/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_COMPILED_METHOD_H_ #define ART_COMPILER_COMPILED_METHOD_H_ #include <memory> #include <iosfwd> #include <string> #include <vector> #include "arch/instruction_set.h" #include "base/bit_utils.h" #include "base/length_prefixed_array.h" #include "method_reference.h" #include "utils/array_ref.h" namespace art { class CompilerDriver; class CompiledMethodStorage; class CompiledCode { public: // For Quick to supply an code blob CompiledCode(CompilerDriver* compiler_driver, InstructionSet instruction_set, const ArrayRef<const uint8_t>& quick_code); virtual ~CompiledCode(); InstructionSet GetInstructionSet() const { return instruction_set_; } ArrayRef<const uint8_t> GetQuickCode() const { return GetArray(quick_code_); } bool operator==(const CompiledCode& rhs) const; // To align an offset from a page-aligned value to make it suitable // for code storage. For example on ARM, to ensure that PC relative // valu computations work out as expected. size_t AlignCode(size_t offset) const; static size_t AlignCode(size_t offset, InstructionSet instruction_set); // returns the difference between the code address and a usable PC. // mainly to cope with kThumb2 where the lower bit must be set. size_t CodeDelta() const; static size_t CodeDelta(InstructionSet instruction_set); // Returns a pointer suitable for invoking the code at the argument // code_pointer address. Mainly to cope with kThumb2 where the // lower bit must be set to indicate Thumb mode. static const void* CodePointer(const void* code_pointer, InstructionSet instruction_set); protected: template <typename T> static ArrayRef<const T> GetArray(const LengthPrefixedArray<T>* array) { if (array == nullptr) { return ArrayRef<const T>(); } DCHECK_NE(array->size(), 0u); return ArrayRef<const T>(&array->At(0), array->size()); } CompilerDriver* GetCompilerDriver() { return compiler_driver_; } private: CompilerDriver* const compiler_driver_; const InstructionSet instruction_set_; // Used to store the PIC code for Quick. const LengthPrefixedArray<uint8_t>* const quick_code_; }; class SrcMapElem { public: uint32_t from_; int32_t to_; }; inline bool operator<(const SrcMapElem& lhs, const SrcMapElem& rhs) { if (lhs.from_ != rhs.from_) { return lhs.from_ < rhs.from_; } return lhs.to_ < rhs.to_; } inline bool operator==(const SrcMapElem& lhs, const SrcMapElem& rhs) { return lhs.from_ == rhs.from_ && lhs.to_ == rhs.to_; } template <class Allocator> class SrcMap FINAL : public std::vector<SrcMapElem, Allocator> { public: using std::vector<SrcMapElem, Allocator>::begin; using typename std::vector<SrcMapElem, Allocator>::const_iterator; using std::vector<SrcMapElem, Allocator>::empty; using std::vector<SrcMapElem, Allocator>::end; using std::vector<SrcMapElem, Allocator>::resize; using std::vector<SrcMapElem, Allocator>::shrink_to_fit; using std::vector<SrcMapElem, Allocator>::size; explicit SrcMap() {} explicit SrcMap(const Allocator& alloc) : std::vector<SrcMapElem, Allocator>(alloc) {} template <class InputIt> SrcMap(InputIt first, InputIt last, const Allocator& alloc) : std::vector<SrcMapElem, Allocator>(first, last, alloc) {} void push_back(const SrcMapElem& elem) { if (!empty()) { // Check that the addresses are inserted in sorted order. DCHECK_GE(elem.from_, this->back().from_); // If two consequitive entries map to the same value, ignore the later. // E.g. for map {{0, 1}, {4, 1}, {8, 2}}, all values in [0,8) map to 1. if (elem.to_ == this->back().to_) { return; } } std::vector<SrcMapElem, Allocator>::push_back(elem); } // Returns true and the corresponding "to" value if the mapping is found. // Oterwise returns false and 0. std::pair<bool, int32_t> Find(uint32_t from) const { // Finds first mapping such that lb.from_ >= from. auto lb = std::lower_bound(begin(), end(), SrcMapElem {from, INT32_MIN}); if (lb != end() && lb->from_ == from) { // Found exact match. return std::make_pair(true, lb->to_); } else if (lb != begin()) { // The previous mapping is still in effect. return std::make_pair(true, (--lb)->to_); } else { // Not found because 'from' is smaller than first entry in the map. return std::make_pair(false, 0); } } }; using DefaultSrcMap = SrcMap<std::allocator<SrcMapElem>>; class LinkerPatch { public: // Note: We explicitly specify the underlying type of the enum because GCC // would otherwise select a bigger underlying type and then complain that // 'art::LinkerPatch::patch_type_' is too small to hold all // values of 'enum class art::LinkerPatch::Type' // which is ridiculous given we have only a handful of values here. If we // choose to squeeze the Type into fewer than 8 bits, we'll have to declare // patch_type_ as an uintN_t and do explicit static_cast<>s. enum class Type : uint8_t { kRecordPosition, // Just record patch position for patchoat. kMethod, kCall, kCallRelative, // NOTE: Actual patching is instruction_set-dependent. kType, kString, kStringRelative, // NOTE: Actual patching is instruction_set-dependent. kDexCacheArray, // NOTE: Actual patching is instruction_set-dependent. }; static LinkerPatch RecordPosition(size_t literal_offset) { return LinkerPatch(literal_offset, Type::kRecordPosition, /* target_dex_file */ nullptr); } static LinkerPatch MethodPatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t target_method_idx) { LinkerPatch patch(literal_offset, Type::kMethod, target_dex_file); patch.method_idx_ = target_method_idx; return patch; } static LinkerPatch CodePatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t target_method_idx) { LinkerPatch patch(literal_offset, Type::kCall, target_dex_file); patch.method_idx_ = target_method_idx; return patch; } static LinkerPatch RelativeCodePatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t target_method_idx) { LinkerPatch patch(literal_offset, Type::kCallRelative, target_dex_file); patch.method_idx_ = target_method_idx; return patch; } static LinkerPatch TypePatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t target_type_idx) { LinkerPatch patch(literal_offset, Type::kType, target_dex_file); patch.type_idx_ = target_type_idx; return patch; } static LinkerPatch StringPatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t target_string_idx) { LinkerPatch patch(literal_offset, Type::kString, target_dex_file); patch.string_idx_ = target_string_idx; return patch; } static LinkerPatch RelativeStringPatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t pc_insn_offset, uint32_t target_string_idx) { LinkerPatch patch(literal_offset, Type::kStringRelative, target_dex_file); patch.string_idx_ = target_string_idx; patch.pc_insn_offset_ = pc_insn_offset; return patch; } static LinkerPatch DexCacheArrayPatch(size_t literal_offset, const DexFile* target_dex_file, uint32_t pc_insn_offset, size_t element_offset) { DCHECK(IsUint<32>(element_offset)); LinkerPatch patch(literal_offset, Type::kDexCacheArray, target_dex_file); patch.pc_insn_offset_ = pc_insn_offset; patch.element_offset_ = element_offset; return patch; } LinkerPatch(const LinkerPatch& other) = default; LinkerPatch& operator=(const LinkerPatch& other) = default; size_t LiteralOffset() const { return literal_offset_; } Type GetType() const { return patch_type_; } bool IsPcRelative() const { switch (GetType()) { case Type::kCallRelative: case Type::kStringRelative: case Type::kDexCacheArray: return true; default: return false; } } MethodReference TargetMethod() const { DCHECK(patch_type_ == Type::kMethod || patch_type_ == Type::kCall || patch_type_ == Type::kCallRelative); return MethodReference(target_dex_file_, method_idx_); } const DexFile* TargetTypeDexFile() const { DCHECK(patch_type_ == Type::kType); return target_dex_file_; } uint32_t TargetTypeIndex() const { DCHECK(patch_type_ == Type::kType); return type_idx_; } const DexFile* TargetStringDexFile() const { DCHECK(patch_type_ == Type::kString || patch_type_ == Type::kStringRelative); return target_dex_file_; } uint32_t TargetStringIndex() const { DCHECK(patch_type_ == Type::kString || patch_type_ == Type::kStringRelative); return string_idx_; } const DexFile* TargetDexCacheDexFile() const { DCHECK(patch_type_ == Type::kDexCacheArray); return target_dex_file_; } size_t TargetDexCacheElementOffset() const { DCHECK(patch_type_ == Type::kDexCacheArray); return element_offset_; } uint32_t PcInsnOffset() const { DCHECK(patch_type_ == Type::kStringRelative || patch_type_ == Type::kDexCacheArray); return pc_insn_offset_; } private: LinkerPatch(size_t literal_offset, Type patch_type, const DexFile* target_dex_file) : target_dex_file_(target_dex_file), literal_offset_(literal_offset), patch_type_(patch_type) { cmp1_ = 0u; cmp2_ = 0u; // The compiler rejects methods that are too big, so the compiled code // of a single method really shouln't be anywhere close to 16MiB. DCHECK(IsUint<24>(literal_offset)); } const DexFile* target_dex_file_; uint32_t literal_offset_ : 24; // Method code size up to 16MiB. Type patch_type_ : 8; union { uint32_t cmp1_; // Used for relational operators. uint32_t method_idx_; // Method index for Call/Method patches. uint32_t type_idx_; // Type index for Type patches. uint32_t string_idx_; // String index for String patches. uint32_t element_offset_; // Element offset in the dex cache arrays. static_assert(sizeof(method_idx_) == sizeof(cmp1_), "needed by relational operators"); static_assert(sizeof(type_idx_) == sizeof(cmp1_), "needed by relational operators"); static_assert(sizeof(string_idx_) == sizeof(cmp1_), "needed by relational operators"); static_assert(sizeof(element_offset_) == sizeof(cmp1_), "needed by relational operators"); }; union { // Note: To avoid uninitialized padding on 64-bit systems, we use `size_t` for `cmp2_`. // This allows a hashing function to treat an array of linker patches as raw memory. size_t cmp2_; // Used for relational operators. // Literal offset of the insn loading PC (same as literal_offset if it's the same insn, // may be different if the PC-relative addressing needs multiple insns). uint32_t pc_insn_offset_; static_assert(sizeof(pc_insn_offset_) <= sizeof(cmp2_), "needed by relational operators"); }; friend bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs); friend bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs); }; std::ostream& operator<<(std::ostream& os, const LinkerPatch::Type& type); inline bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs) { return lhs.literal_offset_ == rhs.literal_offset_ && lhs.patch_type_ == rhs.patch_type_ && lhs.target_dex_file_ == rhs.target_dex_file_ && lhs.cmp1_ == rhs.cmp1_ && lhs.cmp2_ == rhs.cmp2_; } inline bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs) { return (lhs.literal_offset_ != rhs.literal_offset_) ? lhs.literal_offset_ < rhs.literal_offset_ : (lhs.patch_type_ != rhs.patch_type_) ? lhs.patch_type_ < rhs.patch_type_ : (lhs.target_dex_file_ != rhs.target_dex_file_) ? lhs.target_dex_file_ < rhs.target_dex_file_ : (lhs.cmp1_ != rhs.cmp1_) ? lhs.cmp1_ < rhs.cmp1_ : lhs.cmp2_ < rhs.cmp2_; } class CompiledMethod FINAL : public CompiledCode { public: // Constructs a CompiledMethod. // Note: Consider using the static allocation methods below that will allocate the CompiledMethod // in the swap space. CompiledMethod(CompilerDriver* driver, InstructionSet instruction_set, const ArrayRef<const uint8_t>& quick_code, const size_t frame_size_in_bytes, const uint32_t core_spill_mask, const uint32_t fp_spill_mask, const ArrayRef<const SrcMapElem>& src_mapping_table, const ArrayRef<const uint8_t>& vmap_table, const ArrayRef<const uint8_t>& cfi_info, const ArrayRef<const LinkerPatch>& patches); virtual ~CompiledMethod(); static CompiledMethod* SwapAllocCompiledMethod( CompilerDriver* driver, InstructionSet instruction_set, const ArrayRef<const uint8_t>& quick_code, const size_t frame_size_in_bytes, const uint32_t core_spill_mask, const uint32_t fp_spill_mask, const ArrayRef<const SrcMapElem>& src_mapping_table, const ArrayRef<const uint8_t>& vmap_table, const ArrayRef<const uint8_t>& cfi_info, const ArrayRef<const LinkerPatch>& patches); static void ReleaseSwapAllocatedCompiledMethod(CompilerDriver* driver, CompiledMethod* m); size_t GetFrameSizeInBytes() const { return frame_size_in_bytes_; } uint32_t GetCoreSpillMask() const { return core_spill_mask_; } uint32_t GetFpSpillMask() const { return fp_spill_mask_; } ArrayRef<const SrcMapElem> GetSrcMappingTable() const { return GetArray(src_mapping_table_); } ArrayRef<const uint8_t> GetVmapTable() const { return GetArray(vmap_table_); } ArrayRef<const uint8_t> GetCFIInfo() const { return GetArray(cfi_info_); } ArrayRef<const LinkerPatch> GetPatches() const { return GetArray(patches_); } private: // For quick code, the size of the activation used by the code. const size_t frame_size_in_bytes_; // For quick code, a bit mask describing spilled GPR callee-save registers. const uint32_t core_spill_mask_; // For quick code, a bit mask describing spilled FPR callee-save registers. const uint32_t fp_spill_mask_; // For quick code, a set of pairs (PC, DEX) mapping from native PC offset to DEX offset. const LengthPrefixedArray<SrcMapElem>* const src_mapping_table_; // For quick code, a uleb128 encoded map from GPR/FPR register to dex register. Size prefixed. const LengthPrefixedArray<uint8_t>* const vmap_table_; // For quick code, a FDE entry for the debug_frame section. const LengthPrefixedArray<uint8_t>* const cfi_info_; // For quick code, linker patches needed by the method. const LengthPrefixedArray<LinkerPatch>* const patches_; }; } // namespace art #endif // ART_COMPILER_COMPILED_METHOD_H_