* symbol() const { gold_assert(this->symbol_is_global_); return this->u_.global.symbol; } // For a relocation against a local symbol, the defining object. Sized_relobj_file
* relobj() const { gold_assert(!this->symbol_is_global_); return this->u_.local.relobj; } // For a relocation against a local symbol, the local symbol index. unsigned int index() const { gold_assert(!this->symbol_is_global_); return this->u_.local.index; } private: // GOT offset of the entry to which this relocation is applied. unsigned int got_offset_; // Type of relocation. unsigned int r_type_; // Whether this relocation is against a global symbol. bool symbol_is_global_; // A global or local symbol. union { struct { // For a global symbol, the symbol itself. Symbol* symbol; } global; struct { // For a local symbol, the object defining the symbol. Sized_relobj_file
* relobj; // For a local symbol, the symbol index. unsigned int index; } local; } u_; }; // End of inner class Static_reloc std::vector
static_relocs_; }; // End of Output_data_got_aarch64 template
class AArch64_input_section; template
class AArch64_output_section; template
class AArch64_relobj; // Stub type enum constants. enum { ST_NONE = 0, // Using adrp/add pair, 4 insns (including alignment) without mem access, // the fastest stub. This has a limited jump distance, which is tested by // aarch64_valid_for_adrp_p. ST_ADRP_BRANCH = 1, // Using ldr-absolute-address/br-register, 4 insns with 1 mem access, // unlimited in jump distance. ST_LONG_BRANCH_ABS = 2, // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 // mem access, slowest one. Only used in position independent executables. ST_LONG_BRANCH_PCREL = 3, // Stub for erratum 843419 handling. ST_E_843419 = 4, // Stub for erratum 835769 handling. ST_E_835769 = 5, // Number of total stub types. ST_NUMBER = 6 }; // Struct that wraps insns for a particular stub. All stub templates are // created/initialized as constants by Stub_template_repertoire. template
struct Stub_template { const typename AArch64_insn_utilities
::Insntype* insns; const int insn_num; }; // Simple singleton class that creates/initializes/stores all types of stub // templates. template
class Stub_template_repertoire { public: typedef typename AArch64_insn_utilities
::Insntype Insntype; // Single static method to get stub template for a given stub type. static const Stub_template
* get_stub_template(int type) { static Stub_template_repertoire
singleton; return singleton.stub_templates_[type]; } private: // Constructor - creates/initializes all stub templates. Stub_template_repertoire(); ~Stub_template_repertoire() { } // Disallowing copy ctor and copy assignment operator. Stub_template_repertoire(Stub_template_repertoire&); Stub_template_repertoire& operator=(Stub_template_repertoire&); // Data that stores all insn templates. const Stub_template
* stub_templates_[ST_NUMBER]; }; // End of "class Stub_template_repertoire". // Constructor - creates/initilizes all stub templates. template
Stub_template_repertoire
::Stub_template_repertoire() { // Insn array definitions. const static Insntype ST_NONE_INSNS[] = {}; const static Insntype ST_ADRP_BRANCH_INSNS[] = { 0x90000010, /* adrp ip0, X */ /* ADR_PREL_PG_HI21(X) */ 0x91000210, /* add ip0, ip0, :lo12:X */ /* ADD_ABS_LO12_NC(X) */ 0xd61f0200, /* br ip0 */ 0x00000000, /* alignment padding */ }; const static Insntype ST_LONG_BRANCH_ABS_INSNS[] = { 0x58000050, /* ldr ip0, 0x8 */ 0xd61f0200, /* br ip0 */ 0x00000000, /* address field */ 0x00000000, /* address fields */ }; const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] = { 0x58000090, /* ldr ip0, 0x10 */ 0x10000011, /* adr ip1, #0 */ 0x8b110210, /* add ip0, ip0, ip1 */ 0xd61f0200, /* br ip0 */ 0x00000000, /* address field */ 0x00000000, /* address field */ 0x00000000, /* alignment padding */ 0x00000000, /* alignment padding */ }; const static Insntype ST_E_843419_INSNS[] = { 0x00000000, /* Placeholder for erratum insn. */ 0x14000000, /* b
*/ }; // ST_E_835769 has the same stub template as ST_E_843419. const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS; #define install_insn_template(T) \ const static Stub_template
template_##T = { \ T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \ this->stub_templates_[T] = &template_##T install_insn_template(ST_NONE); install_insn_template(ST_ADRP_BRANCH); install_insn_template(ST_LONG_BRANCH_ABS); install_insn_template(ST_LONG_BRANCH_PCREL); install_insn_template(ST_E_843419); install_insn_template(ST_E_835769); #undef install_insn_template } // Base class for stubs. template
class Stub_base { public: typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; typedef typename AArch64_insn_utilities
::Insntype Insntype; static const AArch64_address invalid_address = static_cast
(-1); static const section_offset_type invalid_offset = static_cast
(-1); Stub_base(int type) : destination_address_(invalid_address), offset_(invalid_offset), type_(type) {} ~Stub_base() {} // Get stub type. int type() const { return this->type_; } // Get stub template that provides stub insn information. const Stub_template
* stub_template() const { return Stub_template_repertoire
:: get_stub_template(this->type()); } // Get destination address. AArch64_address destination_address() const { gold_assert(this->destination_address_ != this->invalid_address); return this->destination_address_; } // Set destination address. void set_destination_address(AArch64_address address) { gold_assert(address != this->invalid_address); this->destination_address_ = address; } // Reset the destination address. void reset_destination_address() { this->destination_address_ = this->invalid_address; } // Get offset of code stub. For Reloc_stub, it is the offset from the // beginning of its containing stub table; for Erratum_stub, it is the offset // from the end of reloc_stubs. section_offset_type offset() const { gold_assert(this->offset_ != this->invalid_offset); return this->offset_; } // Set stub offset. void set_offset(section_offset_type offset) { this->offset_ = offset; } // Return the stub insn. const Insntype* insns() const { return this->stub_template()->insns; } // Return num of stub insns. unsigned int insn_num() const { return this->stub_template()->insn_num; } // Get size of the stub. int stub_size() const { return this->insn_num() * AArch64_insn_utilities
::BYTES_PER_INSN; } // Write stub to output file. void write(unsigned char* view, section_size_type view_size) { this->do_write(view, view_size); } protected: // Abstract method to be implemented by sub-classes. virtual void do_write(unsigned char*, section_size_type) = 0; private: // The last insn of a stub is a jump to destination insn. This field records // the destination address. AArch64_address destination_address_; // The stub offset. Note this has difference interpretations between an // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the // beginning of the containing stub_table, whereas for Erratum_stub, this is // the offset from the end of reloc_stubs. section_offset_type offset_; // Stub type. const int type_; }; // End of "Stub_base". // Erratum stub class. An erratum stub differs from a reloc stub in that for // each erratum occurrence, we generate an erratum stub. We never share erratum // stubs, whereas for reloc stubs, different branches insns share a single reloc // stub as long as the branch targets are the same. (More to the point, reloc // stubs can be shared because they're used to reach a specific target, whereas // erratum stubs branch back to the original control flow.) template
class Erratum_stub : public Stub_base
{ public: typedef AArch64_relobj
The_aarch64_relobj; typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; typedef AArch64_insn_utilities
Insn_utilities; typedef typename AArch64_insn_utilities
::Insntype Insntype; static const int STUB_ADDR_ALIGN; static const Insntype invalid_insn = static_cast
(-1); Erratum_stub(The_aarch64_relobj* relobj, int type, unsigned shndx, unsigned int sh_offset) : Stub_base
(type), relobj_(relobj), shndx_(shndx), sh_offset_(sh_offset), erratum_insn_(invalid_insn), erratum_address_(this->invalid_address) {} ~Erratum_stub() {} // Return the object that contains the erratum. The_aarch64_relobj* relobj() { return this->relobj_; } // Get section index of the erratum. unsigned int shndx() const { return this->shndx_; } // Get section offset of the erratum. unsigned int sh_offset() const { return this->sh_offset_; } // Get the erratum insn. This is the insn located at erratum_insn_address. Insntype erratum_insn() const { gold_assert(this->erratum_insn_ != this->invalid_insn); return this->erratum_insn_; } // Set the insn that the erratum happens to. void set_erratum_insn(Insntype insn) { this->erratum_insn_ = insn; } // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a // relocation spot, in this case, the erratum_insn_ recorded at scanning phase // is no longer the one we want to write out to the stub, update erratum_insn_ // with relocated version. Also note that in this case xn must not be "PC", so // it is safe to move the erratum insn from the origin place to the stub. For // 835769, the erratum insn is multiply-accumulate insn, which could not be a // relocation spot (assertion added though). void update_erratum_insn(Insntype insn) { gold_assert(this->erratum_insn_ != this->invalid_insn); switch (this->type()) { case ST_E_843419: gold_assert(Insn_utilities::aarch64_ldst_uimm(insn)); gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn())); gold_assert(Insn_utilities::aarch64_rd(insn) == Insn_utilities::aarch64_rd(this->erratum_insn())); gold_assert(Insn_utilities::aarch64_rn(insn) == Insn_utilities::aarch64_rn(this->erratum_insn())); // Update plain ld/st insn with relocated insn. this->erratum_insn_ = insn; break; case ST_E_835769: gold_assert(insn == this->erratum_insn()); break; default: gold_unreachable(); } } // Return the address where an erratum must be done. AArch64_address erratum_address() const { gold_assert(this->erratum_address_ != this->invalid_address); return this->erratum_address_; } // Set the address where an erratum must be done. void set_erratum_address(AArch64_address addr) { this->erratum_address_ = addr; } // Comparator used to group Erratum_stubs in a set by (obj, shndx, // sh_offset). We do not include 'type' in the calculation, becuase there is // at most one stub type at (obj, shndx, sh_offset). bool operator<(const Erratum_stub
& k) const { if (this == &k) return false; // We group stubs by relobj. if (this->relobj_ != k.relobj_) return this->relobj_ < k.relobj_; // Then by section index. if (this->shndx_ != k.shndx_) return this->shndx_ < k.shndx_; // Lastly by section offset. return this->sh_offset_ < k.sh_offset_; } protected: virtual void do_write(unsigned char*, section_size_type); private: // The object that needs to be fixed. The_aarch64_relobj* relobj_; // The shndx in the object that needs to be fixed. const unsigned int shndx_; // The section offset in the obejct that needs to be fixed. const unsigned int sh_offset_; // The insn to be fixed. Insntype erratum_insn_; // The address of the above insn. AArch64_address erratum_address_; }; // End of "Erratum_stub". // Erratum sub class to wrap additional info needed by 843419. In fixing this // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need // adrp's code position (two or three insns before erratum insn itself). template
class E843419_stub : public Erratum_stub
{ public: typedef typename AArch64_insn_utilities
::Insntype Insntype; E843419_stub(AArch64_relobj
* relobj, unsigned int shndx, unsigned int sh_offset, unsigned int adrp_sh_offset) : Erratum_stub
(relobj, ST_E_843419, shndx, sh_offset), adrp_sh_offset_(adrp_sh_offset) {} unsigned int adrp_sh_offset() const { return this->adrp_sh_offset_; } private: // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we // can can obtain it from its parent.) const unsigned int adrp_sh_offset_; }; template
const int Erratum_stub
::STUB_ADDR_ALIGN = 4; // Comparator used in set definition. template
struct Erratum_stub_less { bool operator()(const Erratum_stub
* s1, const Erratum_stub
* s2) const { return *s1 < *s2; } }; // Erratum_stub implementation for writing stub to output file. template
void Erratum_stub
::do_write(unsigned char* view, section_size_type) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; const Insntype* insns = this->insns(); uint32_t num_insns = this->insn_num(); Insntype* ip = reinterpret_cast
(view); // For current implemented erratum 843419 and 835769, the first insn in the // stub is always a copy of the problematic insn (in 843419, the mem access // insn, in 835769, the mac insn), followed by a jump-back. elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn()); for (uint32_t i = 1; i < num_insns; ++i) elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]); } // Reloc stub class. template
class Reloc_stub : public Stub_base
{ public: typedef Reloc_stub
This; typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; // Branch range. This is used to calculate the section group size, as well as // determine whether a stub is needed. static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2; static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2); // Constant used to determine if an offset fits in the adrp instruction // encoding. static const int MAX_ADRP_IMM = (1 << 20) - 1; static const int MIN_ADRP_IMM = -(1 << 20); static const int BYTES_PER_INSN = 4; static const int STUB_ADDR_ALIGN; // Determine whether the offset fits in the jump/branch instruction. static bool aarch64_valid_branch_offset_p(int64_t offset) { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; } // Determine whether the offset fits in the adrp immediate field. static bool aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest) { typedef AArch64_relocate_functions
Reloc; int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12; return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM; } // Determine the stub type for a certain relocation or ST_NONE, if no stub is // needed. static int stub_type_for_reloc(unsigned int r_type, AArch64_address address, AArch64_address target); Reloc_stub(int type) : Stub_base
(type) { } ~Reloc_stub() { } // The key class used to index the stub instance in the stub table's stub map. class Key { public: Key(int type, const Symbol* symbol, const Relobj* relobj, unsigned int r_sym, int32_t addend) : type_(type), addend_(addend) { if (symbol != NULL) { this->r_sym_ = Reloc_stub::invalid_index; this->u_.symbol = symbol; } else { gold_assert(relobj != NULL && r_sym != invalid_index); this->r_sym_ = r_sym; this->u_.relobj = relobj; } } ~Key() { } // Return stub type. int type() const { return this->type_; } // Return the local symbol index or invalid_index. unsigned int r_sym() const { return this->r_sym_; } // Return the symbol if there is one. const Symbol* symbol() const { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; } // Return the relobj if there is one. const Relobj* relobj() const { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; } // Whether this equals to another key k. bool eq(const Key& k) const { return ((this->type_ == k.type_) && (this->r_sym_ == k.r_sym_) && ((this->r_sym_ != Reloc_stub::invalid_index) ? (this->u_.relobj == k.u_.relobj) : (this->u_.symbol == k.u_.symbol)) && (this->addend_ == k.addend_)); } // Return a hash value. size_t hash_value() const { size_t name_hash_value = gold::string_hash
( (this->r_sym_ != Reloc_stub::invalid_index) ? this->u_.relobj->name().c_str() : this->u_.symbol->name()); // We only have 4 stub types. size_t stub_type_hash_value = 0x03 & this->type_; return (name_hash_value ^ stub_type_hash_value ^ ((this->r_sym_ & 0x3fff) << 2) ^ ((this->addend_ & 0xffff) << 16)); } // Functors for STL associative containers. struct hash { size_t operator()(const Key& k) const { return k.hash_value(); } }; struct equal_to { bool operator()(const Key& k1, const Key& k2) const { return k1.eq(k2); } }; private: // Stub type. const int type_; // If this is a local symbol, this is the index in the defining object. // Otherwise, it is invalid_index for a global symbol. unsigned int r_sym_; // If r_sym_ is an invalid index, this points to a global symbol. // Otherwise, it points to a relobj. We used the unsized and target // independent Symbol and Relobj classes instead of Sized_symbol<32> and // Arm_relobj, in order to avoid making the stub class a template // as most of the stub machinery is endianness-neutral. However, it // may require a bit of casting done by users of this class. union { const Symbol* symbol; const Relobj* relobj; } u_; // Addend associated with a reloc. int32_t addend_; }; // End of inner class Reloc_stub::Key protected: // This may be overridden in the child class. virtual void do_write(unsigned char*, section_size_type); private: static const unsigned int invalid_index = static_cast
(-1); }; // End of Reloc_stub template
const int Reloc_stub
::STUB_ADDR_ALIGN = 4; // Write data to output file. template
void Reloc_stub
:: do_write(unsigned char* view, section_size_type) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; const uint32_t* insns = this->insns(); uint32_t num_insns = this->insn_num(); Insntype* ip = reinterpret_cast
(view); for (uint32_t i = 0; i < num_insns; ++i) elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]); } // Determine the stub type for a certain relocation or ST_NONE, if no stub is // needed. template
inline int Reloc_stub
::stub_type_for_reloc( unsigned int r_type, AArch64_address location, AArch64_address dest) { int64_t branch_offset = 0; switch(r_type) { case elfcpp::R_AARCH64_CALL26: case elfcpp::R_AARCH64_JUMP26: branch_offset = dest - location; break; default: gold_unreachable(); } if (aarch64_valid_branch_offset_p(branch_offset)) return ST_NONE; if (aarch64_valid_for_adrp_p(location, dest)) return ST_ADRP_BRANCH; // Always use PC-relative addressing in case of -shared or -pie. if (parameters->options().output_is_position_independent()) return ST_LONG_BRANCH_PCREL; // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL. // But is only applicable to non-shared or non-pie. return ST_LONG_BRANCH_ABS; } // A class to hold stubs for the ARM target. template
class Stub_table : public Output_data { public: typedef Target_aarch64
The_target_aarch64; typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; typedef AArch64_relobj
The_aarch64_relobj; typedef AArch64_input_section
The_aarch64_input_section; typedef Reloc_stub
The_reloc_stub; typedef typename The_reloc_stub::Key The_reloc_stub_key; typedef Erratum_stub
The_erratum_stub; typedef Erratum_stub_less
The_erratum_stub_less; typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash; typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to; typedef Stub_table
The_stub_table; typedef Unordered_map
Reloc_stub_map; typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter; typedef Relocate_info
The_relocate_info; typedef std::set
Erratum_stub_set; typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter; Stub_table(The_aarch64_input_section* owner) : Output_data(), owner_(owner), reloc_stubs_size_(0), erratum_stubs_size_(0), prev_data_size_(0) { } ~Stub_table() { } The_aarch64_input_section* owner() const { return owner_; } // Whether this stub table is empty. bool empty() const { return reloc_stubs_.empty() && erratum_stubs_.empty(); } // Return the current data size. off_t current_data_size() const { return this->current_data_size_for_child(); } // Add a STUB using KEY. The caller is responsible for avoiding addition // if a STUB with the same key has already been added. void add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key); // Add an erratum stub into the erratum stub set. The set is ordered by // (relobj, shndx, sh_offset). void add_erratum_stub(The_erratum_stub* stub); // Find if such erratum exists for any given (obj, shndx, sh_offset). The_erratum_stub* find_erratum_stub(The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset); // Find all the erratums for a given input section. The return value is a pair // of iterators [begin, end). std::pair
find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj, unsigned int shndx); // Compute the erratum stub address. AArch64_address erratum_stub_address(The_erratum_stub* stub) const { AArch64_address r = align_address(this->address() + this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN); r += stub->offset(); return r; } // Finalize stubs. No-op here, just for completeness. void finalize_stubs() { } // Look up a relocation stub using KEY. Return NULL if there is none. The_reloc_stub* find_reloc_stub(The_reloc_stub_key& key) { Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key); return (p != this->reloc_stubs_.end()) ? p->second : NULL; } // Relocate stubs in this stub table. void relocate_stubs(const The_relocate_info*, The_target_aarch64*, Output_section*, unsigned char*, AArch64_address, section_size_type); // Update data size at the end of a relaxation pass. Return true if data size // is different from that of the previous relaxation pass. bool update_data_size_changed_p() { // No addralign changed here. off_t s = align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN) + this->erratum_stubs_size_; bool changed = (s != this->prev_data_size_); this->prev_data_size_ = s; return changed; } protected: // Write out section contents. void do_write(Output_file*); // Return the required alignment. uint64_t do_addralign() const { return std::max(The_reloc_stub::STUB_ADDR_ALIGN, The_erratum_stub::STUB_ADDR_ALIGN); } // Reset address and file offset. void do_reset_address_and_file_offset() { this->set_current_data_size_for_child(this->prev_data_size_); } // Set final data size. void set_final_data_size() { this->set_data_size(this->current_data_size()); } private: // Relocate one stub. void relocate_stub(The_reloc_stub*, const The_relocate_info*, The_target_aarch64*, Output_section*, unsigned char*, AArch64_address, section_size_type); private: // Owner of this stub table. The_aarch64_input_section* owner_; // The relocation stubs. Reloc_stub_map reloc_stubs_; // The erratum stubs. Erratum_stub_set erratum_stubs_; // Size of reloc stubs. off_t reloc_stubs_size_; // Size of erratum stubs. off_t erratum_stubs_size_; // data size of this in the previous pass. off_t prev_data_size_; }; // End of Stub_table // Add an erratum stub into the erratum stub set. The set is ordered by // (relobj, shndx, sh_offset). template
void Stub_table
::add_erratum_stub(The_erratum_stub* stub) { std::pair
ret = this->erratum_stubs_.insert(stub); gold_assert(ret.second); this->erratum_stubs_size_ = align_address( this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN); stub->set_offset(this->erratum_stubs_size_); this->erratum_stubs_size_ += stub->stub_size(); } // Find if such erratum exists for given (obj, shndx, sh_offset). template
Erratum_stub
* Stub_table
::find_erratum_stub( The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset) { // A dummy object used as key to search in the set. The_erratum_stub key(a64relobj, ST_NONE, shndx, sh_offset); Erratum_stub_set_iter i = this->erratum_stubs_.find(&key); if (i != this->erratum_stubs_.end()) { The_erratum_stub* stub(*i); gold_assert(stub->erratum_insn() != 0); return stub; } return NULL; } // Find all the errata for a given input section. The return value is a pair of // iterators [begin, end). template
std::pair
::Erratum_stub_set_iter, typename Stub_table
::Erratum_stub_set_iter> Stub_table
::find_erratum_stubs_for_input_section( The_aarch64_relobj* a64relobj, unsigned int shndx) { typedef std::pair
Result_pair; Erratum_stub_set_iter start, end; The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0); start = this->erratum_stubs_.lower_bound(&low_key); if (start == this->erratum_stubs_.end()) return Result_pair(this->erratum_stubs_.end(), this->erratum_stubs_.end()); end = start; while (end != this->erratum_stubs_.end() && (*end)->relobj() == a64relobj && (*end)->shndx() == shndx) ++end; return Result_pair(start, end); } // Add a STUB using KEY. The caller is responsible for avoiding addition // if a STUB with the same key has already been added. template
void Stub_table
::add_reloc_stub( The_reloc_stub* stub, const The_reloc_stub_key& key) { gold_assert(stub->type() == key.type()); this->reloc_stubs_[key] = stub; // Assign stub offset early. We can do this because we never remove // reloc stubs and they are in the beginning of the stub table. this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, The_reloc_stub::STUB_ADDR_ALIGN); stub->set_offset(this->reloc_stubs_size_); this->reloc_stubs_size_ += stub->stub_size(); } // Relocate all stubs in this stub table. template
void Stub_table
:: relocate_stubs(const The_relocate_info* relinfo, The_target_aarch64* target_aarch64, Output_section* output_section, unsigned char* view, AArch64_address address, section_size_type view_size) { // "view_size" is the total size of the stub_table. gold_assert(address == this->address() && view_size == static_cast
(this->data_size())); for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin(); p != this->reloc_stubs_.end(); ++p) relocate_stub(p->second, relinfo, target_aarch64, output_section, view, address, view_size); // Just for convenience. const int BPI = AArch64_insn_utilities
::BYTES_PER_INSN; // Now 'relocate' erratum stubs. for(Erratum_stub_set_iter i = this->erratum_stubs_.begin(); i != this->erratum_stubs_.end(); ++i) { AArch64_address stub_address = this->erratum_stub_address(*i); // The address of "b" in the stub that is to be "relocated". AArch64_address stub_b_insn_address; // Branch offset that is to be filled in "b" insn. int b_offset = 0; switch ((*i)->type()) { case ST_E_843419: case ST_E_835769: // The 1st insn of the erratum could be a relocation spot, // in this case we need to fix it with // "(*i)->erratum_insn()". elfcpp::Swap<32, big_endian>::writeval( view + (stub_address - this->address()), (*i)->erratum_insn()); // For the erratum, the 2nd insn is a b-insn to be patched // (relocated). stub_b_insn_address = stub_address + 1 * BPI; b_offset = (*i)->destination_address() - stub_b_insn_address; AArch64_relocate_functions
::construct_b( view + (stub_b_insn_address - this->address()), ((unsigned int)(b_offset)) & 0xfffffff); break; default: gold_unreachable(); break; } } } // Relocate one stub. This is a helper for Stub_table::relocate_stubs(). template
void Stub_table
:: relocate_stub(The_reloc_stub* stub, const The_relocate_info* relinfo, The_target_aarch64* target_aarch64, Output_section* output_section, unsigned char* view, AArch64_address address, section_size_type view_size) { // "offset" is the offset from the beginning of the stub_table. section_size_type offset = stub->offset(); section_size_type stub_size = stub->stub_size(); // "view_size" is the total size of the stub_table. gold_assert(offset + stub_size <= view_size); target_aarch64->relocate_stub(stub, relinfo, output_section, view + offset, address + offset, view_size); } // Write out the stubs to file. template
void Stub_table
::do_write(Output_file* of) { off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); // Write relocation stubs. for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); p != this->reloc_stubs_.end(); ++p) { The_reloc_stub* stub = p->second; AArch64_address address = this->address() + stub->offset(); gold_assert(address == align_address(address, The_reloc_stub::STUB_ADDR_ALIGN)); stub->write(oview + stub->offset(), stub->stub_size()); } // Write erratum stubs. unsigned int erratum_stub_start_offset = align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN); for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin(); p != this->erratum_stubs_.end(); ++p) { The_erratum_stub* stub(*p); stub->write(oview + erratum_stub_start_offset + stub->offset(), stub->stub_size()); } of->write_output_view(this->offset(), oview_size, oview); } // AArch64_relobj class. template
class AArch64_relobj : public Sized_relobj_file
{ public: typedef AArch64_relobj
This; typedef Target_aarch64
The_target_aarch64; typedef AArch64_input_section
The_aarch64_input_section; typedef typename elfcpp::Elf_types
::Elf_Addr AArch64_address; typedef Stub_table
The_stub_table; typedef Erratum_stub
The_erratum_stub; typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter; typedef std::vector
Stub_table_list; static const AArch64_address invalid_address = static_cast
(-1); AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset, const typename elfcpp::Ehdr
& ehdr) : Sized_relobj_file
(name, input_file, offset, ehdr), stub_tables_() { } ~AArch64_relobj() { } // Return the stub table of the SHNDX-th section if there is one. The_stub_table* stub_table(unsigned int shndx) const { gold_assert(shndx < this->stub_tables_.size()); return this->stub_tables_[shndx]; } // Set STUB_TABLE to be the stub_table of the SHNDX-th section. void set_stub_table(unsigned int shndx, The_stub_table* stub_table) { gold_assert(shndx < this->stub_tables_.size()); this->stub_tables_[shndx] = stub_table; } // Entrance to errata scanning. void scan_errata(unsigned int shndx, const elfcpp::Shdr
&, Output_section*, const Symbol_table*, The_target_aarch64*); // Scan all relocation sections for stub generation. void scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*, const Layout*); // Whether a section is a scannable text section. bool text_section_is_scannable(const elfcpp::Shdr
&, unsigned int, const Output_section*, const Symbol_table*); // Convert regular input section with index SHNDX to a relaxed section. void convert_input_section_to_relaxed_section(unsigned /* shndx */) { // The stubs have relocations and we need to process them after writing // out the stubs. So relocation now must follow section write. this->set_relocs_must_follow_section_writes(); } // Structure for mapping symbol position. struct Mapping_symbol_position { Mapping_symbol_position(unsigned int shndx, AArch64_address offset): shndx_(shndx), offset_(offset) {} // "<" comparator used in ordered_map container. bool operator<(const Mapping_symbol_position& p) const { return (this->shndx_ < p.shndx_ || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_)); } // Section index. unsigned int shndx_; // Section offset. AArch64_address offset_; }; typedef std::map
Mapping_symbol_info; protected: // Post constructor setup. void do_setup() { // Call parent's setup method. Sized_relobj_file
::do_setup(); // Initialize look-up tables. this->stub_tables_.resize(this->shnum()); } virtual void do_relocate_sections( const Symbol_table* symtab, const Layout* layout, const unsigned char* pshdrs, Output_file* of, typename Sized_relobj_file
::Views* pviews); // Count local symbols and (optionally) record mapping info. virtual void do_count_local_symbols(Stringpool_template
*, Stringpool_template
*); private: // Fix all errata in the object. void fix_errata(typename Sized_relobj_file
::Views* pviews); // Try to fix erratum 843419 in an optimized way. Return true if patch is // applied. bool try_fix_erratum_843419_optimized( The_erratum_stub*, typename Sized_relobj_file
::View_size&); // Whether a section needs to be scanned for relocation stubs. bool section_needs_reloc_stub_scanning(const elfcpp::Shdr
&, const Relobj::Output_sections&, const Symbol_table*, const unsigned char*); // List of stub tables. Stub_table_list stub_tables_; // Mapping symbol information sorted by (section index, section_offset). Mapping_symbol_info mapping_symbol_info_; }; // End of AArch64_relobj // Override to record mapping symbol information. template
void AArch64_relobj
::do_count_local_symbols( Stringpool_template
* pool, Stringpool_template
* dynpool) { Sized_relobj_file
::do_count_local_symbols(pool, dynpool); // Only erratum-fixing work needs mapping symbols, so skip this time consuming // processing if not fixing erratum. if (!parameters->options().fix_cortex_a53_843419() && !parameters->options().fix_cortex_a53_835769()) return; const unsigned int loccount = this->local_symbol_count(); if (loccount == 0) return; // Read the symbol table section header. const unsigned int symtab_shndx = this->symtab_shndx(); elfcpp::Shdr
symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); // Read the local symbols. const int sym_size =elfcpp::Elf_sizes
::sym_size; gold_assert(loccount == symtabshdr.get_sh_info()); off_t locsize = loccount * sym_size; const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), locsize, true, true); // For mapping symbol processing, we need to read the symbol names. unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); if (strtab_shndx >= this->shnum()) { this->error(_("invalid symbol table name index: %u"), strtab_shndx); return; } elfcpp::Shdr
strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) { this->error(_("symbol table name section has wrong type: %u"), static_cast
(strtabshdr.get_sh_type())); return; } const char* pnames = reinterpret_cast
(this->get_view(strtabshdr.get_sh_offset(), strtabshdr.get_sh_size(), false, false)); // Skip the first dummy symbol. psyms += sym_size; typename Sized_relobj_file
::Local_values* plocal_values = this->local_values(); for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) { elfcpp::Sym
sym(psyms); Symbol_value
& lv((*plocal_values)[i]); AArch64_address input_value = lv.input_value(); // Check to see if this is a mapping symbol. AArch64 mapping symbols are // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping // symbols. // Mapping symbols could be one of the following 4 forms - // a) $x // b) $x.
// c) $d // d) $d.
const char* sym_name = pnames + sym.get_st_name(); if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd') && (sym_name[2] == '\0' || sym_name[2] == '.')) { bool is_ordinary; unsigned int input_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); gold_assert(is_ordinary); Mapping_symbol_position msp(input_shndx, input_value); // Insert mapping_symbol_info into map whose ordering is defined by // (shndx, offset_within_section). this->mapping_symbol_info_[msp] = sym_name[1]; } } } // Fix all errata in the object. template
void AArch64_relobj
::fix_errata( typename Sized_relobj_file
::Views* pviews) { typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype; unsigned int shnum = this->shnum(); for (unsigned int i = 1; i < shnum; ++i) { The_stub_table* stub_table = this->stub_table(i); if (!stub_table) continue; std::pair
ipair(stub_table->find_erratum_stubs_for_input_section(this, i)); Erratum_stub_set_iter p = ipair.first, end = ipair.second; while (p != end) { The_erratum_stub* stub = *p; typename Sized_relobj_file
::View_size& pview((*pviews)[i]); // Double check data before fix. gold_assert(pview.address + stub->sh_offset() == stub->erratum_address()); // Update previously recorded erratum insn with relocated // version. Insntype* ip = reinterpret_cast
(pview.view + stub->sh_offset()); Insntype insn_to_fix = ip[0]; stub->update_erratum_insn(insn_to_fix); // First try to see if erratum is 843419 and if it can be fixed // without using branch-to-stub. if (!try_fix_erratum_843419_optimized(stub, pview)) { // Replace the erratum insn with a branch-to-stub. AArch64_address stub_address = stub_table->erratum_stub_address(stub); unsigned int b_offset = stub_address - stub->erratum_address(); AArch64_relocate_functions
::construct_b( pview.view + stub->sh_offset(), b_offset & 0xfffffff); } ++p; } } } // This is an optimization for 843419. This erratum requires the sequence begin // with 'adrp', when final value calculated by adrp fits in adr, we can just // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however, // in this case, we do not delete the erratum stub (too late to do so), it is // merely generated without ever being called.) template
bool AArch64_relobj
::try_fix_erratum_843419_optimized( The_erratum_stub* stub, typename Sized_relobj_file
::View_size& pview) { if (stub->type() != ST_E_843419) return false; typedef AArch64_insn_utilities
Insn_utilities; typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype; E843419_stub
* e843419_stub = reinterpret_cast
*>(stub); AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset(); Insntype* adrp_view = reinterpret_cast
( pview.view + e843419_stub->adrp_sh_offset()); Insntype adrp_insn = adrp_view[0]; gold_assert(Insn_utilities::is_adrp(adrp_insn)); // Get adrp 33-bit signed imm value. int64_t adrp_imm = Insn_utilities:: aarch64_adrp_decode_imm(adrp_insn); // adrp - final value transferred to target register is calculated as: // PC[11:0] = Zeros(12) // adrp_dest_value = PC + adrp_imm; int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm; // adr -final value transferred to target register is calucalted as: // PC + adr_imm // So we have: // PC + adr_imm = adrp_dest_value // ==> // adr_imm = adrp_dest_value - PC int64_t adr_imm = adrp_dest_value - pc; // Check if imm fits in adr (21-bit signed). if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20)) { // Convert 'adrp' into 'adr'. Insntype adr_insn = adrp_insn & ((1 << 31) - 1); adr_insn = Insn_utilities:: aarch64_adr_encode_imm(adr_insn, adr_imm); elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn); return true; } return false; } // Relocate sections. template
void AArch64_relobj
::do_relocate_sections( const Symbol_table* symtab, const Layout* layout, const unsigned char* pshdrs, Output_file* of, typename Sized_relobj_file
::Views* pviews) { // Call parent to relocate sections. Sized_relobj_file
::do_relocate_sections(symtab, layout, pshdrs, of, pviews); // We do not generate stubs if doing a relocatable link. if (parameters->options().relocatable()) return; if (parameters->options().fix_cortex_a53_843419() || parameters->options().fix_cortex_a53_835769()) this->fix_errata(pviews); Relocate_info
relinfo; relinfo.symtab = symtab; relinfo.layout = layout; relinfo.object = this; // Relocate stub tables. unsigned int shnum = this->shnum(); The_target_aarch64* target = The_target_aarch64::current_target(); for (unsigned int i = 1; i < shnum; ++i) { The_aarch64_input_section* aarch64_input_section = target->find_aarch64_input_section(this, i); if (aarch64_input_section != NULL && aarch64_input_section->is_stub_table_owner() && !aarch64_input_section->stub_table()->empty()) { Output_section* os = this->output_section(i); gold_assert(os != NULL); relinfo.reloc_shndx = elfcpp::SHN_UNDEF; relinfo.reloc_shdr = NULL; relinfo.data_shndx = i; relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes
::shdr_size; typename Sized_relobj_file
::View_size& view_struct = (*pviews)[i]; gold_assert(view_struct.view != NULL); The_stub_table* stub_table = aarch64_input_section->stub_table(); off_t offset = stub_table->address() - view_struct.address; unsigned char* view = view_struct.view + offset; AArch64_address address = stub_table->address(); section_size_type view_size = stub_table->data_size(); stub_table->relocate_stubs(&relinfo, target, os, view, address, view_size); } } } // Determine if an input section is scannable for stub processing. SHDR is // the header of the section and SHNDX is the section index. OS is the output // section for the input section and SYMTAB is the global symbol table used to // look up ICF information. template
bool AArch64_relobj
::text_section_is_scannable( const elfcpp::Shdr
& text_shdr, unsigned int text_shndx, const Output_section* os, const Symbol_table* symtab) { // Skip any empty sections, unallocated sections or sections whose // type are not SHT_PROGBITS. if (text_shdr.get_sh_size() == 0 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS) return false; // Skip any discarded or ICF'ed sections. if (os == NULL || symtab->is_section_folded(this, text_shndx)) return false; // Skip exception frame. if (strcmp(os->name(), ".eh_frame") == 0) return false ; gold_assert(!this->is_output_section_offset_invalid(text_shndx) || os->find_relaxed_input_section(this, text_shndx) != NULL); return true; } // Determine if we want to scan the SHNDX-th section for relocation stubs. // This is a helper for AArch64_relobj::scan_sections_for_stubs(). template
bool AArch64_relobj
::section_needs_reloc_stub_scanning( const elfcpp::Shdr
& shdr, const Relobj::Output_sections& out_sections, const Symbol_table* symtab, const unsigned char* pshdrs) { unsigned int sh_type = shdr.get_sh_type(); if (sh_type != elfcpp::SHT_RELA) return false; // Ignore empty section. off_t sh_size = shdr.get_sh_size(); if (sh_size == 0) return false; // Ignore reloc section with unexpected symbol table. The // error will be reported in the final link. if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) return false; gold_assert(sh_type == elfcpp::SHT_RELA); unsigned int reloc_size = elfcpp::Elf_sizes
::rela_size; // Ignore reloc section with unexpected entsize or uneven size. // The error will be reported in the final link. if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) return false; // Ignore reloc section with bad info. This error will be // reported in the final link. unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info()); if (text_shndx >= this->shnum()) return false; const unsigned int shdr_size = elfcpp::Elf_sizes
::shdr_size; const elfcpp::Shdr
text_shdr(pshdrs + text_shndx * shdr_size); return this->text_section_is_scannable(text_shdr, text_shndx, out_sections[text_shndx], symtab); } // Scan section SHNDX for erratum 843419 and 835769. template
void AArch64_relobj
::scan_errata( unsigned int shndx, const elfcpp::Shdr
& shdr, Output_section* os, const Symbol_table* symtab, The_target_aarch64* target) { if (shdr.get_sh_size() == 0 || (shdr.get_sh_flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) return; if (!os || symtab->is_section_folded(this, shndx)) return; AArch64_address output_offset = this->get_output_section_offset(shndx); AArch64_address output_address; if (output_offset != invalid_address) output_address = os->address() + output_offset; else { const Output_relaxed_input_section* poris = os->find_relaxed_input_section(this, shndx); if (!poris) return; output_address = poris->address(); } section_size_type input_view_size = 0; const unsigned char* input_view = this->section_contents(shndx, &input_view_size, false); Mapping_symbol_position section_start(shndx, 0); // Find the first mapping symbol record within section shndx. typename Mapping_symbol_info::const_iterator p = this->mapping_symbol_info_.lower_bound(section_start); while (p != this->mapping_symbol_info_.end() && p->first.shndx_ == shndx) { typename Mapping_symbol_info::const_iterator prev = p; ++p; if (prev->second == 'x') { section_size_type span_start = convert_to_section_size_type(prev->first.offset_); section_size_type span_end; if (p != this->mapping_symbol_info_.end() && p->first.shndx_ == shndx) span_end = convert_to_section_size_type(p->first.offset_); else span_end = convert_to_section_size_type(shdr.get_sh_size()); // Here we do not share the scanning code of both errata. For 843419, // only the last few insns of each page are examined, which is fast, // whereas, for 835769, every insn pair needs to be checked. if (parameters->options().fix_cortex_a53_843419()) target->scan_erratum_843419_span( this, shndx, span_start, span_end, const_cast
(input_view), output_address); if (parameters->options().fix_cortex_a53_835769()) target->scan_erratum_835769_span( this, shndx, span_start, span_end, const_cast
(input_view), output_address); } } } // Scan relocations for stub generation. template
void AArch64_relobj
::scan_sections_for_stubs( The_target_aarch64* target, const Symbol_table* symtab, const Layout* layout) { unsigned int shnum = this->shnum(); const unsigned int shdr_size = elfcpp::Elf_sizes
::shdr_size; // Read the section headers. const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), shnum * shdr_size, true, true); // To speed up processing, we set up hash tables for fast lookup of // input offsets to output addresses. this->initialize_input_to_output_maps(); const Relobj::Output_sections& out_sections(this->output_sections()); Relocate_info
relinfo; relinfo.symtab = symtab; relinfo.layout = layout; relinfo.object = this; // Do relocation stubs scanning. const unsigned char* p = pshdrs + shdr_size; for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) { const elfcpp::Shdr
shdr(p); if (parameters->options().fix_cortex_a53_843419() || parameters->options().fix_cortex_a53_835769()) scan_errata(i, shdr, out_sections[i], symtab, target); if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, pshdrs)) { unsigned int index = this->adjust_shndx(shdr.get_sh_info()); AArch64_address output_offset = this->get_output_section_offset(index); AArch64_address output_address; if (output_offset != invalid_address) { output_address = out_sections[index]->address() + output_offset; } else { // Currently this only happens for a relaxed section. const Output_relaxed_input_section* poris = out_sections[index]->find_relaxed_input_section(this, index); gold_assert(poris != NULL); output_address = poris->address(); } // Get the relocations. const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); // Get the section contents. section_size_type input_view_size = 0; const unsigned char* input_view = this->section_contents(index, &input_view_size, false); relinfo.reloc_shndx = i; relinfo.data_shndx = index; unsigned int sh_type = shdr.get_sh_type(); unsigned int reloc_size; gold_assert (sh_type == elfcpp::SHT_RELA); reloc_size = elfcpp::Elf_sizes
::rela_size; Output_section* os = out_sections[index]; target->scan_section_for_stubs(&relinfo, sh_type, prelocs, shdr.get_sh_size() / reloc_size, os, output_offset == invalid_address, input_view, output_address, input_view_size); } } } // A class to wrap an ordinary input section containing executable code. template
class AArch64_input_section : public Output_relaxed_input_section { public: typedef Stub_table
The_stub_table; AArch64_input_section(Relobj* relobj, unsigned int shndx) : Output_relaxed_input_section(relobj, shndx, 1), stub_table_(NULL), original_contents_(NULL), original_size_(0), original_addralign_(1) { } ~AArch64_input_section() { delete[] this->original_contents_; } // Initialize. void init(); // Set the stub_table. void set_stub_table(The_stub_table* st) { this->stub_table_ = st; } // Whether this is a stub table owner. bool is_stub_table_owner() const { return this->stub_table_ != NULL && this->stub_table_->owner() == this; } // Return the original size of the section. uint32_t original_size() const { return this->original_size_; } // Return the stub table. The_stub_table* stub_table() { return stub_table_; } protected: // Write out this input section. void do_write(Output_file*); // Return required alignment of this. uint64_t do_addralign() const { if (this->is_stub_table_owner()) return std::max(this->stub_table_->addralign(), static_cast
(this->original_addralign_)); else return this->original_addralign_; } // Finalize data size. void set_final_data_size(); // Reset address and file offset. void do_reset_address_and_file_offset(); // Output offset. bool do_output_offset(const Relobj* object, unsigned int shndx, section_offset_type offset, section_offset_type* poutput) const { if ((object == this->relobj()) && (shndx == this->shndx()) && (offset >= 0) && (offset <= convert_types
(this->original_size_))) { *poutput = offset; return true; } else return false; } private: // Copying is not allowed. AArch64_input_section(const AArch64_input_section&); AArch64_input_section& operator=(const AArch64_input_section&); // The relocation stubs. The_stub_table* stub_table_; // Original section contents. We have to make a copy here since the file // containing the original section may not be locked when we need to access // the contents. unsigned char* original_contents_; // Section size of the original input section. uint32_t original_size_; // Address alignment of the original input section. uint32_t original_addralign_; }; // End of AArch64_input_section // Finalize data size. template
void AArch64_input_section
::set_final_data_size() { off_t off = convert_types
(this->original_size_); if (this->is_stub_table_owner()) { this->stub_table_->finalize_data_size(); off = align_address(off, this->stub_table_->addralign()); off += this->stub_table_->data_size(); } this->set_data_size(off); } // Reset address and file offset. template
void AArch64_input_section
::do_reset_address_and_file_offset() { // Size of the original input section contents. off_t off = convert_types
(this->original_size_); // If this is a stub table owner, account for the stub table size. if (this->is_stub_table_owner()) { The_stub_table* stub_table = this->stub_table_; // Reset the stub table's address and file offset. The // current data size for child will be updated after that. stub_table_->reset_address_and_file_offset(); off = align_address(off, stub_table_->addralign()); off += stub_table->current_data_size(); } this->set_current_data_size(off); } // Initialize an Arm_input_section. template
void AArch64_input_section
::init() { Relobj* relobj = this->relobj(); unsigned int shndx = this->shndx(); // We have to cache original size, alignment and contents to avoid locking // the original file. this->original_addralign_ = convert_types
(relobj->section_addralign(shndx)); // This is not efficient but we expect only a small number of relaxed // input sections for stubs. section_size_type section_size; const unsigned char* section_contents = relobj->section_contents(shndx, §ion_size, false); this->original_size_ = convert_types
(relobj->section_size(shndx)); gold_assert(this->original_contents_ == NULL); this->original_contents_ = new unsigned char[section_size]; memcpy(this->original_contents_, section_contents, section_size); // We want to make this look like the original input section after // output sections are finalized. Output_section* os = relobj->output_section(shndx); off_t offset = relobj->output_section_offset(shndx); gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx)); this->set_address(os->address() + offset); this->set_file_offset(os->offset() + offset); this->set_current_data_size(this->original_size_); this->finalize_data_size(); } // Write data to output file. template
void AArch64_input_section
::do_write(Output_file* of) { // We have to write out the original section content. gold_assert(this->original_contents_ != NULL); of->write(this->offset(), this->original_contents_, this->original_size_); // If this owns a stub table and it is not empty, write it. if (this->is_stub_table_owner() && !this->stub_table_->empty()) this->stub_table_->write(of); } // Arm output section class. This is defined mainly to add a number of stub // generation methods. template
class AArch64_output_section : public Output_section { public: typedef Target_aarch64
The_target_aarch64; typedef AArch64_relobj
The_aarch64_relobj; typedef Stub_table
The_stub_table; typedef AArch64_input_section
The_aarch64_input_section; public: AArch64_output_section(const char* name, elfcpp::Elf_Word type, elfcpp::Elf_Xword flags) : Output_section(name, type, flags) { } ~AArch64_output_section() {} // Group input sections for stub generation. void group_sections(section_size_type, bool, Target_aarch64
*, const Task*); private: typedef Output_section::Input_section Input_section; typedef Output_section::Input_section_list Input_section_list; // Create a stub group. void create_stub_group(Input_section_list::const_iterator, Input_section_list::const_iterator, Input_section_list::const_iterator, The_target_aarch64*, std::vector
&, const Task*); }; // End of AArch64_output_section // Create a stub group for input sections from FIRST to LAST. OWNER points to // the input section that will be the owner of the stub table. template
void AArch64_output_section
::create_stub_group( Input_section_list::const_iterator first, Input_section_list::const_iterator last, Input_section_list::const_iterator owner, The_target_aarch64* target, std::vector
& new_relaxed_sections, const Task* task) { // Currently we convert ordinary input sections into relaxed sections only // at this point. The_aarch64_input_section* input_section; if (owner->is_relaxed_input_section()) gold_unreachable(); else { gold_assert(owner->is_input_section()); // Create a new relaxed input section. We need to lock the original // file. Task_lock_obj
tl(task, owner->relobj()); input_section = target->new_aarch64_input_section(owner->relobj(), owner->shndx()); new_relaxed_sections.push_back(input_section); } // Create a stub table. The_stub_table* stub_table = target->new_stub_table(input_section); input_section->set_stub_table(stub_table); Input_section_list::const_iterator p = first; // Look for input sections or relaxed input sections in [first ... last]. do { if (p->is_input_section() || p->is_relaxed_input_section()) { // The stub table information for input sections live // in their objects. The_aarch64_relobj* aarch64_relobj = static_cast
(p->relobj()); aarch64_relobj->set_stub_table(p->shndx(), stub_table); } } while (p++ != last); } // Group input sections for stub generation. GROUP_SIZE is roughly the limit of // stub groups. We grow a stub group by adding input section until the size is // just below GROUP_SIZE. The last input section will be converted into a stub // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond // after the stub table, effectively doubling the group size. // // This is similar to the group_sections() function in elf32-arm.c but is // implemented differently. template
void AArch64_output_section
::group_sections( section_size_type group_size, bool stubs_always_after_branch, Target_aarch64
* target, const Task* task) { typedef enum { NO_GROUP, FINDING_STUB_SECTION, HAS_STUB_SECTION } State; std::vector
new_relaxed_sections; State state = NO_GROUP; section_size_type off = 0; section_size_type group_begin_offset = 0; section_size_type group_end_offset = 0; section_size_type stub_table_end_offset = 0; Input_section_list::const_iterator group_begin = this->input_sections().end(); Input_section_list::const_iterator stub_table = this->input_sections().end(); Input_section_list::const_iterator group_end = this->input_sections().end(); for (Input_section_list::const_iterator p = this->input_sections().begin(); p != this->input_sections().end(); ++p) { section_size_type section_begin_offset = align_address(off, p->addralign()); section_size_type section_end_offset = section_begin_offset + p->data_size(); // Check to see if we should group the previously seen sections. switch (state) { case NO_GROUP: break; case FINDING_STUB_SECTION: // Adding this section makes the group larger than GROUP_SIZE. if (section_end_offset - group_begin_offset >= group_size) { if (stubs_always_after_branch) { gold_assert(group_end != this->input_sections().end()); this->create_stub_group(group_begin, group_end, group_end, target, new_relaxed_sections, task); state = NO_GROUP; } else { // Input sections up to stub_group_size bytes after the stub // table can be handled by it too. state = HAS_STUB_SECTION; stub_table = group_end; stub_table_end_offset = group_end_offset; } } break; case HAS_STUB_SECTION: // Adding this section makes the post stub-section group larger // than GROUP_SIZE. gold_unreachable(); // NOT SUPPORTED YET. For completeness only. if (section_end_offset - stub_table_end_offset >= group_size) { gold_assert(group_end != this->input_sections().end()); this->create_stub_group(group_begin, group_end, stub_table, target, new_relaxed_sections, task); state = NO_GROUP; } break; default: gold_unreachable(); } // If we see an input section and currently there is no group, start // a new one. Skip any empty sections. We look at the data size // instead of calling p->relobj()->section_size() to avoid locking. if ((p->is_input_section() || p->is_relaxed_input_section()) && (p->data_size() != 0)) { if (state == NO_GROUP) { state = FINDING_STUB_SECTION; group_begin = p; group_begin_offset = section_begin_offset; } // Keep track of the last input section seen. group_end = p; group_end_offset = section_end_offset; } off = section_end_offset; } // Create a stub group for any ungrouped sections. if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION) { gold_assert(group_end != this->input_sections().end()); this->create_stub_group(group_begin, group_end, (state == FINDING_STUB_SECTION ? group_end : stub_table), target, new_relaxed_sections, task); } if (!new_relaxed_sections.empty()) this->convert_input_sections_to_relaxed_sections(new_relaxed_sections); // Update the section offsets for (size_t i = 0; i < new_relaxed_sections.size(); ++i) { The_aarch64_relobj* relobj = static_cast
( new_relaxed_sections[i]->relobj()); unsigned int shndx = new_relaxed_sections[i]->shndx(); // Tell AArch64_relobj that this input section is converted. relobj->convert_input_section_to_relaxed_section(shndx); } } // End of AArch64_output_section::group_sections AArch64_reloc_property_table* aarch64_reloc_property_table = NULL; // The aarch64 target class. // See the ABI at // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf template
class Target_aarch64 : public Sized_target
{ public: typedef Target_aarch64
This; typedef Output_data_reloc
Reloc_section; typedef Relocate_info
The_relocate_info; typedef typename elfcpp::Elf_types
::Elf_Addr Address; typedef AArch64_relobj
The_aarch64_relobj; typedef Reloc_stub
The_reloc_stub; typedef Erratum_stub
The_erratum_stub; typedef typename Reloc_stub
::Key The_reloc_stub_key; typedef Stub_table
The_stub_table; typedef std::vector
Stub_table_list; typedef typename Stub_table_list::iterator Stub_table_iterator; typedef AArch64_input_section
The_aarch64_input_section; typedef AArch64_output_section
The_aarch64_output_section; typedef Unordered_map
*, Section_id_hash> AArch64_input_section_map; typedef AArch64_insn_utilities