HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.0
|
7.0.0_r31
下载
查看原文件
收藏
根目录
toolchain
binutils
binutils-2.25
gold
x86_64.cc
// x86_64.cc -- x86_64 target support for gold. // Copyright (C) 2006-2014 Free Software Foundation, Inc. // Written by Ian Lance Taylor
. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include
#include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "x86_64.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "freebsd.h" #include "nacl.h" #include "gc.h" #include "icf.h" namespace { using namespace gold; // A class to handle the .got.plt section. class Output_data_got_plt_x86_64 : public Output_section_data_build { public: Output_data_got_plt_x86_64(Layout* layout) : Output_section_data_build(8), layout_(layout) { } Output_data_got_plt_x86_64(Layout* layout, off_t data_size) : Output_section_data_build(data_size, 8), layout_(layout) { } protected: // Write out the PLT data. void do_write(Output_file*); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, "** GOT PLT"); } private: // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT PLT section. Layout* layout_; }; // A class to handle the PLT data. // This is an abstract base class that handles most of the linker details // but does not know the actual contents of PLT entries. The derived // classes below fill in those details. template
class Output_data_plt_x86_64 : public Output_section_data { public: typedef Output_data_reloc
Reloc_section; Output_data_plt_x86_64(Layout* layout, uint64_t addralign, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative) : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_() { this->init(layout); } Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative, unsigned int plt_count) : Output_section_data((plt_count + 1) * plt_entry_size, plt_entry_size, false), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count), irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_() { this->init(layout); // Initialize the free list and reserve the first entry. this->free_list_.init((plt_count + 1) * plt_entry_size, false); this->free_list_.remove(0, plt_entry_size); } // Initialize the PLT section. void init(Layout* layout); // Add an entry to the PLT. void add_entry(Symbol_table*, Layout*, Symbol* gsym); // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. unsigned int add_local_ifunc_entry(Symbol_table* symtab, Layout*, Sized_relobj_file
* relobj, unsigned int local_sym_index); // Add the relocation for a PLT entry. void add_relocation(Symbol_table*, Layout*, Symbol* gsym, unsigned int got_offset); // Add the reserved TLSDESC_PLT entry to the PLT. void reserve_tlsdesc_entry(unsigned int got_offset) { this->tlsdesc_got_offset_ = got_offset; } // Return true if a TLSDESC_PLT entry has been reserved. bool has_tlsdesc_entry() const { return this->tlsdesc_got_offset_ != -1U; } // Return the GOT offset for the reserved TLSDESC_PLT entry. unsigned int get_tlsdesc_got_offset() const { return this->tlsdesc_got_offset_; } // Return the offset of the reserved TLSDESC_PLT entry. unsigned int get_tlsdesc_plt_offset() const { return ((this->count_ + this->irelative_count_ + 1) * this->get_plt_entry_size()); } // Return the .rela.plt section data. Reloc_section* rela_plt() { return this->rel_; } // Return where the TLSDESC relocations should go. Reloc_section* rela_tlsdesc(Layout*); // Return where the IRELATIVE relocations should go in the PLT // relocations. Reloc_section* rela_irelative(Symbol_table*, Layout*); // Return whether we created a section for IRELATIVE relocations. bool has_irelative_section() const { return this->irelative_rel_ != NULL; } // Return the number of PLT entries. unsigned int entry_count() const { return this->count_ + this->irelative_count_; } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() { return this->get_plt_entry_size(); } // Return the size of a PLT entry. unsigned int get_plt_entry_size() const { return this->do_get_plt_entry_size(); } // Reserve a slot in the PLT for an existing symbol in an incremental update. void reserve_slot(unsigned int plt_index) { this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(), (plt_index + 2) * this->get_plt_entry_size()); } // Return the PLT address to use for a global symbol. uint64_t address_for_global(const Symbol*); // Return the PLT address to use for a local symbol. uint64_t address_for_local(const Relobj*, unsigned int symndx); // Add .eh_frame information for the PLT. void add_eh_frame(Layout* layout) { this->do_add_eh_frame(layout); } protected: // Fill in the first PLT entry. void fill_first_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address) { this->do_fill_first_plt_entry(pov, got_address, plt_address); } // Fill in a normal PLT entry. Returns the offset into the entry that // should be the initial GOT slot value. unsigned int fill_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_index) { return this->do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset, plt_index); } // Fill in the reserved TLSDESC PLT entry. void fill_tlsdesc_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, typename elfcpp::Elf_types
::Elf_Addr got_base, unsigned int tlsdesc_got_offset, unsigned int plt_offset) { this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base, tlsdesc_got_offset, plt_offset); } virtual unsigned int do_get_plt_entry_size() const = 0; virtual void do_fill_first_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_addr, typename elfcpp::Elf_types
::Elf_Addr plt_addr) = 0; virtual unsigned int do_fill_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_index) = 0; virtual void do_fill_tlsdesc_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, typename elfcpp::Elf_types
::Elf_Addr got_base, unsigned int tlsdesc_got_offset, unsigned int plt_offset) = 0; virtual void do_add_eh_frame(Layout* layout) = 0; void do_adjust_output_section(Output_section* os); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } // The CIE of the .eh_frame unwind information for the PLT. static const int plt_eh_frame_cie_size = 16; static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size]; private: // Set the final size. void set_final_data_size(); // Write out the PLT data. void do_write(Output_file*); // The reloc section. Reloc_section* rel_; // The TLSDESC relocs, if necessary. These must follow the regular // PLT relocs. Reloc_section* tlsdesc_rel_; // The IRELATIVE relocs, if necessary. These must follow the // regular PLT relocations and the TLSDESC relocations. Reloc_section* irelative_rel_; // The .got section. Output_data_got<64, false>* got_; // The .got.plt section. Output_data_got_plt_x86_64* got_plt_; // The part of the .got.plt section used for IRELATIVE relocs. Output_data_space* got_irelative_; // The number of PLT entries. unsigned int count_; // Number of PLT entries with R_X86_64_IRELATIVE relocs. These // follow the regular PLT entries. unsigned int irelative_count_; // Offset of the reserved TLSDESC_GOT entry when needed. unsigned int tlsdesc_got_offset_; // List of available regions within the section, for incremental // update links. Free_list free_list_; }; template
class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64
{ public: Output_data_plt_x86_64_standard(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative) : Output_data_plt_x86_64
(layout, plt_entry_size, got, got_plt, got_irelative) { } Output_data_plt_x86_64_standard(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative, unsigned int plt_count) : Output_data_plt_x86_64
(layout, plt_entry_size, got, got_plt, got_irelative, plt_count) { } protected: virtual unsigned int do_get_plt_entry_size() const { return plt_entry_size; } virtual void do_add_eh_frame(Layout* layout) { layout->add_eh_frame_for_plt(this, this->plt_eh_frame_cie, this->plt_eh_frame_cie_size, plt_eh_frame_fde, plt_eh_frame_fde_size); } virtual void do_fill_first_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_addr, typename elfcpp::Elf_types
::Elf_Addr plt_addr); virtual unsigned int do_fill_plt_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_index); virtual void do_fill_tlsdesc_entry(unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, typename elfcpp::Elf_types
::Elf_Addr got_base, unsigned int tlsdesc_got_offset, unsigned int plt_offset); private: // The size of an entry in the PLT. static const int plt_entry_size = 16; // The first entry in the PLT. // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same // procedure linkage table for both programs and shared objects." static const unsigned char first_plt_entry[plt_entry_size]; // Other entries in the PLT for an executable. static const unsigned char plt_entry[plt_entry_size]; // The reserved TLSDESC entry in the PLT for an executable. static const unsigned char tlsdesc_plt_entry[plt_entry_size]; // The .eh_frame unwind information for the PLT. static const int plt_eh_frame_fde_size = 32; static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size]; }; // The x86_64 target class. // See the ABI at // http://www.x86-64.org/documentation/abi.pdf // TLS info comes from // http://people.redhat.com/drepper/tls.pdf // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt template
class Target_x86_64 : public Sized_target
{ public: // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures // uses only Elf64_Rela relocation entries with explicit addends." typedef Output_data_reloc
Reloc_section; Target_x86_64(const Target::Target_info* info = &x86_64_info) : Sized_target
(info), got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL), rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(), tls_base_symbol_defined_(false) { } // The safe value for data segment size for PIE links. Anything more // than this is prone to go/unsafe-pie. uint64_t max_pie_data_segment_size() const { return (128 * 1024 * 1024); } // Hook for a new output section. void do_new_output_section(Output_section*) const; // Scan the relocations to look for symbol adjustments. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info
*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types
::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Emit relocations for a section. void relocate_relocs( const Relocate_info
*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types
::Elf_Off offset_in_output_section, const Relocatable_relocs*, unsigned char* view, typename elfcpp::Elf_types
::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return a string used to fill a code section with nops. std::string do_code_fill(section_size_type length) const; // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_addr") == 0; } // Return the symbol index to use for a target specific relocation. // The only target specific relocation is R_X86_64_TLSDESC for a // local symbol, which is an absolute reloc. unsigned int do_reloc_symbol_index(void*, unsigned int r_type) const { gold_assert(r_type == elfcpp::R_X86_64_TLSDESC); return 0; } // Return the addend to use for a target specific relocation. uint64_t do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const; // Return the PLT section. uint64_t do_plt_address_for_global(const Symbol* gsym) const { return this->plt_section()->address_for_global(gsym); } uint64_t do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const { return this->plt_section()->address_for_local(relobj, symndx); } // This function should be defined in targets that can use relocation // types to determine (implemented in local_reloc_may_be_function_pointer // and global_reloc_may_be_function_pointer) // if a function's pointer is taken. ICF uses this in safe mode to only // fold those functions whose pointer is defintely not taken. For x86_64 // pie binaries, safe ICF cannot be done by looking at relocation types. bool do_can_check_for_function_pointers() const { return !parameters->options().pie(); } // Return the base for a DW_EH_PE_datarel encoding. uint64_t do_ehframe_datarel_base() const; // Adjust -fsplit-stack code which calls non-split-stack code. void do_calls_non_split(Relobj* object, unsigned int shndx, section_offset_type fnoffset, section_size_type fnsize, unsigned char* view, section_size_type view_size, std::string* from, std::string* to) const; // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / 8; } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; // Create the GOT section for an incremental update. Output_data_got_base* init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count); // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. void reserve_local_got_entry(unsigned int got_index, Sized_relobj
* obj, unsigned int r_sym, unsigned int got_type); // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. void reserve_global_got_entry(unsigned int got_index, Symbol* gsym, unsigned int got_type); // Register an existing PLT entry for a global symbol. void register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index, Symbol* gsym); // Force a COPY relocation for a given symbol. void emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t); // Apply an incremental relocation. void apply_relocation(const Relocate_info
* relinfo, typename elfcpp::Elf_types
::Elf_Addr r_offset, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Swxword r_addend, const Symbol* gsym, unsigned char* view, typename elfcpp::Elf_types
::Elf_Addr address, section_size_type view_size); // Add a new reloc argument, returning the index in the vector. size_t add_tlsdesc_info(Sized_relobj_file
* object, unsigned int r_sym) { this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym)); return this->tlsdesc_reloc_info_.size() - 1; } Output_data_plt_x86_64
* make_data_plt(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative) { return this->do_make_data_plt(layout, got, got_plt, got_irelative); } Output_data_plt_x86_64
* make_data_plt(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative, unsigned int plt_count) { return this->do_make_data_plt(layout, got, got_plt, got_irelative, plt_count); } virtual Output_data_plt_x86_64
* do_make_data_plt(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative) { return new Output_data_plt_x86_64_standard
(layout, got, got_plt, got_irelative); } virtual Output_data_plt_x86_64
* do_make_data_plt(Layout* layout, Output_data_got<64, false>* got, Output_data_got_plt_x86_64* got_plt, Output_data_space* got_irelative, unsigned int plt_count) { return new Output_data_plt_x86_64_standard
(layout, got, got_plt, got_irelative, plt_count); } private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_x86_64* target, Sized_relobj_file
* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela
& reloc, unsigned int r_type, const elfcpp::Sym
& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_x86_64* target, Sized_relobj_file
* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela
& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_x86_64* target, Sized_relobj_file
* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela
& reloc, unsigned int r_type, const elfcpp::Sym
& lsym); inline bool global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_x86_64* target, Sized_relobj_file
* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela
& reloc, unsigned int r_type, Symbol* gsym); private: static void unsupported_reloc_local(Sized_relobj_file
*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file
*, unsigned int r_type, Symbol*); void check_non_pic(Relobj*, unsigned int r_type, Symbol*); inline bool possible_function_pointer_reloc(unsigned int r_type); bool reloc_needs_plt_for_ifunc(Sized_relobj_file
*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: Relocate() : skip_call_tls_get_addr_(false) { } ~Relocate() { if (this->skip_call_tls_get_addr_) { // FIXME: This needs to specify the location somehow. gold_error(_("missing expected TLS relocation")); } } // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info
*, Target_x86_64*, Output_section*, size_t relnum, const elfcpp::Rela
&, unsigned int r_type, const Sized_symbol
*, const Symbol_value
*, unsigned char*, typename elfcpp::Elf_types
::Elf_Addr, section_size_type); private: // Do a TLS relocation. inline void relocate_tls(const Relocate_info
*, Target_x86_64*, size_t relnum, const elfcpp::Rela
&, unsigned int r_type, const Sized_symbol
*, const Symbol_value
*, unsigned char*, typename elfcpp::Elf_types
::Elf_Addr, section_size_type); // Do a TLS General-Dynamic to Initial-Exec transition. inline void tls_gd_to_ie(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, typename elfcpp::Elf_types
::Elf_Addr, section_size_type view_size); // Do a TLS General-Dynamic to Local-Exec transition. inline void tls_gd_to_le(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, section_size_type view_size); // Do a TLSDESC-style General-Dynamic to Initial-Exec transition. inline void tls_desc_gd_to_ie(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, typename elfcpp::Elf_types
::Elf_Addr, section_size_type view_size); // Do a TLSDESC-style General-Dynamic to Local-Exec transition. inline void tls_desc_gd_to_le(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, section_size_type view_size); // Do a TLS Local-Dynamic to Local-Exec transition. inline void tls_ld_to_le(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, section_size_type view_size); // Do a TLS Initial-Exec to Local-Exec transition. static inline void tls_ie_to_le(const Relocate_info
*, size_t relnum, Output_segment* tls_segment, const elfcpp::Rela
&, unsigned int r_type, typename elfcpp::Elf_types
::Elf_Addr value, unsigned char* view, section_size_type view_size); // This is set if we should skip the next reloc, which should be a // PLT32 reloc against ___tls_get_addr. bool skip_call_tls_get_addr_; }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*); }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Get the GOT section, creating it if necessary. Output_data_got<64, false>* got_section(Symbol_table*, Layout*); // Get the GOT PLT section. Output_data_got_plt_x86_64* got_plt_section() const { gold_assert(this->got_plt_ != NULL); return this->got_plt_; } // Get the GOT section for TLSDESC entries. Output_data_got<64, false>* got_tlsdesc_section() const { gold_assert(this->got_tlsdesc_ != NULL); return this->got_tlsdesc_; } // Create the PLT section. void make_plt_section(Symbol_table* symtab, Layout* layout); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a PLT entry for a local STT_GNU_IFUNC symbol. void make_local_ifunc_plt_entry(Symbol_table*, Layout*, Sized_relobj_file
* relobj, unsigned int local_sym_index); // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. void define_tls_base_symbol(Symbol_table*, Layout*); // Create the reserved PLT and GOT entries for the TLS descriptor resolver. void reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object); // Get the PLT section. Output_data_plt_x86_64
* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Get the section to use for TLSDESC relocations. Reloc_section* rela_tlsdesc_section(Layout*) const; // Get the section to use for IRELATIVE relocations. Reloc_section* rela_irelative_section(Layout*); // Add a potential copy relocation. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela
& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol
(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static const Target::Target_info x86_64_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair }; // This type is used as the argument to the target specific // relocation routines. The only target specific reloc is // R_X86_64_TLSDESC against a local symbol. struct Tlsdesc_info { Tlsdesc_info(Sized_relobj_file
* a_object, unsigned int a_r_sym) : object(a_object), r_sym(a_r_sym) { } // The object in which the local symbol is defined. Sized_relobj_file
* object; // The local symbol index in the object. unsigned int r_sym; }; // The GOT section. Output_data_got<64, false>* got_; // The PLT section. Output_data_plt_x86_64
* plt_; // The GOT PLT section. Output_data_got_plt_x86_64* got_plt_; // The GOT section for IRELATIVE relocations. Output_data_space* got_irelative_; // The GOT section for TLSDESC relocations. Output_data_got<64, false>* got_tlsdesc_; // The _GLOBAL_OFFSET_TABLE_ symbol. Symbol* global_offset_table_; // The dynamic reloc section. Reloc_section* rela_dyn_; // The section to use for IRELATIVE relocs. Reloc_section* rela_irelative_; // Relocs saved to avoid a COPY reloc. Copy_relocs
copy_relocs_; // Offset of the GOT entry for the TLS module index. unsigned int got_mod_index_offset_; // We handle R_X86_64_TLSDESC against a local symbol as a target // specific relocation. Here we store the object and local symbol // index for the relocation. std::vector
tlsdesc_reloc_info_; // True if the _TLS_MODULE_BASE_ symbol has been defined. bool tls_base_symbol_defined_; }; template<> const Target::Target_info Target_x86_64<64>::x86_64_info = { 64, // size false, // is_big_endian elfcpp::EM_X86_64, // machine_code false, // has_make_symbol false, // has_resolve true, // has_code_fill true, // is_default_stack_executable true, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld64.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx 0, // small_common_section_flags elfcpp::SHF_X86_64_LARGE, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; template<> const Target::Target_info Target_x86_64<32>::x86_64_info = { 32, // size false, // is_big_endian elfcpp::EM_X86_64, // machine_code false, // has_make_symbol false, // has_resolve true, // has_code_fill true, // is_default_stack_executable true, // can_icf_inline_merge_sections '\0', // wrap_char "/libx32/ldx32.so.1", // program interpreter 0x400000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx 0, // small_common_section_flags elfcpp::SHF_X86_64_LARGE, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start" // entry_symbol_name }; // This is called when a new output section is created. This is where // we handle the SHF_X86_64_LARGE. template
void Target_x86_64
::do_new_output_section(Output_section* os) const { if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0) os->set_is_large_section(); } // Get the GOT section, creating it if necessary. template
Output_data_got<64, false>* Target_x86_64
::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); // When using -z now, we can treat .got.plt as a relro section. // Without -z now, it is modified after program startup by lazy // PLT relocations. bool is_got_plt_relro = parameters->options().now(); Output_section_order got_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_RELRO_LAST); Output_section_order got_plt_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_NON_RELRO_FIRST); this->got_ = new Output_data_got<64, false>(); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, got_order, true); this->got_plt_ = new Output_data_got_plt_x86_64(layout); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, got_plt_order, is_got_plt_relro); // The first three entries are reserved. this->got_plt_->set_current_data_size(3 * 8); if (!is_got_plt_relro) { // Those bytes can go into the relro segment. layout->increase_relro(3 * 8); } // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); // If there are any IRELATIVE relocations, they get GOT entries // in .got.plt after the jump slot entries. this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_irelative_, got_plt_order, is_got_plt_relro); // If there are any TLSDESC relocations, they get GOT entries in // .got.plt after the jump slot and IRELATIVE entries. this->got_tlsdesc_ = new Output_data_got<64, false>(); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_tlsdesc_, got_plt_order, is_got_plt_relro); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template
typename Target_x86_64
::Reloc_section* Target_x86_64
::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // Get the section to use for IRELATIVE relocs, creating it if // necessary. These go in .rela.dyn, but only after all other dynamic // relocations. They need to follow the other dynamic relocations so // that they can refer to global variables initialized by those // relocs. template
typename Target_x86_64
::Reloc_section* Target_x86_64
::rela_irelative_section(Layout* layout) { if (this->rela_irelative_ == NULL) { // Make sure we have already created the dynamic reloc section. this->rela_dyn_section(layout); this->rela_irelative_ = new Reloc_section(false); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_irelative_, ORDER_DYNAMIC_RELOCS, false); gold_assert(this->rela_dyn_->output_section() == this->rela_irelative_->output_section()); } return this->rela_irelative_; } // Write the first three reserved words of the .got.plt section. // The remainder of the section is written while writing the PLT // in Output_data_plt_i386::do_write. void Output_data_got_plt_x86_64::do_write(Output_file* of) { // The first entry in the GOT is the address of the .dynamic section // aka the PT_DYNAMIC segment. The next two entries are reserved. // We saved space for them when we created the section in // Target_x86_64::got_section. const off_t got_file_offset = this->offset(); gold_assert(this->data_size() >= 24); unsigned char* const got_view = of->get_output_view(got_file_offset, 24); Output_section* dynamic = this->layout_->dynamic_section(); uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address(); elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr); memset(got_view + 8, 0, 16); of->write_output_view(got_file_offset, 24, got_view); } // Initialize the PLT section. template
void Output_data_plt_x86_64
::init(Layout* layout) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } template
void Output_data_plt_x86_64
::do_adjust_output_section(Output_section* os) { os->set_entsize(this->get_plt_entry_size()); } // Add an entry to the PLT. template
void Output_data_plt_x86_64
::add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); unsigned int plt_index; off_t plt_offset; section_offset_type got_offset; unsigned int* pcount; unsigned int offset; unsigned int reserved; Output_section_data_build* got; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { pcount = &this->irelative_count_; offset = 0; reserved = 0; got = this->got_irelative_; } else { pcount = &this->count_; offset = 1; reserved = 3; got = this->got_plt_; } if (!this->is_data_size_valid()) { // Note that when setting the PLT offset for a non-IRELATIVE // entry we skip the initial reserved PLT entry. plt_index = *pcount + offset; plt_offset = plt_index * this->get_plt_entry_size(); ++*pcount; got_offset = (plt_index - offset + reserved) * 8; gold_assert(got_offset == got->current_data_size()); // Every PLT entry needs a GOT entry which points back to the PLT // entry (this will be changed by the dynamic linker, normally // lazily when the function is called). got->set_current_data_size(got_offset + 8); } else { // FIXME: This is probably not correct for IRELATIVE relocs. // For incremental updates, find an available slot. plt_offset = this->free_list_.allocate(this->get_plt_entry_size(), this->get_plt_entry_size(), 0); if (plt_offset == -1) gold_fallback(_("out of patch space (PLT);" " relink with --incremental-full")); // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset // can be calculated from the PLT index, adjusting for the three // reserved entries at the beginning of the GOT. plt_index = plt_offset / this->get_plt_entry_size() - 1; got_offset = (plt_index - offset + reserved) * 8; } gsym->set_plt_offset(plt_offset); // Every PLT entry needs a reloc. this->add_relocation(symtab, layout, gsym, got_offset); // Note that we don't need to save the symbol. The contents of the // PLT are independent of which symbols are used. The symbols only // appear in the relocations. } // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return // the PLT offset. template
unsigned int Output_data_plt_x86_64
::add_local_ifunc_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file
* relobj, unsigned int local_sym_index) { unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size(); ++this->irelative_count_; section_offset_type got_offset = this->got_irelative_->current_data_size(); // Every PLT entry needs a GOT entry which points back to the PLT // entry. this->got_irelative_->set_current_data_size(got_offset + 8); // Every PLT entry needs a reloc. Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_local_addend(relobj, local_sym_index, elfcpp::R_X86_64_IRELATIVE, this->got_irelative_, got_offset, 0); return plt_offset; } // Add the relocation for a PLT entry. template
void Output_data_plt_x86_64
::add_relocation(Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) { if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE, this->got_irelative_, got_offset, 0); } else { gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_, got_offset, 0); } } // Return where the TLSDESC relocations should go, creating it if // necessary. These follow the JUMP_SLOT relocations. template
typename Output_data_plt_x86_64
::Reloc_section* Output_data_plt_x86_64
::rela_tlsdesc(Layout* layout) { if (this->tlsdesc_rel_ == NULL) { this->tlsdesc_rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->tlsdesc_rel_, ORDER_DYNAMIC_PLT_RELOCS, false); gold_assert(this->tlsdesc_rel_->output_section() == this->rel_->output_section()); } return this->tlsdesc_rel_; } // Return where the IRELATIVE relocations should go in the PLT. These // follow the JUMP_SLOT and the TLSDESC relocations. template
typename Output_data_plt_x86_64
::Reloc_section* Output_data_plt_x86_64
::rela_irelative(Symbol_table* symtab, Layout* layout) { if (this->irelative_rel_ == NULL) { // Make sure we have a place for the TLSDESC relocations, in // case we see any later on. this->rela_tlsdesc(layout); this->irelative_rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->irelative_rel_, ORDER_DYNAMIC_PLT_RELOCS, false); gold_assert(this->irelative_rel_->output_section() == this->rel_->output_section()); if (parameters->doing_static_link()) { // A statically linked executable will only have a .rela.plt // section to hold R_X86_64_IRELATIVE relocs for // STT_GNU_IFUNC symbols. The library will use these // symbols to locate the IRELATIVE relocs at program startup // time. symtab->define_in_output_data("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, true); symtab->define_in_output_data("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, true); } } return this->irelative_rel_; } // Return the PLT address to use for a global symbol. template
uint64_t Output_data_plt_x86_64
::address_for_global(const Symbol* gsym) { uint64_t offset = 0; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) offset = (this->count_ + 1) * this->get_plt_entry_size(); return this->address() + offset + gsym->plt_offset(); } // Return the PLT address to use for a local symbol. These are always // IRELATIVE relocs. template
uint64_t Output_data_plt_x86_64
::address_for_local(const Relobj* object, unsigned int r_sym) { return (this->address() + (this->count_ + 1) * this->get_plt_entry_size() + object->local_plt_offset(r_sym)); } // Set the final size. template
void Output_data_plt_x86_64
::set_final_data_size() { unsigned int count = this->count_ + this->irelative_count_; if (this->has_tlsdesc_entry()) ++count; this->set_data_size((count + 1) * this->get_plt_entry_size()); } // The first entry in the PLT for an executable. template
const unsigned char Output_data_plt_x86_64_standard
::first_plt_entry[plt_entry_size] = { // From AMD64 ABI Draft 0.98, page 76 0xff, 0x35, // pushq contents of memory address 0, 0, 0, 0, // replaced with address of .got + 8 0xff, 0x25, // jmp indirect 0, 0, 0, 0, // replaced with address of .got + 16 0x90, 0x90, 0x90, 0x90 // noop (x4) }; template
void Output_data_plt_x86_64_standard
::do_fill_first_plt_entry( unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address) { memcpy(pov, first_plt_entry, plt_entry_size); // We do a jmp relative to the PC at the end of this instruction. elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, (got_address + 8 - (plt_address + 6))); elfcpp::Swap<32, false>::writeval(pov + 8, (got_address + 16 - (plt_address + 12))); } // Subsequent entries in the PLT for an executable. template
const unsigned char Output_data_plt_x86_64_standard
::plt_entry[plt_entry_size] = { // From AMD64 ABI Draft 0.98, page 76 0xff, 0x25, // jmpq indirect 0, 0, 0, 0, // replaced with address of symbol in .got 0x68, // pushq immediate 0, 0, 0, 0, // replaced with offset into relocation table 0xe9, // jmpq relative 0, 0, 0, 0 // replaced with offset to start of .plt }; template
unsigned int Output_data_plt_x86_64_standard
::do_fill_plt_entry( unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, unsigned int got_offset, unsigned int plt_offset, unsigned int plt_index) { // Check PC-relative offset overflow in PLT entry. uint64_t plt_got_pcrel_offset = (got_address + got_offset - (plt_address + plt_offset + 6)); if (Bits<32>::has_overflow(plt_got_pcrel_offset)) gold_error(_("PC-relative offset overflow in PLT entry %d"), plt_index + 1); memcpy(pov, plt_entry, plt_entry_size); elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, plt_got_pcrel_offset); elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index); elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + plt_entry_size)); return 6; } // The reserved TLSDESC entry in the PLT for an executable. template
const unsigned char Output_data_plt_x86_64_standard
::tlsdesc_plt_entry[plt_entry_size] = { // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32 // and AMD64/EM64T", Version 0.9.4 (2005-10-10). 0xff, 0x35, // pushq x(%rip) 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8) 0xff, 0x25, // jmpq *y(%rip) 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry 0x0f, 0x1f, // nop 0x40, 0 }; template
void Output_data_plt_x86_64_standard
::do_fill_tlsdesc_entry( unsigned char* pov, typename elfcpp::Elf_types
::Elf_Addr got_address, typename elfcpp::Elf_types
::Elf_Addr plt_address, typename elfcpp::Elf_types
::Elf_Addr got_base, unsigned int tlsdesc_got_offset, unsigned int plt_offset) { memcpy(pov, tlsdesc_plt_entry, plt_entry_size); elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, (got_address + 8 - (plt_address + plt_offset + 6))); elfcpp::Swap_unaligned<32, false>::writeval(pov + 8, (got_base + tlsdesc_got_offset - (plt_address + plt_offset + 12))); } // The .eh_frame unwind information for the PLT. template
const unsigned char Output_data_plt_x86_64
::plt_eh_frame_cie[plt_eh_frame_cie_size] = { 1, // CIE version. 'z', // Augmentation: augmentation size included. 'R', // Augmentation: FDE encoding included. '\0', // End of augmentation string. 1, // Code alignment factor. 0x78, // Data alignment factor. 16, // Return address column. 1, // Augmentation size. (elfcpp::DW_EH_PE_pcrel // FDE encoding. | elfcpp::DW_EH_PE_sdata4), elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8. elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8. elfcpp::DW_CFA_nop, // Align to 16 bytes. elfcpp::DW_CFA_nop }; template
const unsigned char Output_data_plt_x86_64_standard
::plt_eh_frame_fde[plt_eh_frame_fde_size] = { 0, 0, 0, 0, // Replaced with offset to .plt. 0, 0, 0, 0, // Replaced with size of .plt. 0, // Augmentation size. elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16. elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6. elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24. elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16. elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression. 11, // Block length. elfcpp::DW_OP_breg7, 8, // Push %rsp + 8. elfcpp::DW_OP_breg16, 0, // Push %rip. elfcpp::DW_OP_lit15, // Push 0xf. elfcpp::DW_OP_and, // & (%rip & 0xf). elfcpp::DW_OP_lit11, // Push 0xb. elfcpp::DW_OP_ge, // >= ((%rip & 0xf) >= 0xb) elfcpp::DW_OP_lit3, // Push 3. elfcpp::DW_OP_shl, // << (((%rip & 0xf) >= 0xb) << 3) elfcpp::DW_OP_plus, // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8 elfcpp::DW_CFA_nop, // Align to 32 bytes. elfcpp::DW_CFA_nop, elfcpp::DW_CFA_nop, elfcpp::DW_CFA_nop }; // Write out the PLT. This uses the hand-coded instructions above, // and adjusts them as needed. This is specified by the AMD64 ABI. template
void Output_data_plt_x86_64
::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t got_file_offset = this->got_plt_->offset(); gold_assert(parameters->incremental_update() || (got_file_offset + this->got_plt_->data_size() == this->got_irelative_->offset())); const section_size_type got_size = convert_to_section_size_type(this->got_plt_->data_size() + this->got_irelative_->data_size()); unsigned char* const got_view = of->get_output_view(got_file_offset, got_size); unsigned char* pov = oview; // The base address of the .plt section. typename elfcpp::Elf_types
::Elf_Addr plt_address = this->address(); // The base address of the .got section. typename elfcpp::Elf_types
::Elf_Addr got_base = this->got_->address(); // The base address of the PLT portion of the .got section, // which is where the GOT pointer will point, and where the // three reserved GOT entries are located. typename elfcpp::Elf_types
::Elf_Addr got_address = this->got_plt_->address(); this->fill_first_plt_entry(pov, got_address, plt_address); pov += this->get_plt_entry_size(); // The first three entries in the GOT are reserved, and are written // by Output_data_got_plt_x86_64::do_write. unsigned char* got_pov = got_view + 24; unsigned int plt_offset = this->get_plt_entry_size(); unsigned int got_offset = 24; const unsigned int count = this->count_ + this->irelative_count_; for (unsigned int plt_index = 0; plt_index < count; ++plt_index, pov += this->get_plt_entry_size(), got_pov += 8, plt_offset += this->get_plt_entry_size(), got_offset += 8) { // Set and adjust the PLT entry itself. unsigned int lazy_offset = this->fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset, plt_index); // Set the entry in the GOT. elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + lazy_offset); } if (this->has_tlsdesc_entry()) { // Set and adjust the reserved TLSDESC PLT entry. unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset(); this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base, tlsdesc_got_offset, plt_offset); pov += this->get_plt_entry_size(); } gold_assert(static_cast
(pov - oview) == oview_size); gold_assert(static_cast
(got_pov - got_view) == got_size); of->write_output_view(offset, oview_size, oview); of->write_output_view(got_file_offset, got_size, got_view); } // Create the PLT section. template
void Target_x86_64
::make_plt_section(Symbol_table* symtab, Layout* layout) { if (this->plt_ == NULL) { // Create the GOT sections first. this->got_section(symtab, layout); this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_, this->got_irelative_); // Add unwind information if requested. if (parameters->options().ld_generated_unwind_info()) this->plt_->add_eh_frame(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->plt_, ORDER_PLT, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); } } // Return the section for TLSDESC relocations. template
typename Target_x86_64
::Reloc_section* Target_x86_64
::rela_tlsdesc_section(Layout* layout) const { return this->plt_section()->rela_tlsdesc(layout); } // Create a PLT entry for a global symbol. template
void Target_x86_64
::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->has_plt_offset()) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); this->plt_->add_entry(symtab, layout, gsym); } // Make a PLT entry for a local STT_GNU_IFUNC symbol. template
void Target_x86_64
::make_local_ifunc_plt_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file
* relobj, unsigned int local_sym_index) { if (relobj->local_has_plt_offset(local_sym_index)) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, relobj, local_sym_index); relobj->set_local_plt_offset(local_sym_index, plt_offset); } // Return the number of entries in the PLT. template
unsigned int Target_x86_64
::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template
unsigned int Target_x86_64
::first_plt_entry_offset() const { return this->plt_->first_plt_entry_offset(); } // Return the size of each PLT entry. template
unsigned int Target_x86_64
::plt_entry_size() const { return this->plt_->get_plt_entry_size(); } // Create the GOT and PLT sections for an incremental update. template
Output_data_got_base* Target_x86_64
::init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count) { gold_assert(this->got_ == NULL); this->got_ = new Output_data_got<64, false>(got_count * 8); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, ORDER_RELRO_LAST, true); // Add the three reserved entries. this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, ORDER_NON_RELRO_FIRST, false); // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); // If there are any TLSDESC relocations, they get GOT entries in // .got.plt after the jump slot entries. // FIXME: Get the count for TLSDESC entries. this->got_tlsdesc_ = new Output_data_got<64, false>(0); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_tlsdesc_, ORDER_NON_RELRO_FIRST, false); // If there are any IRELATIVE relocations, they get GOT entries in // .got.plt after the jump slot and TLSDESC entries. this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_irelative_, ORDER_NON_RELRO_FIRST, false); // Create the PLT section. this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_, this->got_irelative_, plt_count); // Add unwind information if requested. if (parameters->options().ld_generated_unwind_info()) this->plt_->add_eh_frame(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, this->plt_, ORDER_PLT, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); // Create the rela_dyn section. this->rela_dyn_section(layout); return this->got_; } // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. template
void Target_x86_64
::reserve_local_got_entry( unsigned int got_index, Sized_relobj
* obj, unsigned int r_sym, unsigned int got_type) { unsigned int got_offset = got_index * 8; Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_local(got_index, obj, r_sym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (parameters->options().output_is_position_independent()) rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64, this->got_, got_offset, 0); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64, this->got_, got_offset, 0); break; case GOT_TYPE_TLS_DESC: gold_fatal(_("TLS_DESC not yet supported for incremental linking")); // this->got_->reserve_slot(got_index + 1); // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg, // this->got_, got_offset, 0); break; default: gold_unreachable(); } } // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. template
void Target_x86_64
::reserve_global_got_entry(unsigned int got_index, Symbol* gsym, unsigned int got_type) { unsigned int got_offset = got_index * 8; Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_global(got_index, gsym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (!gsym->final_value_is_known()) { if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || gsym->type() == elfcpp::STT_GNU_IFUNC) rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, this->got_, got_offset, 0); else rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE, this->got_, got_offset, 0, false); } break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64, this->got_, got_offset, 0, false); rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64, this->got_, got_offset + 8, 0, false); break; case GOT_TYPE_TLS_DESC: this->got_->reserve_slot(got_index + 1); rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC, this->got_, got_offset, 0, false); break; default: gold_unreachable(); } } // Register an existing PLT entry for a global symbol. template
void Target_x86_64
::register_global_plt_entry(Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym) { gold_assert(this->plt_ != NULL); gold_assert(!gsym->has_plt_offset()); this->plt_->reserve_slot(plt_index); gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size()); unsigned int got_offset = (plt_index + 3) * 8; this->plt_->add_relocation(symtab, layout, gsym, got_offset); } // Force a COPY relocation for a given symbol. template
void Target_x86_64
::emit_copy_reloc( Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset) { this->copy_relocs_.emit_copy_reloc(symtab, symtab->get_sized_symbol
(sym), os, offset, this->rela_dyn_section(NULL)); } // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. template
void Target_x86_64
::define_tls_base_symbol(Symbol_table* symtab, Layout* layout) { if (this->tls_base_symbol_defined_) return; Output_segment* tls_segment = layout->tls_segment(); if (tls_segment != NULL) { bool is_exec = parameters->options().output_is_executable(); symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL, Symbol_table::PREDEFINED, tls_segment, 0, 0, elfcpp::STT_TLS, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, (is_exec ? Symbol::SEGMENT_END : Symbol::SEGMENT_START), true); } this->tls_base_symbol_defined_ = true; } // Create the reserved PLT and GOT entries for the TLS descriptor resolver. template
void Target_x86_64
::reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout) { if (this->plt_ == NULL) this->make_plt_section(symtab, layout); if (!this->plt_->has_tlsdesc_entry()) { // Allocate the TLSDESC_GOT entry. Output_data_got<64, false>* got = this->got_section(symtab, layout); unsigned int got_offset = got->add_constant(0); // Allocate the TLSDESC_PLT entry. this->plt_->reserve_tlsdesc_entry(got_offset); } } // Create a GOT entry for the TLS module index. template
unsigned int Target_x86_64
::got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file
* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got<64, false>* got = this->got_section(symtab, layout); unsigned int got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. template
tls::Tls_optimization Target_x86_64
::optimize_tls_reloc(bool is_final, int r_type) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; switch (r_type) { case elfcpp::R_X86_64_TLSGD: case elfcpp::R_X86_64_GOTPC32_TLSDESC: case elfcpp::R_X86_64_TLSDESC_CALL: // These are General-Dynamic which permits fully general TLS // access. Since we know that we are generating an executable, // we can convert this to Initial-Exec. If we also know that // this is a local symbol, we can further switch to Local-Exec. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_TO_IE; case elfcpp::R_X86_64_TLSLD: // This is Local-Dynamic, which refers to a local symbol in the // dynamic TLS block. Since we know that we generating an // executable, we can switch to Local-Exec. return tls::TLSOPT_TO_LE; case elfcpp::R_X86_64_DTPOFF32: case elfcpp::R_X86_64_DTPOFF64: // Another Local-Dynamic reloc. return tls::TLSOPT_TO_LE; case elfcpp::R_X86_64_GOTTPOFF: // These are Initial-Exec relocs which get the thread offset // from the GOT. If we know that we are linking against the // local symbol, we can switch to Local-Exec, which links the // thread offset into the instruction. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_NONE; case elfcpp::R_X86_64_TPOFF32: // When we already have Local-Exec, there is nothing further we // can do. return tls::TLSOPT_NONE; default: gold_unreachable(); } } // Get the Reference_flags for a particular relocation. template
int Target_x86_64
::Scan::get_reference_flags(unsigned int r_type) { switch (r_type) { case elfcpp::R_X86_64_NONE: case elfcpp::R_X86_64_GNU_VTINHERIT: case elfcpp::R_X86_64_GNU_VTENTRY: case elfcpp::R_X86_64_GOTPC32: case elfcpp::R_X86_64_GOTPC64: // No symbol reference. return 0; case elfcpp::R_X86_64_64: case elfcpp::R_X86_64_32: case elfcpp::R_X86_64_32S: case elfcpp::R_X86_64_16: case elfcpp::R_X86_64_8: return Symbol::ABSOLUTE_REF; case elfcpp::R_X86_64_PC64: case elfcpp::R_X86_64_PC32: case elfcpp::R_X86_64_PC32_BND: case elfcpp::R_X86_64_PC16: case elfcpp::R_X86_64_PC8: case elfcpp::R_X86_64_GOTOFF64: return Symbol::RELATIVE_REF; case elfcpp::R_X86_64_PLT32: case elfcpp::R_X86_64_PLT32_BND: case elfcpp::R_X86_64_PLTOFF64: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_X86_64_GOT64: case elfcpp::R_X86_64_GOT32: case elfcpp::R_X86_64_GOTPCREL64: case elfcpp::R_X86_64_GOTPCREL: case elfcpp::R_X86_64_GOTPLT64: // Absolute in GOT. return Symbol::ABSOLUTE_REF; case elfcpp::R_X86_64_TLSGD: // Global-dynamic case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url) case elfcpp::R_X86_64_TLSDESC_CALL: case elfcpp::R_X86_64_TLSLD: // Local-dynamic case elfcpp::R_X86_64_DTPOFF32: case elfcpp::R_X86_64_DTPOFF64: case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec case elfcpp::R_X86_64_TPOFF32: // Local-exec return Symbol::TLS_REF; case elfcpp::R_X86_64_COPY: case elfcpp::R_X86_64_GLOB_DAT: case elfcpp::R_X86_64_JUMP_SLOT: case elfcpp::R_X86_64_RELATIVE: case elfcpp::R_X86_64_IRELATIVE: case elfcpp::R_X86_64_TPOFF64: case elfcpp::R_X86_64_DTPMOD64: case elfcpp::R_X86_64_TLSDESC: case elfcpp::R_X86_64_SIZE32: case elfcpp::R_X86_64_SIZE64: default: // Not expected. We will give an error later. return 0; } } // Report an unsupported relocation against a local symbol. template
void Target_x86_64
::Scan::unsupported_reloc_local( Sized_relobj_file
* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. The GNU linker // only issues a non-PIC error for an allocated read-only section. // Here we know the section is allocated, but we don't know that it is // read-only. But we check for all the relocation types which the // glibc dynamic linker supports, so it seems appropriate to issue an // error even if the section is not read-only. If GSYM is not NULL, // it is the symbol the relocation is against; if it is NULL, the // relocation is against a local symbol. template
void Target_x86_64
::Scan::check_non_pic(Relobj* object, unsigned int r_type, Symbol* gsym) { switch (r_type) { // These are the relocation types supported by glibc for x86_64 // which should always work. case elfcpp::R_X86_64_RELATIVE: case elfcpp::R_X86_64_IRELATIVE: case elfcpp::R_X86_64_GLOB_DAT: case elfcpp::R_X86_64_JUMP_SLOT: case elfcpp::R_X86_64_DTPMOD64: case elfcpp::R_X86_64_DTPOFF64: case elfcpp::R_X86_64_TPOFF64: case elfcpp::R_X86_64_64: case elfcpp::R_X86_64_COPY: return; // glibc supports these reloc types, but they can overflow. case elfcpp::R_X86_64_PC32: case elfcpp::R_X86_64_PC32_BND: // A PC relative reference is OK against a local symbol or if // the symbol is defined locally. if (gsym == NULL || (!gsym->is_from_dynobj() && !gsym->is_undefined() && !gsym->is_preemptible())) return; /* Fall through. */ case elfcpp::R_X86_64_32: // R_X86_64_32 is OK for x32. if (size == 32 && r_type == elfcpp::R_X86_64_32) return; if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); if (gsym == NULL) object->error(_("requires dynamic R_X86_64_32 reloc which may " "overflow at runtime; recompile with -fPIC")); else { const char *r_name; switch (r_type) { case elfcpp::R_X86_64_32: r_name = "R_X86_64_32"; break; case elfcpp::R_X86_64_PC32: r_name = "R_X86_64_PC32"; break; case elfcpp::R_X86_64_PC32_BND: r_name = "R_X86_64_PC32_BND"; break; default: gold_unreachable(); break; } object->error(_("requires dynamic %s reloc against '%s' " "which may overflow at runtime; recompile " "with -fPIC"), r_name, gsym->name()); } this->issued_non_pic_error_ = true; return; default: // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc %u; " "recompile with -fPIC"), r_type); this->issued_non_pic_error_ = true; return; case elfcpp::R_X86_64_NONE: gold_unreachable(); } } // Return whether we need to make a PLT entry for a relocation of the // given type against a STT_GNU_IFUNC symbol. template
bool Target_x86_64
::Scan::reloc_needs_plt_for_ifunc( Sized_relobj_file
* object, unsigned int r_type) { int flags = Scan::get_reference_flags(r_type); if (flags & Symbol::TLS_REF) gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), object->name().c_str(), r_type); return flags != 0; } // Scan a relocation for a local symbol. template
inline void Target_x86_64
::Scan::local(Symbol_table* symtab, Layout* layout, Target_x86_64
* target, Sized_relobj_file
* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela
& reloc, unsigned int r_type, const elfcpp::Sym
& lsym, bool is_discarded) { if (is_discarded) return; // A local STT_GNU_IFUNC symbol may require a PLT entry. bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) { unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); } switch (r_type) { case elfcpp::R_X86_64_NONE: case elfcpp::R_X86_64_GNU_VTINHERIT: case elfcpp::R_X86_64_GNU_VTENTRY: break; case elfcpp::R_X86_64_64: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for this // location. The relocation applied at link time will apply the // link-time value, so we flag the location with an // R_X86_64_RELATIVE relocation so the dynamic loader can // relocate it easily. if (parameters->options().output_is_position_independent()) { unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, (size == 32 ? elfcpp::R_X86_64_RELATIVE64 : elfcpp::R_X86_64_RELATIVE), output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); } break; case elfcpp::R_X86_64_32: case elfcpp::R_X86_64_32S: case elfcpp::R_X86_64_16: case elfcpp::R_X86_64_8: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for this // location. We can't use an R_X86_64_RELATIVE relocation // because that is always a 64-bit relocation. if (parameters->options().output_is_position_independent()) { // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32. if (size == 32 && r_type == elfcpp::R_X86_64_32) { unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_X86_64_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); break; } this->check_non_pic(object, r_type, NULL); Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); if (lsym.get_st_type() != elfcpp::STT_SECTION) rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else { gold_assert(lsym.get_st_value() == 0); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("section symbol %u has bad shndx %u"), r_sym, shndx); else rela_dyn->add_local_section(object, shndx, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_X86_64_PC64: case elfcpp::R_X86_64_PC32: case elfcpp::R_X86_64_PC32_BND: case elfcpp::R_X86_64_PC16: case elfcpp::R_X86_64_PC8: break; case elfcpp::R_X86_64_PLT32: case elfcpp::R_X86_64_PLT32_BND: // Since we know this is a local symbol, we can handle this as a // PC32 reloc. break; case elfcpp::R_X86_64_GOTPC32: case elfcpp::R_X86_64_GOTOFF64: case elfcpp::R_X86_64_GOTPC64: case elfcpp::R_X86_64_PLTOFF64: // We need a GOT section. target->got_section(symtab, layout); // For PLTOFF64, we'd normally want a PLT section, but since we // know this is a local symbol, no PLT is needed. break; case elfcpp::R_X86_64_GOT64: case elfcpp::R_X86_64_GOT32: case elfcpp::R_X86_64_GOTPCREL64: case elfcpp::R_X86_64_GOTPCREL: case elfcpp::R_X86_64_GOTPLT64: { // The symbol requires a GOT entry. Output_data_got<64, false>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); // For a STT_GNU_IFUNC symbol we want the PLT offset. That // lets function pointers compare correctly with shared // libraries. Otherwise we would need an IRELATIVE reloc. bool is_new; if (is_ifunc) is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD); else is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD); if (is_new) { // If we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry. if (parameters->options().output_is_position_independent()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); // R_X86_64_RELATIVE assumes a 64-bit relocation. if (r_type != elfcpp::R_X86_64_GOT32) { unsigned int got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_X86_64_RELATIVE, got, got_offset, 0, is_ifunc); } else { this->check_non_pic(object, r_type, NULL); gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); rela_dyn->add_local( object, r_sym, r_type, got, object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0); } } } // For GOTPLT64, we'd normally want a PLT section, but since // we know this is a local symbol, no PLT is needed. } break; case elfcpp::R_X86_64_COPY: case elfcpp::R_X86_64_GLOB_DAT: case elfcpp::R_X86_64_JUMP_SLOT: case elfcpp::R_X86_64_RELATIVE: case elfcpp::R_X86_64_IRELATIVE: // These are outstanding tls relocs, which are unexpected when linking case elfcpp::R_X86_64_TPOFF64: case elfcpp::R_X86_64_DTPMOD64: case elfcpp::R_X86_64_TLSDESC: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; // These are initial tls relocs, which are expected when linking case elfcpp::R_X86_64_TLSGD: // Global-dynamic case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url) case elfcpp::R_X86_64_TLSDESC_CALL: case elfcpp::R_X86_64_TLSLD: // Local-dynamic case elfcpp::R_X86_64_DTPOFF32: case elfcpp::R_X86_64_DTPOFF64: case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec case elfcpp::R_X86_64_TPOFF32: // Local-exec { bool output_is_shared = parameters->options().shared(); const tls::Tls_optimization optimized_type = Target_x86_64
::optimize_tls_reloc(!output_is_shared, r_type); switch (r_type) { case elfcpp::R_X86_64_TLSGD: // General-dynamic if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Output_data_got<64, false>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("local symbol %u has bad shndx %u"), r_sym, shndx); else got->add_local_pair_with_rel(object, r_sym, shndx, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), elfcpp::R_X86_64_DTPMOD64); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_X86_64_GOTPC32_TLSDESC: target->define_tls_base_symbol(symtab, layout); if (optimized_type == tls::TLSOPT_NONE) { // Create reserved PLT and GOT entries for the resolver. target->reserve_tlsdesc_entries(symtab, layout); // Generate a double GOT entry with an // R_X86_64_TLSDESC reloc. The R_X86_64_TLSDESC reloc // is resolved lazily, so the GOT entry needs to be in // an area in .got.plt, not .got. Call got_section to // make sure the section has been created. target->got_section(symtab, layout); Output_data_got<64, false>* got = target->got_tlsdesc_section(); unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC)) { unsigned int got_offset = got->add_constant(0); got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC, got_offset); Reloc_section* rt = target->rela_tlsdesc_section(layout); // We store the arguments we need in a vector, and // use the index into the vector as the parameter // to pass to the target specific routines. uintptr_t intarg = target->add_tlsdesc_info(object, r_sym); void* arg = reinterpret_cast
(intarg); rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg, got, got_offset, 0); } } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_X86_64_TLSDESC_CALL: break; case elfcpp::R_X86_64_TLSLD: // Local-dynamic if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the module index. target->got_mod_index_entry(symtab, layout, object); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_X86_64_DTPOFF32: case elfcpp::R_X86_64_DTPOFF64: break; case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Output_data_got<64, false>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym
(reloc.get_r_info()); got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), elfcpp::R_X86_64_TPOFF64); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_X86_64_TPOFF32: // Local-exec layout->set_has_static_tls(); if (output_is_shared) unsupported_reloc_local(object, r_type); break; default: gold_unreachable(); } } break; case elfcpp::R_X86_64_SIZE32: case elfcpp::R_X86_64_SIZE64: default: gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); break; } } // Report an unsupported relocation against a global symbol. template
void Target_x86_64
::Scan::unsupported_reloc_global( Sized_relobj_file
* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Returns true if this relocation type could be that of a function pointer. template
inline bool Target_x86_64
::Scan::possible_function_pointer_reloc(unsigned int r_type) { switch (r_type) { case elfcpp::R_X86_64_64: case elfcpp::R_X86_64_32: case elfcpp::R_X86_64_32S: case elfcpp::R_X86_64_16: case elfcpp::R_X86_64_8: case elfcpp::R_X86_64_GOT64: case elfcpp::R_X86_64_GOT32: case elfcpp::R_X86_64_GOTPCREL64: case elfcpp::R_X86_64_GOTPCREL: case elfcpp::R_X86_64_GOTPLT64: { return true; } } return false; } // For safe ICF, scan a relocation for a local symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template
inline bool Target_x86_64
::Scan::local_reloc_may_be_function_pointer( Symbol_table* , Layout* , Target_x86_64
* , Sized_relobj_file
* , unsigned int , Output_section* , const elfcpp::Rela
& , unsigned int r_type, const elfcpp::Sym
&) { // When building a shared library, do not fold any local symbols as it is // not possible to distinguish pointer taken versus a call by looking at // the relocation types. return (parameters->options().shared() || possible_function_pointer_reloc(r_type)); } // For safe ICF, scan a relocation for a global symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template
inline bool Target_x86_64
::Scan::global_reloc_may_be_function_pointer( Symbol_table*, Layout* , Target_x86_64
* , Sized_relobj_file
* , unsigned int , Output_section* , const elfcpp::Rela
& , unsigned int r_type, Symbol* gsym) { // When building a shared library, do not fold symbols whose visibility // is hidden, internal or protected. return ((parameters->options().shared() && (gsym->visibility() == elfcpp::STV_INTERNAL || gsym->visibility() == elfcpp::STV_PROTECTED || gsym->visibility() == elfcpp::STV_HIDDEN)) || possible_function_pointer_reloc(r_type)); } // Scan a relocation for a global symbol. template
inline void Target_x86_64
::Scan::global(Symbol_table* symtab, Layout* layout, Target_x86_64
* target, Sized_relobj_file