/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_writer.h" #include <sys/stat.h> #include <lz4.h> #include <lz4hc.h> #include <memory> #include <numeric> #include <unordered_set> #include <vector> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/logging.h" #include "base/unix_file/fd_file.h" #include "class_linker-inl.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "elf_file.h" #include "elf_utils.h" #include "elf_writer.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "globals.h" #include "image.h" #include "intern_table.h" #include "linear_alloc.h" #include "lock_word.h" #include "mirror/abstract_method.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/method.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "oat.h" #include "oat_file.h" #include "oat_file_manager.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "handle_scope-inl.h" #include "utils/dex_cache_arrays_layout-inl.h" using ::art::mirror::Class; using ::art::mirror::DexCache; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::String; namespace art { // Separate objects into multiple bins to optimize dirty memory use. static constexpr bool kBinObjects = true; // Return true if an object is already in an image space. bool ImageWriter::IsInBootImage(const void* obj) const { gc::Heap* const heap = Runtime::Current()->GetHeap(); if (!compile_app_image_) { DCHECK(heap->GetBootImageSpaces().empty()); return false; } for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { const uint8_t* image_begin = boot_image_space->Begin(); // Real image end including ArtMethods and ArtField sections. const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize(); if (image_begin <= obj && obj < image_end) { return true; } } return false; } bool ImageWriter::IsInBootOatFile(const void* ptr) const { gc::Heap* const heap = Runtime::Current()->GetHeap(); if (!compile_app_image_) { DCHECK(heap->GetBootImageSpaces().empty()); return false; } for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) { const ImageHeader& image_header = boot_image_space->GetImageHeader(); if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) { return true; } } return false; } static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) SHARED_REQUIRES(Locks::mutator_lock_) { Class* klass = obj->GetClass(); CHECK_NE(PrettyClass(klass), "com.android.dex.Dex"); } static void CheckNoDexObjects() { ScopedObjectAccess soa(Thread::Current()); Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr); } bool ImageWriter::PrepareImageAddressSpace() { target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); gc::Heap* const heap = Runtime::Current()->GetHeap(); { ScopedObjectAccess soa(Thread::Current()); PruneNonImageClasses(); // Remove junk if (!compile_app_image_) { // Avoid for app image since this may increase RAM and image size. ComputeLazyFieldsForImageClasses(); // Add useful information } } heap->CollectGarbage(false); // Remove garbage. // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped // dex files. // // We may open them in the unstarted-runtime code for class metadata. Their fields should all be // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually // true. if (kIsDebugBuild) { CheckNoDexObjects(); } if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); CheckNonImageClassesRemoved(); } { ScopedObjectAccess soa(Thread::Current()); CalculateNewObjectOffsets(); } // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and // bin size sums being calculated. if (!AllocMemory()) { return false; } return true; } bool ImageWriter::Write(int image_fd, const std::vector<const char*>& image_filenames, const std::vector<const char*>& oat_filenames) { // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or // oat_filenames. CHECK(!image_filenames.empty()); if (image_fd != kInvalidFd) { CHECK_EQ(image_filenames.size(), 1u); } CHECK(!oat_filenames.empty()); CHECK_EQ(image_filenames.size(), oat_filenames.size()); { ScopedObjectAccess soa(Thread::Current()); for (size_t i = 0; i < oat_filenames.size(); ++i) { CreateHeader(i); CopyAndFixupNativeData(i); } } { // TODO: heap validation can't handle these fix up passes. ScopedObjectAccess soa(Thread::Current()); Runtime::Current()->GetHeap()->DisableObjectValidation(); CopyAndFixupObjects(); } for (size_t i = 0; i < image_filenames.size(); ++i) { const char* image_filename = image_filenames[i]; ImageInfo& image_info = GetImageInfo(i); std::unique_ptr<File> image_file; if (image_fd != kInvalidFd) { if (strlen(image_filename) == 0u) { image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage)); // Empty the file in case it already exists. if (image_file != nullptr) { TEMP_FAILURE_RETRY(image_file->SetLength(0)); TEMP_FAILURE_RETRY(image_file->Flush()); } } else { LOG(ERROR) << "image fd " << image_fd << " name " << image_filename; } } else { image_file.reset(OS::CreateEmptyFile(image_filename)); } if (image_file == nullptr) { LOG(ERROR) << "Failed to open image file " << image_filename; return false; } if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; image_file->Erase(); return EXIT_FAILURE; } std::unique_ptr<char[]> compressed_data; // Image data size excludes the bitmap and the header. ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader); char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader); size_t data_size; const char* image_data_to_write; const uint64_t compress_start_time = NanoTime(); CHECK_EQ(image_header->storage_mode_, image_storage_mode_); switch (image_storage_mode_) { case ImageHeader::kStorageModeLZ4HC: // Fall-through. case ImageHeader::kStorageModeLZ4: { const size_t compressed_max_size = LZ4_compressBound(image_data_size); compressed_data.reset(new char[compressed_max_size]); data_size = LZ4_compress( reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), &compressed_data[0], image_data_size); break; } /* * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444 case ImageHeader::kStorageModeLZ4HC: { // Bound is same as non HC. const size_t compressed_max_size = LZ4_compressBound(image_data_size); compressed_data.reset(new char[compressed_max_size]); data_size = LZ4_compressHC( reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader), &compressed_data[0], image_data_size); break; } */ case ImageHeader::kStorageModeUncompressed: { data_size = image_data_size; image_data_to_write = image_data; break; } default: { LOG(FATAL) << "Unsupported"; UNREACHABLE(); } } if (compressed_data != nullptr) { image_data_to_write = &compressed_data[0]; VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in " << PrettyDuration(NanoTime() - compress_start_time); if (kIsDebugBuild) { std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]); const size_t decompressed_size = LZ4_decompress_safe( reinterpret_cast<char*>(&compressed_data[0]), reinterpret_cast<char*>(&temp[0]), data_size, image_data_size); CHECK_EQ(decompressed_size, image_data_size); CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_; } } // Write out the image + fields + methods. const bool is_compressed = compressed_data != nullptr; if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) { PLOG(ERROR) << "Failed to write image file data " << image_filename; image_file->Erase(); return false; } // Write out the image bitmap at the page aligned start of the image end, also uncompressed for // convenience. const ImageSection& bitmap_section = image_header->GetImageSection( ImageHeader::kSectionImageBitmap); // Align up since data size may be unaligned if the image is compressed. size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize); if (!is_compressed) { CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset()); } if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()), bitmap_section.Size(), bitmap_position_in_file)) { PLOG(ERROR) << "Failed to write image file " << image_filename; image_file->Erase(); return false; } int err = image_file->Flush(); if (err < 0) { PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err; image_file->Erase(); return false; } // Write header last in case the compiler gets killed in the middle of image writing. // We do not want to have a corrupted image with a valid header. // The header is uncompressed since it contains whether the image is compressed or not. image_header->data_size_ = data_size; if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()), sizeof(ImageHeader), 0)) { PLOG(ERROR) << "Failed to write image file header " << image_filename; image_file->Erase(); return false; } CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(), static_cast<size_t>(image_file->GetLength())); if (image_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close image file " << image_filename; return false; } } return true; } void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { DCHECK(object != nullptr); DCHECK_NE(offset, 0U); // The object is already deflated from when we set the bin slot. Just overwrite the lock word. object->SetLockWord(LockWord::FromForwardingAddress(offset), false); DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); DCHECK(IsImageOffsetAssigned(object)); } void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) { DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset; obj->SetLockWord(LockWord::FromForwardingAddress(offset), false); DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u); } void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { DCHECK(object != nullptr); DCHECK_NE(image_objects_offset_begin_, 0u); size_t oat_index = GetOatIndex(object); ImageInfo& image_info = GetImageInfo(oat_index); size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()]; size_t new_offset = bin_slot_offset + bin_slot.GetIndex(); DCHECK_ALIGNED(new_offset, kObjectAlignment); SetImageOffset(object, new_offset); DCHECK_LT(new_offset, image_info.image_end_); } bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { // Will also return true if the bin slot was assigned since we are reusing the lock word. DCHECK(object != nullptr); return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; } size_t ImageWriter::GetImageOffset(mirror::Object* object) const { DCHECK(object != nullptr); DCHECK(IsImageOffsetAssigned(object)); LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); size_t oat_index = GetOatIndex(object); const ImageInfo& image_info = GetImageInfo(oat_index); DCHECK_LT(offset, image_info.image_end_); return offset; } void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { DCHECK(object != nullptr); DCHECK(!IsImageOffsetAssigned(object)); DCHECK(!IsImageBinSlotAssigned(object)); // Before we stomp over the lock word, save the hash code for later. LockWord lw(object->GetLockWord(false)); switch (lw.GetState()) { case LockWord::kFatLocked: { LOG(FATAL) << "Fat locked object " << object << " found during object copy"; break; } case LockWord::kThinLocked: { LOG(FATAL) << "Thin locked object " << object << " found during object copy"; break; } case LockWord::kUnlocked: // No hash, don't need to save it. break; case LockWord::kHashCode: DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end()); saved_hashcode_map_.emplace(object, lw.GetHashCode()); break; default: LOG(FATAL) << "Unreachable."; UNREACHABLE(); } object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false); DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u); DCHECK(IsImageBinSlotAssigned(object)); } void ImageWriter::PrepareDexCacheArraySlots() { // Prepare dex cache array starts based on the ordering specified in the CompilerDriver. // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() // when AssignImageBinSlot() assigns their indexes out or order. for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) { auto it = dex_file_oat_index_map_.find(dex_file); DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); ImageInfo& image_info = GetImageInfo(it->second); image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]); DexCacheArraysLayout layout(target_ptr_size_, dex_file); image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size(); } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *class_linker->DexLock()); for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache == nullptr || IsInBootImage(dex_cache)) { continue; } const DexFile* dex_file = dex_cache->GetDexFile(); CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end()) << "Dex cache should have been pruned " << dex_file->GetLocation() << "; possibly in class path"; DexCacheArraysLayout layout(target_ptr_size_, dex_file); DCHECK(layout.Valid()); size_t oat_index = GetOatIndexForDexCache(dex_cache); ImageInfo& image_info = GetImageInfo(oat_index); uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file); DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr); AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(), start + layout.TypesOffset(), dex_cache); DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr); AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(), start + layout.MethodsOffset(), dex_cache); DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr); AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(), start + layout.FieldsOffset(), dex_cache); DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr); AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache); } } void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) { if (array != nullptr) { DCHECK(!IsInBootImage(array)); size_t oat_index = GetOatIndexForDexCache(dex_cache); native_object_relocations_.emplace(array, NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray }); } } void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) { DCHECK(arr != nullptr); if (kIsDebugBuild) { for (size_t i = 0, len = arr->GetLength(); i < len; i++) { ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_); if (method != nullptr && !method->IsRuntimeMethod()) { mirror::Class* klass = method->GetDeclaringClass(); CHECK(klass == nullptr || KeepClass(klass)) << PrettyClass(klass) << " should be a kept class"; } } } // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and // ArtMethods. pointer_arrays_.emplace(arr, kBinArtMethodClean); } void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) { DCHECK(object != nullptr); size_t object_size = object->SizeOf(); // The magic happens here. We segregate objects into different bins based // on how likely they are to get dirty at runtime. // // Likely-to-dirty objects get packed together into the same bin so that // at runtime their page dirtiness ratio (how many dirty objects a page has) is // maximized. // // This means more pages will stay either clean or shared dirty (with zygote) and // the app will use less of its own (private) memory. Bin bin = kBinRegular; size_t current_offset = 0u; if (kBinObjects) { // // Changing the bin of an object is purely a memory-use tuning. // It has no change on runtime correctness. // // Memory analysis has determined that the following types of objects get dirtied // the most: // // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have // a fixed layout which helps improve generated code (using PC-relative addressing), // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). // Since these arrays are huge, most pages do not overlap other objects and it's not // really important where they are for the clean/dirty separation. Due to their // special PC-relative addressing, we arbitrarily keep them at the end. // * Class'es which are verified [their clinit runs only at runtime] // - classes in general [because their static fields get overwritten] // - initialized classes with all-final statics are unlikely to be ever dirty, // so bin them separately // * Art Methods that are: // - native [their native entry point is not looked up until runtime] // - have declaring classes that aren't initialized // [their interpreter/quick entry points are trampolines until the class // becomes initialized] // // We also assume the following objects get dirtied either never or extremely rarely: // * Strings (they are immutable) // * Art methods that aren't native and have initialized declared classes // // We assume that "regular" bin objects are highly unlikely to become dirtied, // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. // if (object->IsClass()) { bin = kBinClassVerified; mirror::Class* klass = object->AsClass(); // Add non-embedded vtable to the pointer array table if there is one. auto* vtable = klass->GetVTable(); if (vtable != nullptr) { AddMethodPointerArray(vtable); } auto* iftable = klass->GetIfTable(); if (iftable != nullptr) { for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { if (iftable->GetMethodArrayCount(i) > 0) { AddMethodPointerArray(iftable->GetMethodArray(i)); } } } if (klass->GetStatus() == Class::kStatusInitialized) { bin = kBinClassInitialized; // If the class's static fields are all final, put it into a separate bin // since it's very likely it will stay clean. uint32_t num_static_fields = klass->NumStaticFields(); if (num_static_fields == 0) { bin = kBinClassInitializedFinalStatics; } else { // Maybe all the statics are final? bool all_final = true; for (uint32_t i = 0; i < num_static_fields; ++i) { ArtField* field = klass->GetStaticField(i); if (!field->IsFinal()) { all_final = false; break; } } if (all_final) { bin = kBinClassInitializedFinalStatics; } } } } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { bin = kBinString; // Strings are almost always immutable (except for object header). } else if (object->GetClass<kVerifyNone>() == Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) { // Instance of java lang object, probably a lock object. This means it will be dirty when we // synchronize on it. bin = kBinMiscDirty; } else if (object->IsDexCache()) { // Dex file field becomes dirty when the image is loaded. bin = kBinMiscDirty; } // else bin = kBinRegular } // Assign the oat index too. DCHECK(oat_index_map_.find(object) == oat_index_map_.end()); oat_index_map_.emplace(object, oat_index); ImageInfo& image_info = GetImageInfo(oat_index); size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). // Move the current bin size up to accommodate the object we just assigned a bin slot. image_info.bin_slot_sizes_[bin] += offset_delta; BinSlot new_bin_slot(bin, current_offset); SetImageBinSlot(object, new_bin_slot); ++image_info.bin_slot_count_[bin]; // Grow the image closer to the end by the object we just assigned. image_info.image_end_ += offset_delta; } bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const { if (m->IsNative()) { return true; } mirror::Class* declaring_class = m->GetDeclaringClass(); // Initialized is highly unlikely to dirty since there's no entry points to mutate. return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized; } bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { DCHECK(object != nullptr); // We always stash the bin slot into a lockword, in the 'forwarding address' state. // If it's in some other state, then we haven't yet assigned an image bin slot. if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { return false; } else if (kIsDebugBuild) { LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); BinSlot bin_slot(offset); size_t oat_index = GetOatIndex(object); const ImageInfo& image_info = GetImageInfo(oat_index); DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]) << "bin slot offset should not exceed the size of that bin"; } return true; } ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { DCHECK(object != nullptr); DCHECK(IsImageBinSlotAssigned(object)); LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); BinSlot bin_slot(static_cast<uint32_t>(offset)); size_t oat_index = GetOatIndex(object); const ImageInfo& image_info = GetImageInfo(oat_index); DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]); return bin_slot; } bool ImageWriter::AllocMemory() { for (ImageInfo& image_info : image_infos_) { ImageSection unused_sections[ImageHeader::kSectionCount]; const size_t length = RoundUp( image_info.CreateImageSections(unused_sections), kPageSize); std::string error_msg; image_info.image_.reset(MemMap::MapAnonymous("image writer image", nullptr, length, PROT_READ | PROT_WRITE, false, false, &error_msg)); if (UNLIKELY(image_info.image_.get() == nullptr)) { LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; return false; } // Create the image bitmap, only needs to cover mirror object section which is up to image_end_. CHECK_LE(image_info.image_end_, length); image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create( "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize))); if (image_info.image_bitmap_.get() == nullptr) { LOG(ERROR) << "Failed to allocate memory for image bitmap"; return false; } } return true; } class ComputeLazyFieldsForClassesVisitor : public ClassVisitor { public: bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { StackHandleScope<1> hs(Thread::Current()); mirror::Class::ComputeName(hs.NewHandle(c)); return true; } }; void ImageWriter::ComputeLazyFieldsForImageClasses() { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ComputeLazyFieldsForClassesVisitor visitor; class_linker->VisitClassesWithoutClassesLock(&visitor); } static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { return klass->GetClassLoader() == nullptr; } bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) { return IsBootClassLoaderClass(klass) && !IsInBootImage(klass); } bool ImageWriter::PruneAppImageClass(mirror::Class* klass) { bool early_exit = false; std::unordered_set<mirror::Class*> visited; return PruneAppImageClassInternal(klass, &early_exit, &visited); } bool ImageWriter::PruneAppImageClassInternal( mirror::Class* klass, bool* early_exit, std::unordered_set<mirror::Class*>* visited) { DCHECK(early_exit != nullptr); DCHECK(visited != nullptr); DCHECK(compile_app_image_); if (klass == nullptr || IsInBootImage(klass)) { return false; } auto found = prune_class_memo_.find(klass); if (found != prune_class_memo_.end()) { // Already computed, return the found value. return found->second; } // Circular dependencies, return false but do not store the result in the memoization table. if (visited->find(klass) != visited->end()) { *early_exit = true; return false; } visited->emplace(klass); bool result = IsBootClassLoaderClass(klass); std::string temp; // Prune if not an image class, this handles any broken sets of image classes such as having a // class in the set but not it's superclass. result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); bool my_early_exit = false; // Only for ourselves, ignore caller. // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the // app image. if (klass->GetStatus() == mirror::Class::kStatusError) { result = true; } else { CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass); } if (!result) { // Check interfaces since these wont be visited through VisitReferences.) mirror::IfTable* if_table = klass->GetIfTable(); for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { result = result || PruneAppImageClassInternal(if_table->GetInterface(i), &my_early_exit, visited); } } if (klass->IsObjectArrayClass()) { result = result || PruneAppImageClassInternal(klass->GetComponentType(), &my_early_exit, visited); } // Check static fields and their classes. size_t num_static_fields = klass->NumReferenceStaticFields(); if (num_static_fields != 0 && klass->IsResolved()) { // Presumably GC can happen when we are cross compiling, it should not cause performance // problems to do pointer size logic. MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset( Runtime::Current()->GetClassLinker()->GetImagePointerSize()); for (size_t i = 0u; i < num_static_fields; ++i) { mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset); if (ref != nullptr) { if (ref->IsClass()) { result = result || PruneAppImageClassInternal(ref->AsClass(), &my_early_exit, visited); } else { result = result || PruneAppImageClassInternal(ref->GetClass(), &my_early_exit, visited); } } field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference<mirror::Object>)); } } result = result || PruneAppImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited); // Erase the element we stored earlier since we are exiting the function. auto it = visited->find(klass); DCHECK(it != visited->end()); visited->erase(it); // Only store result if it is true or none of the calls early exited due to circular // dependencies. If visited is empty then we are the root caller, in this case the cycle was in // a child call and we can remember the result. if (result == true || !my_early_exit || visited->empty()) { prune_class_memo_[klass] = result; } *early_exit |= my_early_exit; return result; } bool ImageWriter::KeepClass(Class* klass) { if (klass == nullptr) { return false; } if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { // Already in boot image, return true. return true; } std::string temp; if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) { return false; } if (compile_app_image_) { // For app images, we need to prune boot loader classes that are not in the boot image since // these may have already been loaded when the app image is loaded. // Keep classes in the boot image space since we don't want to re-resolve these. return !PruneAppImageClass(klass); } return true; } class NonImageClassesVisitor : public ClassVisitor { public: explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { if (!image_writer_->KeepClass(klass)) { classes_to_prune_.insert(klass); } return true; } std::unordered_set<mirror::Class*> classes_to_prune_; ImageWriter* const image_writer_; }; void ImageWriter::PruneNonImageClasses() { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); Thread* self = Thread::Current(); // Clear class table strong roots so that dex caches can get pruned. We require pruning the class // path dex caches. class_linker->ClearClassTableStrongRoots(); // Make a list of classes we would like to prune. NonImageClassesVisitor visitor(this); class_linker->VisitClasses(&visitor); // Remove the undesired classes from the class roots. VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes"; for (mirror::Class* klass : visitor.classes_to_prune_) { std::string temp; const char* name = klass->GetDescriptor(&temp); VLOG(compiler) << "Pruning class " << name; if (!compile_app_image_) { DCHECK(IsBootClassLoaderClass(klass)); } bool result = class_linker->RemoveClass(name, klass->GetClassLoader()); DCHECK(result); } // Clear references to removed classes from the DexCaches. ArtMethod* resolution_method = runtime->GetResolutionMethod(); ScopedAssertNoThreadSuspension sa(self, __FUNCTION__); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // For ClassInClassTable ReaderMutexLock mu2(self, *class_linker->DexLock()); for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { if (self->IsJWeakCleared(data.weak_root)) { continue; } mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache(); for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { Class* klass = dex_cache->GetResolvedType(i); if (klass != nullptr && !KeepClass(klass)) { dex_cache->SetResolvedType(i, nullptr); } } ArtMethod** resolved_methods = dex_cache->GetResolvedMethods(); for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) { ArtMethod* method = mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_); DCHECK(method != nullptr) << "Expected resolution method instead of null method"; mirror::Class* declaring_class = method->GetDeclaringClass(); // Copied methods may be held live by a class which was not an image class but have a // declaring class which is an image class. Set it to the resolution method to be safe and // prevent dangling pointers. if (method->IsCopied() || !KeepClass(declaring_class)) { mirror::DexCache::SetElementPtrSize(resolved_methods, i, resolution_method, target_ptr_size_); } else { // Check that the class is still in the classes table. DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class " << PrettyClass(declaring_class) << " not in class linker table"; } } ArtField** resolved_fields = dex_cache->GetResolvedFields(); for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_); if (field != nullptr && !KeepClass(field->GetDeclaringClass())) { dex_cache->SetResolvedField(i, nullptr, target_ptr_size_); } } // Clean the dex field. It might have been populated during the initialization phase, but // contains data only valid during a real run. dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr); } // Drop the array class cache in the ClassLinker, as these are roots holding those classes live. class_linker->DropFindArrayClassCache(); // Clear to save RAM. prune_class_memo_.clear(); } void ImageWriter::CheckNonImageClassesRemoved() { if (compiler_driver_.GetImageClasses() != nullptr) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); } } void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); if (obj->IsClass() && !image_writer->IsInBootImage(obj)) { Class* klass = obj->AsClass(); if (!image_writer->KeepClass(klass)) { image_writer->DumpImageClasses(); std::string temp; CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp) << " " << PrettyDescriptor(klass); } } } void ImageWriter::DumpImageClasses() { auto image_classes = compiler_driver_.GetImageClasses(); CHECK(image_classes != nullptr); for (const std::string& image_class : *image_classes) { LOG(INFO) << " " << image_class; } } mirror::String* ImageWriter::FindInternedString(mirror::String* string) { Thread* const self = Thread::Current(); for (const ImageInfo& image_info : image_infos_) { mirror::String* const found = image_info.intern_table_->LookupStrong(self, string); DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr) << string->ToModifiedUtf8(); if (found != nullptr) { return found; } } if (compile_app_image_) { Runtime* const runtime = Runtime::Current(); mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string); // If we found it in the runtime intern table it could either be in the boot image or interned // during app image compilation. If it was in the boot image return that, otherwise return null // since it belongs to another image space. if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) { return found; } DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr) << string->ToModifiedUtf8(); } return nullptr; } ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); Thread* self = Thread::Current(); StackHandleScope<3> hs(self); Handle<Class> object_array_class(hs.NewHandle( class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); std::unordered_set<const DexFile*> image_dex_files; for (auto& pair : dex_file_oat_index_map_) { const DexFile* image_dex_file = pair.first; size_t image_oat_index = pair.second; if (oat_index == image_oat_index) { image_dex_files.insert(image_dex_file); } } // build an Object[] of all the DexCaches used in the source_space_. // Since we can't hold the dex lock when allocating the dex_caches // ObjectArray, we lock the dex lock twice, first to get the number // of dex caches first and then lock it again to copy the dex // caches. We check that the number of dex caches does not change. size_t dex_cache_count = 0; { ReaderMutexLock mu(self, *class_linker->DexLock()); // Count number of dex caches not in the boot image. for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache == nullptr) { continue; } const DexFile* dex_file = dex_cache->GetDexFile(); if (!IsInBootImage(dex_cache)) { dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; } } } Handle<ObjectArray<Object>> dex_caches( hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count))); CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; { ReaderMutexLock mu(self, *class_linker->DexLock()); size_t non_image_dex_caches = 0; // Re-count number of non image dex caches. for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache == nullptr) { continue; } const DexFile* dex_file = dex_cache->GetDexFile(); if (!IsInBootImage(dex_cache)) { non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u; } } CHECK_EQ(dex_cache_count, non_image_dex_caches) << "The number of non-image dex caches changed."; size_t i = 0; for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) { mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root)); if (dex_cache == nullptr) { continue; } const DexFile* dex_file = dex_cache->GetDexFile(); if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) { dex_caches->Set<false>(i, dex_cache); ++i; } } } // build an Object[] of the roots needed to restore the runtime auto image_roots(hs.NewHandle( ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { CHECK(image_roots->Get(i) != nullptr); } return image_roots.Get(); } mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack, mirror::Object* obj, size_t oat_index) { if (obj == nullptr || IsInBootImage(obj)) { // Object is null or already in the image, there is no work to do. return obj; } if (!IsImageBinSlotAssigned(obj)) { // We want to intern all strings but also assign offsets for the source string. Since the // pruning phase has already happened, if we intern a string to one in the image we still // end up copying an unreachable string. if (obj->IsString()) { // Need to check if the string is already interned in another image info so that we don't have // the intern tables of two different images contain the same string. mirror::String* interned = FindInternedString(obj->AsString()); if (interned == nullptr) { // Not in another image space, insert to our table. interned = GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()); DCHECK_EQ(interned, obj); } } else if (obj->IsDexCache()) { oat_index = GetOatIndexForDexCache(obj->AsDexCache()); } else if (obj->IsClass()) { // Visit and assign offsets for fields and field arrays. mirror::Class* as_klass = obj->AsClass(); mirror::DexCache* dex_cache = as_klass->GetDexCache(); DCHECK_NE(as_klass->GetStatus(), mirror::Class::kStatusError); if (compile_app_image_) { // Extra sanity, no boot loader classes should be left! CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass); } LengthPrefixedArray<ArtField>* fields[] = { as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(), }; // Overwrite the oat index value since the class' dex cache is more accurate of where it // belongs. oat_index = GetOatIndexForDexCache(dex_cache); ImageInfo& image_info = GetImageInfo(oat_index); { // Note: This table is only accessed from the image writer, avoid locking to prevent lock // order violations from root visiting. image_info.class_table_->InsertWithoutLocks(as_klass); } for (LengthPrefixedArray<ArtField>* cur_fields : fields) { // Total array length including header. if (cur_fields != nullptr) { const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0); // Forward the entire array at once. auto it = native_object_relocations_.find(cur_fields); CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields << " already forwarded"; size_t& offset = image_info.bin_slot_sizes_[kBinArtField]; DCHECK(!IsInBootImage(cur_fields)); native_object_relocations_.emplace( cur_fields, NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtFieldArray }); offset += header_size; // Forward individual fields so that we can quickly find where they belong. for (size_t i = 0, count = cur_fields->size(); i < count; ++i) { // Need to forward arrays separate of fields. ArtField* field = &cur_fields->At(i); auto it2 = native_object_relocations_.find(field); CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i << " already assigned " << PrettyField(field) << " static=" << field->IsStatic(); DCHECK(!IsInBootImage(field)); native_object_relocations_.emplace( field, NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField }); offset += sizeof(ArtField); } } } // Visit and assign offsets for methods. size_t num_methods = as_klass->NumMethods(); if (num_methods != 0) { bool any_dirty = false; for (auto& m : as_klass->GetMethods(target_ptr_size_)) { if (WillMethodBeDirty(&m)) { any_dirty = true; break; } } NativeObjectRelocationType type = any_dirty ? kNativeObjectRelocationTypeArtMethodDirty : kNativeObjectRelocationTypeArtMethodClean; Bin bin_type = BinTypeForNativeRelocationType(type); // Forward the entire array at once, but header first. const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); const size_t method_size = ArtMethod::Size(target_ptr_size_); const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0, method_size, method_alignment); LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr(); auto it = native_object_relocations_.find(array); CHECK(it == native_object_relocations_.end()) << "Method array " << array << " already forwarded"; size_t& offset = image_info.bin_slot_sizes_[bin_type]; DCHECK(!IsInBootImage(array)); native_object_relocations_.emplace(array, NativeObjectRelocation { oat_index, offset, any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty : kNativeObjectRelocationTypeArtMethodArrayClean }); offset += header_size; for (auto& m : as_klass->GetMethods(target_ptr_size_)) { AssignMethodOffset(&m, type, oat_index); } (any_dirty ? dirty_methods_ : clean_methods_) += num_methods; } // Assign offsets for all runtime methods in the IMT since these may hold conflict tables // live. if (as_klass->ShouldHaveImt()) { ImTable* imt = as_klass->GetImt(target_ptr_size_); for (size_t i = 0; i < ImTable::kSize; ++i) { ArtMethod* imt_method = imt->Get(i, target_ptr_size_); DCHECK(imt_method != nullptr); if (imt_method->IsRuntimeMethod() && !IsInBootImage(imt_method) && !NativeRelocationAssigned(imt_method)) { AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index); } } } if (as_klass->ShouldHaveImt()) { ImTable* imt = as_klass->GetImt(target_ptr_size_); TryAssignImTableOffset(imt, oat_index); } } else if (obj->IsClassLoader()) { // Register the class loader if it has a class table. // The fake boot class loader should not get registered and we should end up with only one // class loader. mirror::ClassLoader* class_loader = obj->AsClassLoader(); if (class_loader->GetClassTable() != nullptr) { class_loaders_.insert(class_loader); } } AssignImageBinSlot(obj, oat_index); work_stack.emplace(obj, oat_index); } if (obj->IsString()) { // Always return the interned string if there exists one. mirror::String* interned = FindInternedString(obj->AsString()); if (interned != nullptr) { return interned; } } return obj; } bool ImageWriter::NativeRelocationAssigned(void* ptr) const { return native_object_relocations_.find(ptr) != native_object_relocations_.end(); } void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) { // No offset, or already assigned. if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) { return; } // If the method is a conflict method we also want to assign the conflict table offset. ImageInfo& image_info = GetImageInfo(oat_index); const size_t size = ImTable::SizeInBytes(target_ptr_size_); native_object_relocations_.emplace( imt, NativeObjectRelocation { oat_index, image_info.bin_slot_sizes_[kBinImTable], kNativeObjectRelocationTypeIMTable}); image_info.bin_slot_sizes_[kBinImTable] += size; } void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) { // No offset, or already assigned. if (table == nullptr || NativeRelocationAssigned(table)) { return; } CHECK(!IsInBootImage(table)); // If the method is a conflict method we also want to assign the conflict table offset. ImageInfo& image_info = GetImageInfo(oat_index); const size_t size = table->ComputeSize(target_ptr_size_); native_object_relocations_.emplace( table, NativeObjectRelocation { oat_index, image_info.bin_slot_sizes_[kBinIMTConflictTable], kNativeObjectRelocationTypeIMTConflictTable}); image_info.bin_slot_sizes_[kBinIMTConflictTable] += size; } void ImageWriter::AssignMethodOffset(ArtMethod* method, NativeObjectRelocationType type, size_t oat_index) { DCHECK(!IsInBootImage(method)); CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned " << PrettyMethod(method); if (method->IsRuntimeMethod()) { TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index); } ImageInfo& image_info = GetImageInfo(oat_index); size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)]; native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type }); offset += ArtMethod::Size(target_ptr_size_); } void ImageWriter::EnsureBinSlotAssignedCallback(mirror::Object* obj, void* arg) { ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); DCHECK(writer != nullptr); if (!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(obj)) { CHECK(writer->IsImageBinSlotAssigned(obj)) << PrettyTypeOf(obj) << " " << obj; } } void ImageWriter::DeflateMonitorCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED) { Monitor::Deflate(Thread::Current(), obj); } void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); DCHECK(writer != nullptr); if (!writer->IsInBootImage(obj)) { writer->UnbinObjectsIntoOffset(obj); } } void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { DCHECK(!IsInBootImage(obj)); CHECK(obj != nullptr); // We know the bin slot, and the total bin sizes for all objects by now, // so calculate the object's final image offset. DCHECK(IsImageBinSlotAssigned(obj)); BinSlot bin_slot = GetImageBinSlot(obj); // Change the lockword from a bin slot into an offset AssignImageOffset(obj, bin_slot); } class ImageWriter::VisitReferencesVisitor { public: VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index) : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {} // Fix up separately since we also need to fix up method entrypoints. ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const SHARED_REQUIRES(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const SHARED_REQUIRES(Locks::mutator_lock_) { root->Assign(VisitReference(root->AsMirrorPtr())); } ALWAYS_INLINE void operator() (mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const SHARED_REQUIRES(Locks::mutator_lock_) { mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref)); } ALWAYS_INLINE void operator() (mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const SHARED_REQUIRES(Locks::mutator_lock_) { ref->SetReferent</*kTransactionActive*/false>( VisitReference(ref->GetReferent<kWithoutReadBarrier>())); } private: mirror::Object* VisitReference(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) { return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_); } ImageWriter* const image_writer_; WorkStack* const work_stack_; const size_t oat_index_; }; class ImageWriter::GetRootsVisitor : public RootVisitor { public: explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {} void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { roots_->push_back(*roots[i]); } } void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { roots_->push_back(roots[i]->AsMirrorPtr()); } } private: std::vector<mirror::Object*>* const roots_; }; void ImageWriter::ProcessWorkStack(WorkStack* work_stack) { while (!work_stack->empty()) { std::pair<mirror::Object*, size_t> pair(work_stack->top()); work_stack->pop(); VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second); // Walk references and assign bin slots for them. pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( visitor, visitor); } } void ImageWriter::CalculateNewObjectOffsets() { Thread* const self = Thread::Current(); StackHandleScopeCollection handles(self); std::vector<Handle<ObjectArray<Object>>> image_roots; for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { image_roots.push_back(handles.NewHandle(CreateImageRoots(i))); } Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); // Leave space for the header, but do not write it yet, we need to // know where image_roots is going to end up image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_); // Write the image runtime methods. image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod(); image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod(); image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod(); image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll); image_methods_[ImageHeader::kRefsOnlySaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kRefsOnly); image_methods_[ImageHeader::kRefsAndArgsSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs); // Visit image methods first to have the main runtime methods in the first image. for (auto* m : image_methods_) { CHECK(m != nullptr); CHECK(m->IsRuntimeMethod()); DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image"; if (!IsInBootImage(m)) { AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex()); } } // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring // this lock while holding other locks may cause lock order violations. heap->VisitObjects(DeflateMonitorCallback, this); // Work list of <object, oat_index> for objects. Everything on the stack must already be // assigned a bin slot. WorkStack work_stack; // Special case interned strings to put them in the image they are likely to be resolved from. for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) { auto it = dex_file_oat_index_map_.find(dex_file); DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); const size_t oat_index = it->second; InternTable* const intern_table = runtime->GetInternTable(); for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) { uint32_t utf16_length; const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(i, &utf16_length); mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data); TryAssignBinSlot(work_stack, string, oat_index); } } // Get the GC roots and then visit them separately to avoid lock violations since the root visitor // visits roots while holding various locks. { std::vector<mirror::Object*> roots; GetRootsVisitor root_visitor(&roots); runtime->VisitRoots(&root_visitor); for (mirror::Object* obj : roots) { TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex()); } } ProcessWorkStack(&work_stack); // For app images, there may be objects that are only held live by the by the boot image. One // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback // does not fail any checks. TODO: We should probably avoid copying these objects. if (compile_app_image_) { for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) { DCHECK(space->IsImageSpace()); gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), reinterpret_cast<uintptr_t>(space->Limit()), [this, &work_stack](mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_) { VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex()); // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot). obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( visitor, visitor); }); } // Process the work stack in case anything was added by TryAssignBinSlot. ProcessWorkStack(&work_stack); } // Verify that all objects have assigned image bin slots. heap->VisitObjects(EnsureBinSlotAssignedCallback, this); // Calculate size of the dex cache arrays slot and prepare offsets. PrepareDexCacheArraySlots(); // Calculate the sizes of the intern tables and class tables. for (ImageInfo& image_info : image_infos_) { // Calculate how big the intern table will be after being serialized. InternTable* const intern_table = image_info.intern_table_.get(); CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings"; image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr); // Calculate the size of the class table. ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr); } // Calculate bin slot offsets. for (ImageInfo& image_info : image_infos_) { size_t bin_offset = image_objects_offset_begin_; for (size_t i = 0; i != kBinSize; ++i) { switch (i) { case kBinArtMethodClean: case kBinArtMethodDirty: { bin_offset = RoundUp(bin_offset, method_alignment); break; } case kBinImTable: case kBinIMTConflictTable: { bin_offset = RoundUp(bin_offset, target_ptr_size_); break; } default: { // Normal alignment. } } image_info.bin_slot_offsets_[i] = bin_offset; bin_offset += image_info.bin_slot_sizes_[i]; } // NOTE: There may be additional padding between the bin slots and the intern table. DCHECK_EQ(image_info.image_end_, GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_); } // Calculate image offsets. size_t image_offset = 0; for (ImageInfo& image_info : image_infos_) { image_info.image_begin_ = global_image_begin_ + image_offset; image_info.image_offset_ = image_offset; ImageSection unused_sections[ImageHeader::kSectionCount]; image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize); // There should be no gaps until the next image. image_offset += image_info.image_size_; } // Transform each object's bin slot into an offset which will be used to do the final copy. heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); size_t i = 0; for (ImageInfo& image_info : image_infos_) { image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get())); i++; } // Update the native relocations by adding their bin sums. for (auto& pair : native_object_relocations_) { NativeObjectRelocation& relocation = pair.second; Bin bin_type = BinTypeForNativeRelocationType(relocation.type); ImageInfo& image_info = GetImageInfo(relocation.oat_index); relocation.offset += image_info.bin_slot_offsets_[bin_type]; } // Note that image_info.image_end_ is left at end of used mirror object section. } size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const { DCHECK(out_sections != nullptr); // Do not round up any sections here that are represented by the bins since it will break // offsets. // Objects section ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects]; *objects_section = ImageSection(0u, image_end_); // Add field section. ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields]; *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]); CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset()); // Add method section. ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods]; *methods_section = ImageSection( bin_slot_offsets_[kBinArtMethodClean], bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]); // IMT section. ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables]; *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]); // Conflict tables section. ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables]; *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable], bin_slot_sizes_[kBinIMTConflictTable]); // Runtime methods section. ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods]; *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod], bin_slot_sizes_[kBinRuntimeMethod]); // Add dex cache arrays section. ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays]; *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray], bin_slot_sizes_[kBinDexCacheArray]); // Round up to the alignment the string table expects. See HashSet::WriteToMemory. size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t)); // Calculate the size of the interned strings. ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings]; *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_); cur_pos = interned_strings_section->End(); // Round up to the alignment the class table expects. See HashSet::WriteToMemory. cur_pos = RoundUp(cur_pos, sizeof(uint64_t)); // Calculate the size of the class table section. ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable]; *class_table_section = ImageSection(cur_pos, class_table_bytes_); cur_pos = class_table_section->End(); // Image end goes right before the start of the image bitmap. return cur_pos; } void ImageWriter::CreateHeader(size_t oat_index) { ImageInfo& image_info = GetImageInfo(oat_index); const uint8_t* oat_file_begin = image_info.oat_file_begin_; const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_; const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_; // Create the image sections. ImageSection sections[ImageHeader::kSectionCount]; const size_t image_end = image_info.CreateImageSections(sections); // Finally bitmap section. const size_t bitmap_bytes = image_info.image_bitmap_->Size(); auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap]; *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize)); if (VLOG_IS_ON(compiler)) { LOG(INFO) << "Creating header for " << oat_filenames_[oat_index]; size_t idx = 0; for (const ImageSection& section : sections) { LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section; ++idx; } LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_; LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec; LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_) << " Image offset=" << image_info.image_offset_ << std::dec; LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin) << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_) << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end) << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end); } // Store boot image info for app image so that we can relocate. uint32_t boot_image_begin = 0; uint32_t boot_image_end = 0; uint32_t boot_oat_begin = 0; uint32_t boot_oat_end = 0; gc::Heap* const heap = Runtime::Current()->GetHeap(); heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); // Create the header, leave 0 for data size since we will fill this in as we are writing the // image. new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_), image_end, sections, image_info.image_roots_address_, image_info.oat_checksum_, PointerToLowMemUInt32(oat_file_begin), PointerToLowMemUInt32(image_info.oat_data_begin_), PointerToLowMemUInt32(oat_data_end), PointerToLowMemUInt32(oat_file_end), boot_image_begin, boot_image_end - boot_image_begin, boot_oat_begin, boot_oat_end - boot_oat_begin, target_ptr_size_, compile_pic_, /*is_pic*/compile_app_image_, image_storage_mode_, /*data_size*/0u); } ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) { auto it = native_object_relocations_.find(method); CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method; size_t oat_index = GetOatIndex(method->GetDexCache()); ImageInfo& image_info = GetImageInfo(oat_index); CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects"; return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset); } class FixupRootVisitor : public RootVisitor { public: explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) { } void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { *roots[i] = image_writer_->GetImageAddress(*roots[i]); } } void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr())); } } private: ImageWriter* const image_writer_; }; void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) { for (size_t i = 0; i < ImTable::kSize; ++i) { ArtMethod* method = orig->Get(i, target_ptr_size_); copy->Set(i, NativeLocationInImage(method), target_ptr_size_); } } void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) { const size_t count = orig->NumEntries(target_ptr_size_); for (size_t i = 0; i < count; ++i) { ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_); ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_); copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method)); copy->SetImplementationMethod(i, target_ptr_size_, NativeLocationInImage(implementation_method)); } } void ImageWriter::CopyAndFixupNativeData(size_t oat_index) { const ImageInfo& image_info = GetImageInfo(oat_index); // Copy ArtFields and methods to their locations and update the array for convenience. for (auto& pair : native_object_relocations_) { NativeObjectRelocation& relocation = pair.second; // Only work with fields and methods that are in the current oat file. if (relocation.oat_index != oat_index) { continue; } auto* dest = image_info.image_->Begin() + relocation.offset; DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_); DCHECK(!IsInBootImage(pair.first)); switch (relocation.type) { case kNativeObjectRelocationTypeArtField: { memcpy(dest, pair.first, sizeof(ArtField)); reinterpret_cast<ArtField*>(dest)->SetDeclaringClass( GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass())); break; } case kNativeObjectRelocationTypeRuntimeMethod: case kNativeObjectRelocationTypeArtMethodClean: case kNativeObjectRelocationTypeArtMethodDirty: { CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first), reinterpret_cast<ArtMethod*>(dest), image_info); break; } // For arrays, copy just the header since the elements will get copied by their corresponding // relocations. case kNativeObjectRelocationTypeArtFieldArray: { memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0)); break; } case kNativeObjectRelocationTypeArtMethodArrayClean: case kNativeObjectRelocationTypeArtMethodArrayDirty: { size_t size = ArtMethod::Size(target_ptr_size_); size_t alignment = ArtMethod::Alignment(target_ptr_size_); memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment)); // Clear padding to avoid non-deterministic data in the image (and placate valgrind). reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment); break; } case kNativeObjectRelocationTypeDexCacheArray: // Nothing to copy here, everything is done in FixupDexCache(). break; case kNativeObjectRelocationTypeIMTable: { ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first); ImTable* dest_imt = reinterpret_cast<ImTable*>(dest); CopyAndFixupImTable(orig_imt, dest_imt); break; } case kNativeObjectRelocationTypeIMTConflictTable: { auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first); CopyAndFixupImtConflictTable( orig_table, new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_)); break; } } } // Fixup the image method roots. auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin()); for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) { ArtMethod* method = image_methods_[i]; CHECK(method != nullptr); if (!IsInBootImage(method)) { method = NativeLocationInImage(method); } image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method); } FixupRootVisitor root_visitor(this); // Write the intern table into the image. if (image_info.intern_table_bytes_ > 0) { const ImageSection& intern_table_section = image_header->GetImageSection( ImageHeader::kSectionInternedStrings); InternTable* const intern_table = image_info.intern_table_.get(); uint8_t* const intern_table_memory_ptr = image_info.image_->Begin() + intern_table_section.Offset(); const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr); CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_); // Fixup the pointers in the newly written intern table to contain image addresses. InternTable temp_intern_table; // Note that we require that ReadFromMemory does not make an internal copy of the elements so that // the VisitRoots() will update the memory directly rather than the copies. // This also relies on visit roots not doing any verification which could fail after we update // the roots to be the image addresses. temp_intern_table.AddTableFromMemory(intern_table_memory_ptr); CHECK_EQ(temp_intern_table.Size(), intern_table->Size()); temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots); } // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple // class loaders. Writing multiple class tables into the image is currently unsupported. if (image_info.class_table_bytes_ > 0u) { const ImageSection& class_table_section = image_header->GetImageSection( ImageHeader::kSectionClassTable); uint8_t* const class_table_memory_ptr = image_info.image_->Begin() + class_table_section.Offset(); ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); ClassTable* table = image_info.class_table_.get(); CHECK(table != nullptr); const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr); CHECK_EQ(class_table_bytes, image_info.class_table_bytes_); // Fixup the pointers in the newly written class table to contain image addresses. See // above comment for intern tables. ClassTable temp_class_table; temp_class_table.ReadFromMemory(class_table_memory_ptr); CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() + table->NumZygoteClasses()); BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor, RootInfo(kRootUnknown)); temp_class_table.VisitRoots(buffered_visitor); } } void ImageWriter::CopyAndFixupObjects() { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->VisitObjects(CopyAndFixupObjectsCallback, this); // Fix up the object previously had hash codes. for (const auto& hash_pair : saved_hashcode_map_) { Object* obj = hash_pair.first; DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U); obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false); } saved_hashcode_map_.clear(); } void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { DCHECK(obj != nullptr); DCHECK(arg != nullptr); reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj); } void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr, mirror::Class* klass, Bin array_type) { CHECK(klass->IsArrayClass()); CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr; // Fixup int and long pointers for the ArtMethod or ArtField arrays. const size_t num_elements = arr->GetLength(); dst->SetClass(GetImageAddress(arr->GetClass())); auto* dest_array = down_cast<mirror::PointerArray*>(dst); for (size_t i = 0, count = num_elements; i < count; ++i) { void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_); if (elem != nullptr && !IsInBootImage(elem)) { auto it = native_object_relocations_.find(elem); if (UNLIKELY(it == native_object_relocations_.end())) { if (it->second.IsArtMethodRelocation()) { auto* method = reinterpret_cast<ArtMethod*>(elem); LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ " << method << " idx=" << i << "/" << num_elements << " with declaring class " << PrettyClass(method->GetDeclaringClass()); } else { CHECK_EQ(array_type, kBinArtField); auto* field = reinterpret_cast<ArtField*>(elem); LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ " << field << " idx=" << i << "/" << num_elements << " with declaring class " << PrettyClass(field->GetDeclaringClass()); } UNREACHABLE(); } else { ImageInfo& image_info = GetImageInfo(it->second.oat_index); elem = image_info.image_begin_ + it->second.offset; } } dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_); } } void ImageWriter::CopyAndFixupObject(Object* obj) { if (IsInBootImage(obj)) { return; } size_t offset = GetImageOffset(obj); size_t oat_index = GetOatIndex(obj); ImageInfo& image_info = GetImageInfo(oat_index); auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset); DCHECK_LT(offset, image_info.image_end_); const auto* src = reinterpret_cast<const uint8_t*>(obj); image_info.image_bitmap_->Set(dst); // Mark the obj as live. const size_t n = obj->SizeOf(); DCHECK_LE(offset + n, image_info.image_->Size()); memcpy(dst, src, n); // Write in a hash code of objects which have inflated monitors or a hash code in their monitor // word. const auto it = saved_hashcode_map_.find(obj); dst->SetLockWord(it != saved_hashcode_map_.end() ? LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false); FixupObject(obj, dst); } // Rewrite all the references in the copied object to point to their image address equivalent class FixupVisitor { public: FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { } // Ignore class roots since we don't have a way to map them to the destination. These are handled // with other logic. void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset); // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the // image. copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( offset, image_writer_->GetImageAddress(ref)); } // java.lang.ref.Reference visitor. void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent())); } protected: ImageWriter* const image_writer_; mirror::Object* const copy_; }; class FixupClassVisitor FINAL : public FixupVisitor { public: FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { } void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { DCHECK(obj->IsClass()); FixupVisitor::operator()(obj, offset, /*is_static*/false); } void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref ATTRIBUTE_UNUSED) const SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { LOG(FATAL) << "Reference not expected here."; } }; uintptr_t ImageWriter::NativeOffsetInImage(void* obj) { DCHECK(obj != nullptr); DCHECK(!IsInBootImage(obj)); auto it = native_object_relocations_.find(obj); CHECK(it != native_object_relocations_.end()) << obj << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces(); const NativeObjectRelocation& relocation = it->second; return relocation.offset; } template <typename T> std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) { std::ostringstream oss; oss << ptr; return oss.str(); } template <> std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) { return PrettyMethod(method); } template <typename T> T* ImageWriter::NativeLocationInImage(T* obj) { if (obj == nullptr || IsInBootImage(obj)) { return obj; } else { auto it = native_object_relocations_.find(obj); CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj) << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces(); const NativeObjectRelocation& relocation = it->second; ImageInfo& image_info = GetImageInfo(relocation.oat_index); return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset); } } template <typename T> T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) { if (obj == nullptr || IsInBootImage(obj)) { return obj; } else { size_t oat_index = GetOatIndexForDexCache(dex_cache); ImageInfo& image_info = GetImageInfo(oat_index); return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj)); } } class NativeLocationVisitor { public: explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} template <typename T> T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { return image_writer_->NativeLocationInImage(ptr); } private: ImageWriter* const image_writer_; }; void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this)); FixupClassVisitor visitor(this, copy); static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor); // Remove the clinitThreadId. This is required for image determinism. copy->SetClinitThreadId(static_cast<pid_t>(0)); } void ImageWriter::FixupObject(Object* orig, Object* copy) { DCHECK(orig != nullptr); DCHECK(copy != nullptr); if (kUseBakerOrBrooksReadBarrier) { orig->AssertReadBarrierPointer(); if (kUseBrooksReadBarrier) { // Note the address 'copy' isn't the same as the image address of 'orig'. copy->SetReadBarrierPointer(GetImageAddress(orig)); DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); } } auto* klass = orig->GetClass(); if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) { // Is this a native pointer array? auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig)); if (it != pointer_arrays_.end()) { // Should only need to fixup every pointer array exactly once. FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second); pointer_arrays_.erase(it); return; } } if (orig->IsClass()) { FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); } else { if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) { // Need to go update the ArtMethod. auto* dest = down_cast<mirror::AbstractMethod*>(copy); auto* src = down_cast<mirror::AbstractMethod*>(orig); ArtMethod* src_method = src->GetArtMethod(); auto it = native_object_relocations_.find(src_method); CHECK(it != native_object_relocations_.end()) << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method); dest->SetArtMethod( reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset)); } else if (!klass->IsArrayClass()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) { FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy)); } else if (klass->IsClassLoaderClass()) { mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy); // If src is a ClassLoader, set the class table to null so that it gets recreated by the // ClassLoader. copy_loader->SetClassTable(nullptr); // Also set allocator to null to be safe. The allocator is created when we create the class // table. We also never expect to unload things in the image since they are held live as // roots. copy_loader->SetAllocator(nullptr); } } FixupVisitor visitor(this, copy); orig->VisitReferences(visitor, visitor); } } class ImageAddressVisitor { public: explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {} template <typename T> T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) { return image_writer_->GetImageAddress(ptr); } private: ImageWriter* const image_writer_; }; void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache, mirror::DexCache* copy_dex_cache) { // Though the DexCache array fields are usually treated as native pointers, we set the full // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e. // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))). GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings(); if (orig_strings != nullptr) { copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(), NativeLocationInImage(orig_strings), /*pointer size*/8u); orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), ImageAddressVisitor(this)); } GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes(); if (orig_types != nullptr) { copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(), NativeLocationInImage(orig_types), /*pointer size*/8u); orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache), ImageAddressVisitor(this)); } ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods(); if (orig_methods != nullptr) { copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(), NativeLocationInImage(orig_methods), /*pointer size*/8u); ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache); for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) { ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_); // NativeLocationInImage also handles runtime methods since these have relocation info. ArtMethod* copy = NativeLocationInImage(orig); mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_); } } ArtField** orig_fields = orig_dex_cache->GetResolvedFields(); if (orig_fields != nullptr) { copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(), NativeLocationInImage(orig_fields), /*pointer size*/8u); ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache); for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) { ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_); ArtField* copy = NativeLocationInImage(orig); mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_); } } // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving // compiler pointers in here will make the output non-deterministic. copy_dex_cache->SetDexFile(nullptr); } const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const { DCHECK_LT(type, kOatAddressCount); // If we are compiling an app image, we need to use the stubs of the boot image. if (compile_app_image_) { // Use the current image pointers. const std::vector<gc::space::ImageSpace*>& image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces(); DCHECK(!image_spaces.empty()); const OatFile* oat_file = image_spaces[0]->GetOatFile(); CHECK(oat_file != nullptr); const OatHeader& header = oat_file->GetOatHeader(); switch (type) { // TODO: We could maybe clean this up if we stored them in an array in the oat header. case kOatAddressQuickGenericJNITrampoline: return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline()); case kOatAddressInterpreterToInterpreterBridge: return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge()); case kOatAddressInterpreterToCompiledCodeBridge: return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge()); case kOatAddressJNIDlsymLookup: return static_cast<const uint8_t*>(header.GetJniDlsymLookup()); case kOatAddressQuickIMTConflictTrampoline: return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline()); case kOatAddressQuickResolutionTrampoline: return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline()); case kOatAddressQuickToInterpreterBridge: return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge()); default: UNREACHABLE(); } } const ImageInfo& primary_image_info = GetImageInfo(0); return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info); } const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info, bool* quick_is_interpreted) { DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method); DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method); DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method); DCHECK(method->IsInvokable()) << PrettyMethod(method); DCHECK(!IsInBootImage(method)) << PrettyMethod(method); // Use original code if it exists. Otherwise, set the code pointer to the resolution // trampoline. // Quick entrypoint: const void* quick_oat_entry_point = method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_); const uint8_t* quick_code; if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) { DCHECK(method->IsCopied()); // If the code is not in the oat file corresponding to this image (e.g. default methods) quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point); } else { uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point); quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info); } *quick_is_interpreted = false; if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || method->GetDeclaringClass()->IsInitialized())) { // We have code for a non-static or initialized method, just use the code. } else if (quick_code == nullptr && method->IsNative() && (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { // Non-static or initialized native method missing compiled code, use generic JNI version. quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline); } else if (quick_code == nullptr && !method->IsNative()) { // We don't have code at all for a non-native method, use the interpreter. quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge); *quick_is_interpreted = true; } else { CHECK(!method->GetDeclaringClass()->IsInitialized()); // We have code for a static method, but need to go through the resolution stub for class // initialization. quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline); } if (!IsInBootOatFile(quick_code)) { // DCHECK_GE(quick_code, oat_data_begin_); } return quick_code; } void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, ArtMethod* copy, const ImageInfo& image_info) { memcpy(copy, orig, ArtMethod::Size(target_ptr_size_)); copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked())); ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_); copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_); GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_); copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_); // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to // oat_begin_ // The resolution method has a special trampoline to call. Runtime* runtime = Runtime::Current(); if (orig->IsRuntimeMethod()) { ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_); if (orig_table != nullptr) { // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method. copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_); copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_); } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) { copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_); } else { bool found_one = false; for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) { auto idx = static_cast<Runtime::CalleeSaveType>(i); if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) { found_one = true; break; } } CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig); CHECK(copy->IsRuntimeMethod()); } } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(!orig->IsInvokable())) { copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_); } else { bool quick_is_interpreted; const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted); copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); // JNI entrypoint: if (orig->IsNative()) { // The native method's pointer is set to a stub to lookup via dlsym. // Note this is not the code_ pointer, that is handled above. copy->SetEntryPointFromJniPtrSize( GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_); } } } } size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const { DCHECK_LE(up_to, kBinSize); return std::accumulate(&image_info.bin_slot_sizes_[0], &image_info.bin_slot_sizes_[up_to], /*init*/0); } ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { // These values may need to get updated if more bins are added to the enum Bin static_assert(kBinBits == 3, "wrong number of bin bits"); static_assert(kBinShift == 27, "wrong number of shift"); static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); DCHECK_LT(GetBin(), kBinSize); DCHECK_ALIGNED(GetIndex(), kObjectAlignment); } ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { DCHECK_EQ(index, GetIndex()); } ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); } uint32_t ImageWriter::BinSlot::GetIndex() const { return lockword_ & ~kBinMask; } ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) { switch (type) { case kNativeObjectRelocationTypeArtField: case kNativeObjectRelocationTypeArtFieldArray: return kBinArtField; case kNativeObjectRelocationTypeArtMethodClean: case kNativeObjectRelocationTypeArtMethodArrayClean: return kBinArtMethodClean; case kNativeObjectRelocationTypeArtMethodDirty: case kNativeObjectRelocationTypeArtMethodArrayDirty: return kBinArtMethodDirty; case kNativeObjectRelocationTypeDexCacheArray: return kBinDexCacheArray; case kNativeObjectRelocationTypeRuntimeMethod: return kBinRuntimeMethod; case kNativeObjectRelocationTypeIMTable: return kBinImTable; case kNativeObjectRelocationTypeIMTConflictTable: return kBinIMTConflictTable; } UNREACHABLE(); } size_t ImageWriter::GetOatIndex(mirror::Object* obj) const { if (!IsMultiImage()) { return GetDefaultOatIndex(); } auto it = oat_index_map_.find(obj); DCHECK(it != oat_index_map_.end()); return it->second; } size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const { if (!IsMultiImage()) { return GetDefaultOatIndex(); } auto it = dex_file_oat_index_map_.find(dex_file); DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation(); return it->second; } size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const { if (dex_cache == nullptr) { return GetDefaultOatIndex(); } else { return GetOatIndexForDexFile(dex_cache->GetDexFile()); } } void ImageWriter::UpdateOatFileLayout(size_t oat_index, size_t oat_loaded_size, size_t oat_data_offset, size_t oat_data_size) { const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_; for (const ImageInfo& info : image_infos_) { DCHECK_LE(info.image_begin_ + info.image_size_, images_end); } DCHECK(images_end != nullptr); // Image space must be ready. ImageInfo& cur_image_info = GetImageInfo(oat_index); cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_; cur_image_info.oat_loaded_size_ = oat_loaded_size; cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset; cur_image_info.oat_size_ = oat_data_size; if (compile_app_image_) { CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image."; return; } // Update the oat_offset of the next image info. if (oat_index + 1u != oat_filenames_.size()) { // There is a following one. ImageInfo& next_image_info = GetImageInfo(oat_index + 1u); next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size; } } void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) { ImageInfo& cur_image_info = GetImageInfo(oat_index); cur_image_info.oat_checksum_ = oat_header.GetChecksum(); if (oat_index == GetDefaultOatIndex()) { // Primary oat file, read the trampolines. cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] = oat_header.GetInterpreterToInterpreterBridgeOffset(); cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] = oat_header.GetInterpreterToCompiledCodeBridgeOffset(); cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] = oat_header.GetJniDlsymLookupOffset(); cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] = oat_header.GetQuickGenericJniTrampolineOffset(); cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] = oat_header.GetQuickImtConflictTrampolineOffset(); cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] = oat_header.GetQuickResolutionTrampolineOffset(); cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] = oat_header.GetQuickToInterpreterBridgeOffset(); } } ImageWriter::ImageWriter( const CompilerDriver& compiler_driver, uintptr_t image_begin, bool compile_pic, bool compile_app_image, ImageHeader::StorageMode image_storage_mode, const std::vector<const char*>& oat_filenames, const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map) : compiler_driver_(compiler_driver), global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)), image_objects_offset_begin_(0), compile_pic_(compile_pic), compile_app_image_(compile_app_image), target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())), image_infos_(oat_filenames.size()), dirty_methods_(0u), clean_methods_(0u), image_storage_mode_(image_storage_mode), oat_filenames_(oat_filenames), dex_file_oat_index_map_(dex_file_oat_index_map) { CHECK_NE(image_begin, 0U); std::fill_n(image_methods_, arraysize(image_methods_), nullptr); CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty()) << "Compiling a boot image should occur iff there are no boot image spaces loaded"; } ImageWriter::ImageInfo::ImageInfo() : intern_table_(new InternTable), class_table_(new ClassTable) {} } // namespace art