/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_x86_64.h" #include "art_method.h" #include "code_generator_utils.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_x86_64.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/object_reference.h" #include "thread.h" #include "utils/assembler.h" #include "utils/stack_checks.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/managed_register_x86_64.h" namespace art { template<class MirrorType> class GcRoot; namespace x86_64 { static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kMethodRegisterArgument = RDI; // The compare/jump sequence will generate about (1.5 * num_entries) instructions. A jump // table version generates 7 instructions and num_entries literals. Compare/jump sequence will // generates less code/data with a small num_entries. static constexpr uint32_t kPackedSwitchJumpTableThreshold = 5; static constexpr Register kCoreCalleeSaves[] = { RBX, RBP, R12, R13, R14, R15 }; static constexpr FloatRegister kFpuCalleeSaves[] = { XMM12, XMM13, XMM14, XMM15 }; static constexpr int kC2ConditionMask = 0x400; #define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, x).Int32Value() class NullCheckSlowPathX86_64 : public SlowPathCode { public: explicit NullCheckSlowPathX86_64(HNullCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86_64); }; class DivZeroCheckSlowPathX86_64 : public SlowPathCode { public: explicit DivZeroCheckSlowPathX86_64(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86_64); }; class DivRemMinusOneSlowPathX86_64 : public SlowPathCode { public: DivRemMinusOneSlowPathX86_64(HInstruction* at, Register reg, Primitive::Type type, bool is_div) : SlowPathCode(at), cpu_reg_(CpuRegister(reg)), type_(type), is_div_(is_div) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); if (type_ == Primitive::kPrimInt) { if (is_div_) { __ negl(cpu_reg_); } else { __ xorl(cpu_reg_, cpu_reg_); } } else { DCHECK_EQ(Primitive::kPrimLong, type_); if (is_div_) { __ negq(cpu_reg_); } else { __ xorl(cpu_reg_, cpu_reg_); } } __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86_64"; } private: const CpuRegister cpu_reg_; const Primitive::Type type_; const bool is_div_; DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86_64); }; class SuspendCheckSlowPathX86_64 : public SlowPathCode { public: SuspendCheckSlowPathX86_64(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCode(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickTestSuspend, void, void>(); RestoreLiveRegisters(codegen, instruction_->GetLocations()); if (successor_ == nullptr) { __ jmp(GetReturnLabel()); } else { __ jmp(x86_64_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86_64"; } private: HBasicBlock* const successor_; Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86_64); }; class BoundsCheckSlowPathX86_64 : public SlowPathCode { public: explicit BoundsCheckSlowPathX86_64(HBoundsCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86_64); }; class LoadClassSlowPathX86_64 : public SlowPathCode { public: LoadClassSlowPathX86_64(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = at_->GetLocations(); CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ movl(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(cls_->GetTypeIndex())); x86_64_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) : QUICK_ENTRY_POINT(pInitializeType), at_, dex_pc_, this); if (do_clinit_) { CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); } else { CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); } Location out = locations->Out(); // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); x86_64_codegen->Move(out, Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86_64"; } private: // The class this slow path will load. HLoadClass* const cls_; // The instruction where this slow path is happening. // (Might be the load class or an initialization check). HInstruction* const at_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86_64); }; class LoadStringSlowPathX86_64 : public SlowPathCode { public: explicit LoadStringSlowPathX86_64(HLoadString* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex(); __ movl(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(string_index)); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86_64); }; class TypeCheckSlowPathX86_64 : public SlowPathCode { public: TypeCheckSlowPathX86_64(HInstruction* instruction, bool is_fatal) : SlowPathCode(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) : locations->Out(); uint32_t dex_pc = instruction_->GetDexPc(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); if (!is_fatal_) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, object_class, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this); CheckEntrypointTypes< kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>(); } else { DCHECK(instruction_->IsCheckCast()); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this); CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>(); } if (!is_fatal_) { if (instruction_->IsInstanceOf()) { x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } } const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86_64"; } bool IsFatal() const OVERRIDE { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86_64); }; class DeoptimizationSlowPathX86_64 : public SlowPathCode { public: explicit DeoptimizationSlowPathX86_64(HDeoptimize* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickDeoptimize, void, void>(); } const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86_64); }; class ArraySetSlowPathX86_64 : public SlowPathCode { public: explicit ArraySetSlowPathX86_64(HInstruction* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt, nullptr); parallel_move.AddMove( locations->InAt(2), Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimNot, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86_64); }; // Slow path marking an object during a read barrier. class ReadBarrierMarkSlowPathX86_64 : public SlowPathCode { public: ReadBarrierMarkSlowPathX86_64(HInstruction* instruction, Location out, Location obj) : SlowPathCode(instruction), out_(out), obj_(obj) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86_64"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister<Register>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsLoadClass() || instruction_->IsLoadString() || instruction_->IsInstanceOf() || instruction_->IsCheckCast()) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); x86_64_codegen->Move(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>(); x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } private: const Location out_; const Location obj_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86_64); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathX86_64 : public SlowPathCode { public: ReadBarrierForHeapReferenceSlowPathX86_64(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCode(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial // object has been overwritten by (or after) the heap object // reference load to be instrumented, e.g.: // // __ movl(out, Address(out, offset)); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); LocationSummary* locations = instruction_->GetLocations(); CpuRegister reg_out = out_.AsRegister<CpuRegister>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.AsRegister())) << out_; DCHECK(!instruction_->IsInvoke() || (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject. if (instruction_->IsArrayGet()) { // Compute real offset and store it in index_. Register index_reg = index_.AsRegister<CpuRegister>().AsRegister(); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); if (codegen->IsCoreCalleeSaveRegister(index_reg)) { // We are about to change the value of `index_reg` (see the // calls to art::x86_64::X86_64Assembler::shll and // art::x86_64::X86_64Assembler::AddImmediate below), but it // has not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen).AsRegister(); __ movl(CpuRegister(free_reg), CpuRegister(index_reg)); index_reg = free_reg; index = Location::RegisterLocation(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the // scale factor (2) cannot overflow in practice, as the // runtime is unable to allocate object arrays with a size // larger than 2^26 - 1 (that is, 2^28 - 4 bytes). __ shll(CpuRegister(index_reg), Immediate(TIMES_4)); static_assert( sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); __ AddImmediate(CpuRegister(index_reg), Immediate(offset_)); } else { DCHECK(instruction_->IsInvoke()); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); DCHECK(index_.IsRegister()); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove(ref_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove(obj_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimInt, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ movl(CpuRegister(calling_convention.GetRegisterAt(2)), Immediate(offset_)); } x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86_64"; } private: CpuRegister FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast<int>(ref_.AsRegister<CpuRegister>().AsRegister()); size_t obj = static_cast<int>(obj_.AsRegister<CpuRegister>().AsRegister()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return static_cast<CpuRegister>(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on x86-64 // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86_64); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathX86_64 : public SlowPathCode { public: ReadBarrierForRootSlowPathX86_64(HInstruction* instruction, Location out, Location root) : SlowPathCode(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); x86_64_codegen->Move(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); x86_64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow), instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86_64"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86_64); }; #undef __ #define __ down_cast<X86_64Assembler*>(GetAssembler())-> inline Condition X86_64IntegerCondition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kLess; case kCondLE: return kLessEqual; case kCondGT: return kGreater; case kCondGE: return kGreaterEqual; case kCondB: return kBelow; case kCondBE: return kBelowEqual; case kCondA: return kAbove; case kCondAE: return kAboveEqual; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps FP condition to x86_64 name. inline Condition X86_64FPCondition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kBelow; case kCondLE: return kBelowEqual; case kCondGT: return kAbove; case kCondGE: return kAboveEqual; default: break; // should not happen }; LOG(FATAL) << "Unreachable"; UNREACHABLE(); } HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86_64::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, MethodReference target_method ATTRIBUTE_UNUSED) { switch (desired_dispatch_info.code_ptr_location) { case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: // For direct code, we actually prefer to call via the code pointer from ArtMethod*. return HInvokeStaticOrDirect::DispatchInfo { desired_dispatch_info.method_load_kind, HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, desired_dispatch_info.method_load_data, 0u }; default: return desired_dispatch_info; } } void CodeGeneratorX86_64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { // All registers are assumed to be correctly set up. Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: // temp = thread->string_init_entrypoint __ gs()->movq(temp.AsRegister<CpuRegister>(), Address::Absolute(invoke->GetStringInitOffset(), /* no_rip */ true)); break; case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); break; case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: __ movq(temp.AsRegister<CpuRegister>(), Immediate(invoke->GetMethodAddress())); break; case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: __ movl(temp.AsRegister<CpuRegister>(), Immediate(0)); // Placeholder. method_patches_.emplace_back(invoke->GetTargetMethod()); __ Bind(&method_patches_.back().label); // Bind the label at the end of the "movl" insn. break; case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { __ movq(temp.AsRegister<CpuRegister>(), Address::Absolute(kDummy32BitOffset, /* no_rip */ false)); // Bind a new fixup label at the end of the "movl" insn. uint32_t offset = invoke->GetDexCacheArrayOffset(); __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset)); break; } case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); Register method_reg; CpuRegister reg = temp.AsRegister<CpuRegister>(); if (current_method.IsRegister()) { method_reg = current_method.AsRegister<Register>(); } else { DCHECK(invoke->GetLocations()->Intrinsified()); DCHECK(!current_method.IsValid()); method_reg = reg.AsRegister(); __ movq(reg, Address(CpuRegister(RSP), kCurrentMethodStackOffset)); } // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; __ movq(reg, Address(CpuRegister(method_reg), ArtMethod::DexCacheResolvedMethodsOffset(kX86_64PointerSize).SizeValue())); // temp = temp[index_in_cache]; // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. uint32_t index_in_cache = invoke->GetDexMethodIndex(); __ movq(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); break; } } switch (invoke->GetCodePtrLocation()) { case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: __ call(&frame_entry_label_); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: { relative_call_patches_.emplace_back(invoke->GetTargetMethod()); Label* label = &relative_call_patches_.back().label; __ call(label); // Bind to the patch label, override at link time. __ Bind(label); // Bind the label at the end of the "call" insn. break; } case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: // Filtered out by GetSupportedInvokeStaticOrDirectDispatch(). LOG(FATAL) << "Unsupported"; UNREACHABLE(); case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: // (callee_method + offset_of_quick_compiled_code)() __ call(Address(callee_method.AsRegister<CpuRegister>(), ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); break; } DCHECK(!IsLeafMethod()); } void CodeGeneratorX86_64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { CpuRegister temp = temp_in.AsRegister<CpuRegister>(); size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kX86_64PointerSize).SizeValue(); // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConvention calling_convention; Register receiver = calling_convention.GetRegisterAt(0); size_t class_offset = mirror::Object::ClassOffset().SizeValue(); // /* HeapReference<Class> */ temp = receiver->klass_ __ movl(temp, Address(CpuRegister(receiver), class_offset)); MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); // temp = temp->GetMethodAt(method_offset); __ movq(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64WordSize).SizeValue())); } void CodeGeneratorX86_64::RecordSimplePatch() { if (GetCompilerOptions().GetIncludePatchInformation()) { simple_patches_.emplace_back(); __ Bind(&simple_patches_.back()); } } void CodeGeneratorX86_64::RecordStringPatch(HLoadString* load_string) { string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex()); __ Bind(&string_patches_.back().label); } Label* CodeGeneratorX86_64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, uint32_t element_offset) { // Add a patch entry and return the label. pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset); return &pc_relative_dex_cache_patches_.back().label; } void CodeGeneratorX86_64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { DCHECK(linker_patches->empty()); size_t size = method_patches_.size() + relative_call_patches_.size() + pc_relative_dex_cache_patches_.size() + simple_patches_.size() + string_patches_.size(); linker_patches->reserve(size); // The label points to the end of the "movl" insn but the literal offset for method // patch needs to point to the embedded constant which occupies the last 4 bytes. constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; for (const MethodPatchInfo<Label>& info : method_patches_) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, info.target_method.dex_file, info.target_method.dex_method_index)); } for (const MethodPatchInfo<Label>& info : relative_call_patches_) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset, info.target_method.dex_file, info.target_method.dex_method_index)); } for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset, &info.target_dex_file, info.label.Position(), info.element_offset)); } for (const Label& label : simple_patches_) { uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset)); } for (const StringPatchInfo<Label>& info : string_patches_) { // These are always PC-relative, see GetSupportedLoadStringKind(). uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset, &info.dex_file, info.label.Position(), info.string_index)); } } void CodeGeneratorX86_64::DumpCoreRegister(std::ostream& stream, int reg) const { stream << Register(reg); } void CodeGeneratorX86_64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << FloatRegister(reg); } size_t CodeGeneratorX86_64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ movq(Address(CpuRegister(RSP), stack_index), CpuRegister(reg_id)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ movq(CpuRegister(reg_id), Address(CpuRegister(RSP), stack_index)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ movsd(Address(CpuRegister(RSP), stack_index), XmmRegister(reg_id)); return kX86_64WordSize; } size_t CodeGeneratorX86_64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ movsd(XmmRegister(reg_id), Address(CpuRegister(RSP), stack_index)); return kX86_64WordSize; } void CodeGeneratorX86_64::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { InvokeRuntime(GetThreadOffset<kX86_64WordSize>(entrypoint).Int32Value(), instruction, dex_pc, slow_path); } void CodeGeneratorX86_64::InvokeRuntime(int32_t entry_point_offset, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(instruction, slow_path); __ gs()->call(Address::Absolute(entry_point_offset, /* no_rip */ true)); RecordPcInfo(instruction, dex_pc, slow_path); } static constexpr int kNumberOfCpuRegisterPairs = 0; // Use a fake return address register to mimic Quick. static constexpr Register kFakeReturnRegister = Register(kLastCpuRegister + 1); CodeGeneratorX86_64::CodeGeneratorX86_64(HGraph* graph, const X86_64InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfCpuRegisters, kNumberOfFloatRegisters, kNumberOfCpuRegisterPairs, ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)) | (1 << kFakeReturnRegister), ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), arraysize(kFpuCalleeSaves)), compiler_options, stats), block_labels_(nullptr), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), assembler_(graph->GetArena()), isa_features_(isa_features), constant_area_start_(0), method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); } InstructionCodeGeneratorX86_64::InstructionCodeGeneratorX86_64(HGraph* graph, CodeGeneratorX86_64* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void CodeGeneratorX86_64::SetupBlockedRegisters() const { // Stack register is always reserved. blocked_core_registers_[RSP] = true; // Block the register used as TMP. blocked_core_registers_[TMP] = true; } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::X86_64Core(static_cast<int>(reg)); } static dwarf::Reg DWARFReg(FloatRegister reg) { return dwarf::Reg::X86_64Fp(static_cast<int>(reg)); } void CodeGeneratorX86_64::GenerateFrameEntry() { __ cfi().SetCurrentCFAOffset(kX86_64WordSize); // return address __ Bind(&frame_entry_label_); bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86_64); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); if (!skip_overflow_check) { __ testq(CpuRegister(RAX), Address( CpuRegister(RSP), -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86_64)))); RecordPcInfo(nullptr, 0); } if (HasEmptyFrame()) { return; } for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ pushq(CpuRegister(reg)); __ cfi().AdjustCFAOffset(kX86_64WordSize); __ cfi().RelOffset(DWARFReg(reg), 0); } } int adjust = GetFrameSize() - GetCoreSpillSize(); __ subq(CpuRegister(RSP), Immediate(adjust)); __ cfi().AdjustCFAOffset(adjust); uint32_t xmm_spill_location = GetFpuSpillStart(); size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { int offset = xmm_spill_location + (xmm_spill_slot_size * i); __ movsd(Address(CpuRegister(RSP), offset), XmmRegister(kFpuCalleeSaves[i])); __ cfi().RelOffset(DWARFReg(kFpuCalleeSaves[i]), offset); } } __ movq(Address(CpuRegister(RSP), kCurrentMethodStackOffset), CpuRegister(kMethodRegisterArgument)); } void CodeGeneratorX86_64::GenerateFrameExit() { __ cfi().RememberState(); if (!HasEmptyFrame()) { uint32_t xmm_spill_location = GetFpuSpillStart(); size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { int offset = xmm_spill_location + (xmm_spill_slot_size * i); __ movsd(XmmRegister(kFpuCalleeSaves[i]), Address(CpuRegister(RSP), offset)); __ cfi().Restore(DWARFReg(kFpuCalleeSaves[i])); } } int adjust = GetFrameSize() - GetCoreSpillSize(); __ addq(CpuRegister(RSP), Immediate(adjust)); __ cfi().AdjustCFAOffset(-adjust); for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ popq(CpuRegister(reg)); __ cfi().AdjustCFAOffset(-static_cast<int>(kX86_64WordSize)); __ cfi().Restore(DWARFReg(reg)); } } } __ ret(); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorX86_64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } void CodeGeneratorX86_64::Move(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { CpuRegister dest = destination.AsRegister<CpuRegister>(); if (source.IsRegister()) { __ movq(dest, source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movd(dest, source.AsFpuRegister<XmmRegister>()); } else if (source.IsStackSlot()) { __ movl(dest, Address(CpuRegister(RSP), source.GetStackIndex())); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); if (constant->IsLongConstant()) { Load64BitValue(dest, constant->AsLongConstant()->GetValue()); } else { Load32BitValue(dest, GetInt32ValueOf(constant)); } } else { DCHECK(source.IsDoubleStackSlot()); __ movq(dest, Address(CpuRegister(RSP), source.GetStackIndex())); } } else if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); if (source.IsRegister()) { __ movd(dest, source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movaps(dest, source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int64_t value = CodeGenerator::GetInt64ValueOf(constant); if (constant->IsFloatConstant()) { Load32BitValue(dest, static_cast<int32_t>(value)); } else { Load64BitValue(dest, value); } } else if (source.IsStackSlot()) { __ movss(dest, Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(source.IsDoubleStackSlot()); __ movsd(dest, Address(CpuRegister(RSP), source.GetStackIndex())); } } else if (destination.IsStackSlot()) { if (source.IsRegister()) { __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int32_t value = GetInt32ValueOf(constant); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); } else { DCHECK(source.IsStackSlot()) << source; __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else { DCHECK(destination.IsDoubleStackSlot()); if (source.IsRegister()) { __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else if (source.IsFpuRegister()) { __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int64_t value; if (constant->IsDoubleConstant()) { value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); } else { DCHECK(constant->IsLongConstant()); value = constant->AsLongConstant()->GetValue(); } Store64BitValueToStack(destination, value); } else { DCHECK(source.IsDoubleStackSlot()); __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } } void CodeGeneratorX86_64::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); Load64BitValue(location.AsRegister<CpuRegister>(), static_cast<int64_t>(value)); } void CodeGeneratorX86_64::MoveLocation( Location dst, Location src, Primitive::Type dst_type ATTRIBUTE_UNUSED) { Move(dst, src); } void CodeGeneratorX86_64::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void InstructionCodeGeneratorX86_64::HandleGoto(HInstruction* got, HBasicBlock* successor) { DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ jmp(codegen_->GetLabelOf(successor)); } } void LocationsBuilderX86_64::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderX86_64::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void LocationsBuilderX86_64::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } template<class LabelType> void InstructionCodeGeneratorX86_64::GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label) { if (cond->IsFPConditionTrueIfNaN()) { __ j(kUnordered, true_label); } else if (cond->IsFPConditionFalseIfNaN()) { __ j(kUnordered, false_label); } __ j(X86_64FPCondition(cond->GetCondition()), true_label); } void InstructionCodeGeneratorX86_64::GenerateCompareTest(HCondition* condition) { LocationSummary* locations = condition->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); Primitive::Type type = condition->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { CpuRegister left_reg = left.AsRegister<CpuRegister>(); if (right.IsConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(right.GetConstant()); if (value == 0) { __ testl(left_reg, left_reg); } else { __ cmpl(left_reg, Immediate(value)); } } else if (right.IsStackSlot()) { __ cmpl(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ cmpl(left_reg, right.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimLong: { CpuRegister left_reg = left.AsRegister<CpuRegister>(); if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); codegen_->Compare64BitValue(left_reg, value); } else if (right.IsDoubleStackSlot()) { __ cmpq(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ cmpq(left_reg, right.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { if (right.IsFpuRegister()) { __ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); } else if (right.IsConstant()) { __ ucomiss(left.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( right.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(right.IsStackSlot()); __ ucomiss(left.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), right.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (right.IsFpuRegister()) { __ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); } else if (right.IsConstant()) { __ ucomisd(left.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( right.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(right.IsDoubleStackSlot()); __ ucomisd(left.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), right.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected condition type " << type; } } template<class LabelType> void InstructionCodeGeneratorX86_64::GenerateCompareTestAndBranch(HCondition* condition, LabelType* true_target_in, LabelType* false_target_in) { // Generated branching requires both targets to be explicit. If either of the // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. LabelType fallthrough_target; LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; // Generate the comparison to set the CC. GenerateCompareTest(condition); // Now generate the correct jump(s). Primitive::Type type = condition->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimLong: { __ j(X86_64IntegerCondition(condition->GetCondition()), true_target); break; } case Primitive::kPrimFloat: { GenerateFPJumps(condition, true_target, false_target); break; } case Primitive::kPrimDouble: { GenerateFPJumps(condition, true_target, false_target); break; } default: LOG(FATAL) << "Unexpected condition type " << type; } if (false_target != &fallthrough_target) { __ jmp(false_target); } if (fallthrough_target.IsLinked()) { __ Bind(&fallthrough_target); } } static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS // are set only strictly before `branch`. We can't use the eflags on long // conditions if they are materialized due to the complex branching. return cond->IsCondition() && cond->GetNext() == branch && !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType()); } template<class LabelType> void InstructionCodeGeneratorX86_64::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, LabelType* true_target, LabelType* false_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ jmp(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); if (false_target != nullptr) { __ jmp(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { if (AreEflagsSetFrom(cond, instruction)) { if (true_target == nullptr) { __ j(X86_64IntegerCondition(cond->AsCondition()->GetOppositeCondition()), false_target); } else { __ j(X86_64IntegerCondition(cond->AsCondition()->GetCondition()), true_target); } } else { // Materialized condition, compare against 0. Location lhs = instruction->GetLocations()->InAt(condition_input_index); if (lhs.IsRegister()) { __ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>()); } else { __ cmpl(Address(CpuRegister(RSP), lhs.GetStackIndex()), Immediate(0)); } if (true_target == nullptr) { __ j(kEqual, false_target); } else { __ j(kNotEqual, true_target); } } } else { // Condition has not been materialized, use its inputs as the // comparison and its condition as the branch condition. HCondition* condition = cond->AsCondition(); // If this is a long or FP comparison that has been folded into // the HCondition, generate the comparison directly. Primitive::Type type = condition->InputAt(0)->GetType(); if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { GenerateCompareTestAndBranch(condition, true_target, false_target); return; } Location lhs = condition->GetLocations()->InAt(0); Location rhs = condition->GetLocations()->InAt(1); if (rhs.IsRegister()) { __ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>()); } else if (rhs.IsConstant()) { int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); codegen_->Compare32BitValue(lhs.AsRegister<CpuRegister>(), constant); } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex())); } if (true_target == nullptr) { __ j(X86_64IntegerCondition(condition->GetOppositeCondition()), false_target); } else { __ j(X86_64IntegerCondition(condition->GetCondition()), true_target); } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ jmp(false_target); } } void LocationsBuilderX86_64::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86_64::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? nullptr : codegen_->GetLabelOf(true_successor); Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? nullptr : codegen_->GetLabelOf(false_successor); GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); } void LocationsBuilderX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86_64>(deoptimize); GenerateTestAndBranch<Label>(deoptimize, /* condition_input_index */ 0, slow_path->GetEntryLabel(), /* false_target */ nullptr); } static bool SelectCanUseCMOV(HSelect* select) { // There are no conditional move instructions for XMMs. if (Primitive::IsFloatingPointType(select->GetType())) { return false; } // A FP condition doesn't generate the single CC that we need. HInstruction* condition = select->GetCondition(); if (condition->IsCondition() && Primitive::IsFloatingPointType(condition->InputAt(0)->GetType())) { return false; } // We can generate a CMOV for this Select. return true; } void LocationsBuilderX86_64::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); if (Primitive::IsFloatingPointType(select->GetType())) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); } else { locations->SetInAt(0, Location::RequiresRegister()); if (SelectCanUseCMOV(select)) { if (select->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresRegister()); } else { locations->SetInAt(1, Location::Any()); } } else { locations->SetInAt(1, Location::Any()); } } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RequiresRegister()); } locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitSelect(HSelect* select) { LocationSummary* locations = select->GetLocations(); if (SelectCanUseCMOV(select)) { // If both the condition and the source types are integer, we can generate // a CMOV to implement Select. CpuRegister value_false = locations->InAt(0).AsRegister<CpuRegister>(); Location value_true_loc = locations->InAt(1); DCHECK(locations->InAt(0).Equals(locations->Out())); HInstruction* select_condition = select->GetCondition(); Condition cond = kNotEqual; // Figure out how to test the 'condition'. if (select_condition->IsCondition()) { HCondition* condition = select_condition->AsCondition(); if (!condition->IsEmittedAtUseSite()) { // This was a previously materialized condition. // Can we use the existing condition code? if (AreEflagsSetFrom(condition, select)) { // Materialization was the previous instruction. Condition codes are right. cond = X86_64IntegerCondition(condition->GetCondition()); } else { // No, we have to recreate the condition code. CpuRegister cond_reg = locations->InAt(2).AsRegister<CpuRegister>(); __ testl(cond_reg, cond_reg); } } else { GenerateCompareTest(condition); cond = X86_64IntegerCondition(condition->GetCondition()); } } else { // Must be a boolean condition, which needs to be compared to 0. CpuRegister cond_reg = locations->InAt(2).AsRegister<CpuRegister>(); __ testl(cond_reg, cond_reg); } // If the condition is true, overwrite the output, which already contains false. // Generate the correct sized CMOV. bool is_64_bit = Primitive::Is64BitType(select->GetType()); if (value_true_loc.IsRegister()) { __ cmov(cond, value_false, value_true_loc.AsRegister<CpuRegister>(), is_64_bit); } else { __ cmov(cond, value_false, Address(CpuRegister(RSP), value_true_loc.GetStackIndex()), is_64_bit); } } else { NearLabel false_target; GenerateTestAndBranch<NearLabel>(select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target); codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); __ Bind(&false_target); } } void LocationsBuilderX86_64::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetArena()) LocationSummary(info); } void InstructionCodeGeneratorX86_64::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorX86_64::GenerateNop() { __ nop(); } void LocationsBuilderX86_64::HandleCondition(HCondition* cond) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); // Handle the long/FP comparisons made in instruction simplification. switch (cond->InputAt(0)->GetType()) { case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); break; default: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); break; } if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::HandleCondition(HCondition* cond) { if (cond->IsEmittedAtUseSite()) { return; } LocationSummary* locations = cond->GetLocations(); Location lhs = locations->InAt(0); Location rhs = locations->InAt(1); CpuRegister reg = locations->Out().AsRegister<CpuRegister>(); NearLabel true_label, false_label; switch (cond->InputAt(0)->GetType()) { default: // Integer case. // Clear output register: setcc only sets the low byte. __ xorl(reg, reg); if (rhs.IsRegister()) { __ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>()); } else if (rhs.IsConstant()) { int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); codegen_->Compare32BitValue(lhs.AsRegister<CpuRegister>(), constant); } else { __ cmpl(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex())); } __ setcc(X86_64IntegerCondition(cond->GetCondition()), reg); return; case Primitive::kPrimLong: // Clear output register: setcc only sets the low byte. __ xorl(reg, reg); if (rhs.IsRegister()) { __ cmpq(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>()); } else if (rhs.IsConstant()) { int64_t value = rhs.GetConstant()->AsLongConstant()->GetValue(); codegen_->Compare64BitValue(lhs.AsRegister<CpuRegister>(), value); } else { __ cmpq(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex())); } __ setcc(X86_64IntegerCondition(cond->GetCondition()), reg); return; case Primitive::kPrimFloat: { XmmRegister lhs_reg = lhs.AsFpuRegister<XmmRegister>(); if (rhs.IsConstant()) { float value = rhs.GetConstant()->AsFloatConstant()->GetValue(); __ ucomiss(lhs_reg, codegen_->LiteralFloatAddress(value)); } else if (rhs.IsStackSlot()) { __ ucomiss(lhs_reg, Address(CpuRegister(RSP), rhs.GetStackIndex())); } else { __ ucomiss(lhs_reg, rhs.AsFpuRegister<XmmRegister>()); } GenerateFPJumps(cond, &true_label, &false_label); break; } case Primitive::kPrimDouble: { XmmRegister lhs_reg = lhs.AsFpuRegister<XmmRegister>(); if (rhs.IsConstant()) { double value = rhs.GetConstant()->AsDoubleConstant()->GetValue(); __ ucomisd(lhs_reg, codegen_->LiteralDoubleAddress(value)); } else if (rhs.IsDoubleStackSlot()) { __ ucomisd(lhs_reg, Address(CpuRegister(RSP), rhs.GetStackIndex())); } else { __ ucomisd(lhs_reg, rhs.AsFpuRegister<XmmRegister>()); } GenerateFPJumps(cond, &true_label, &false_label); break; } } // Convert the jumps into the result. NearLabel done_label; // False case: result = 0. __ Bind(&false_label); __ xorl(reg, reg); __ jmp(&done_label); // True case: result = 1. __ Bind(&true_label); __ movl(reg, Immediate(1)); __ Bind(&done_label); } void LocationsBuilderX86_64::VisitEqual(HEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitEqual(HEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitBelow(HBelow* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitBelow(HBelow* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitAbove(HAbove* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitAbove(HAbove* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86_64::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86_64::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86_64::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); Location left = locations->InAt(0); Location right = locations->InAt(1); NearLabel less, greater, done; Primitive::Type type = compare->InputAt(0)->GetType(); Condition less_cond = kLess; switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: { CpuRegister left_reg = left.AsRegister<CpuRegister>(); if (right.IsConstant()) { int32_t value = right.GetConstant()->AsIntConstant()->GetValue(); codegen_->Compare32BitValue(left_reg, value); } else if (right.IsStackSlot()) { __ cmpl(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ cmpl(left_reg, right.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimLong: { CpuRegister left_reg = left.AsRegister<CpuRegister>(); if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); codegen_->Compare64BitValue(left_reg, value); } else if (right.IsDoubleStackSlot()) { __ cmpq(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ cmpq(left_reg, right.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); if (right.IsConstant()) { float value = right.GetConstant()->AsFloatConstant()->GetValue(); __ ucomiss(left_reg, codegen_->LiteralFloatAddress(value)); } else if (right.IsStackSlot()) { __ ucomiss(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ ucomiss(left_reg, right.AsFpuRegister<XmmRegister>()); } __ j(kUnordered, compare->IsGtBias() ? &greater : &less); less_cond = kBelow; // ucomis{s,d} sets CF break; } case Primitive::kPrimDouble: { XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); if (right.IsConstant()) { double value = right.GetConstant()->AsDoubleConstant()->GetValue(); __ ucomisd(left_reg, codegen_->LiteralDoubleAddress(value)); } else if (right.IsDoubleStackSlot()) { __ ucomisd(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); } else { __ ucomisd(left_reg, right.AsFpuRegister<XmmRegister>()); } __ j(kUnordered, compare->IsGtBias() ? &greater : &less); less_cond = kBelow; // ucomis{s,d} sets CF break; } default: LOG(FATAL) << "Unexpected compare type " << type; } __ movl(out, Immediate(0)); __ j(kEqual, &done); __ j(less_cond, &less); __ Bind(&greater); __ movl(out, Immediate(1)); __ jmp(&done); __ Bind(&less); __ movl(out, Immediate(-1)); __ Bind(&done); } void LocationsBuilderX86_64::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86_64::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86_64::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86_64::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86_64::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86_64::VisitDoubleConstant( HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderX86_64::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorX86_64::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderX86_64::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: locations->SetInAt(0, Location::RegisterLocation(RAX)); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::FpuRegisterLocation(XMM0)); break; default: LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86_64::VisitReturn(HReturn* ret) { if (kIsDebugBuild) { switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<CpuRegister>().AsRegister(), RAX); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>().AsFloatRegister(), XMM0); break; default: LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); } } codegen_->GenerateFrameExit(); } Location InvokeDexCallingConventionVisitorX86_64::GetReturnLocation(Primitive::Type type) const { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimLong: return Location::RegisterLocation(RAX); case Primitive::kPrimVoid: return Location::NoLocation(); case Primitive::kPrimDouble: case Primitive::kPrimFloat: return Location::FpuRegisterLocation(XMM0); } UNREACHABLE(); } Location InvokeDexCallingConventionVisitorX86_64::GetMethodLocation() const { return Location::RegisterLocation(kMethodRegisterArgument); } Location InvokeDexCallingConventionVisitorX86_64::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; stack_index_ += 2; if (index < calling_convention.GetNumberOfRegisters()) { gp_index_ += 1; return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { gp_index_ += 2; return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimFloat: { uint32_t index = float_index_++; stack_index_++; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimDouble: { uint32_t index = float_index_++; stack_index_ += 2; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location::NoLocation(); } void LocationsBuilderX86_64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorX86_64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); } void LocationsBuilderX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86_64* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorX86_64 intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void LocationsBuilderX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::RegisterLocation(RAX)); } void InstructionCodeGeneratorX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister hidden_reg = locations->GetTemp(1).AsRegister<CpuRegister>(); Location receiver = locations->InAt(0); size_t class_offset = mirror::Object::ClassOffset().SizeValue(); // Set the hidden argument. This is safe to do this here, as RAX // won't be modified thereafter, before the `call` instruction. DCHECK_EQ(RAX, hidden_reg.AsRegister()); codegen_->Load64BitValue(hidden_reg, invoke->GetDexMethodIndex()); if (receiver.IsStackSlot()) { __ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex())); // /* HeapReference<Class> */ temp = temp->klass_ __ movl(temp, Address(temp, class_offset)); } else { // /* HeapReference<Class> */ temp = receiver->klass_ __ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset)); } codegen_->MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); // temp = temp->GetAddressOfIMT() __ movq(temp, Address(temp, mirror::Class::ImtPtrOffset(kX86_64PointerSize).Uint32Value())); // temp = temp->GetImtEntryAt(method_offset); uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( invoke->GetImtIndex() % ImTable::kSize, kX86_64PointerSize)); // temp = temp->GetImtEntryAt(method_offset); __ movq(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86_64WordSize).SizeValue())); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86_64::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); DCHECK(in.Equals(out)); __ negl(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimLong: DCHECK(in.IsRegister()); DCHECK(in.Equals(out)); __ negq(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimFloat: { DCHECK(in.Equals(out)); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // Implement float negation with an exclusive or with value // 0x80000000 (mask for bit 31, representing the sign of a // single-precision floating-point number). __ movss(mask, codegen_->LiteralInt32Address(0x80000000)); __ xorps(out.AsFpuRegister<XmmRegister>(), mask); break; } case Primitive::kPrimDouble: { DCHECK(in.Equals(out)); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // Implement double negation with an exclusive or with value // 0x8000000000000000 (mask for bit 63, representing the sign of // a double-precision floating-point number). __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000))); __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); break; } default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderX86_64::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. // TODO: We would benefit from a (to-be-implemented) // Location::RegisterOrStackSlot requirement for this input. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorX86_64::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. if (in.IsRegister()) { __ movsxb(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { __ movsxb(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int8_t>(Int64FromConstant(in.GetConstant())))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. if (in.IsRegister()) { __ movsxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { __ movsxw(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int16_t>(Int64FromConstant(in.GetConstant())))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. if (in.IsRegister()) { __ movl(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsDoubleStackSlot()) { __ movl(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); NearLabel done, nan; __ movl(output, Immediate(kPrimIntMax)); // if input >= (float)INT_MAX goto done __ comiss(input, codegen_->LiteralFloatAddress(kPrimIntMax)); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(output, input, false); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); NearLabel done, nan; __ movl(output, Immediate(kPrimIntMax)); // if input >= (double)INT_MAX goto done __ comisd(input, codegen_->LiteralDoubleAddress(kPrimIntMax)); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-int-truncate(input) __ cvttsd2si(output, input); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { DCHECK(out.IsRegister()); case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK(in.IsRegister()); __ movsxd(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-long' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); NearLabel done, nan; codegen_->Load64BitValue(output, kPrimLongMax); // if input >= (float)LONG_MAX goto done __ comiss(input, codegen_->LiteralFloatAddress(kPrimLongMax)); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-long-truncate(input) __ cvttss2si(output, input, true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-long' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); CpuRegister output = out.AsRegister<CpuRegister>(); NearLabel done, nan; codegen_->Load64BitValue(output, kPrimLongMax); // if input >= (double)LONG_MAX goto done __ comisd(input, codegen_->LiteralDoubleAddress(kPrimLongMax)); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-long-truncate(input) __ cvttsd2si(output, input, true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. if (in.IsRegister()) { __ movzxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { __ movzxw(out.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } else { __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<uint16_t>(Int64FromConstant(in.GetConstant())))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. if (in.IsRegister()) { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); } else if (in.IsConstant()) { int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load32BitValue(dest, static_cast<float>(v)); } else { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), false); } break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. if (in.IsRegister()) { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); } else if (in.IsConstant()) { int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load32BitValue(dest, static_cast<float>(v)); } else { __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), true); } break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. if (in.IsFpuRegister()) { __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); } else if (in.IsConstant()) { double v = in.GetConstant()->AsDoubleConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load32BitValue(dest, static_cast<float>(v)); } else { __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. if (in.IsRegister()) { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); } else if (in.IsConstant()) { int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load64BitValue(dest, static_cast<double>(v)); } else { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), false); } break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. if (in.IsRegister()) { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); } else if (in.IsConstant()) { int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load64BitValue(dest, static_cast<double>(v)); } else { __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex()), true); } break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. if (in.IsFpuRegister()) { __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); } else if (in.IsConstant()) { float v = in.GetConstant()->AsFloatConstant()->GetValue(); XmmRegister dest = out.AsFpuRegister<XmmRegister>(); codegen_->Load64BitValue(dest, static_cast<double>(v)); } else { __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), in.GetStackIndex())); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderX86_64::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); // We can use a leaq or addq if the constant can fit in an immediate. locations->SetInAt(1, Location::RegisterOrInt32Constant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimDouble: case Primitive::kPrimFloat: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); switch (add->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { __ addl(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>()); } else { __ leal(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); } } else if (second.IsConstant()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<CpuRegister>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } else { __ leal(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.GetConstant()->AsIntConstant()->GetValue())); } } else { DCHECK(first.Equals(locations->Out())); __ addl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsRegister()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addq(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { __ addq(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>()); } else { __ leaq(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); } } else { DCHECK(second.IsConstant()); int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); int32_t int32_value = Low32Bits(value); DCHECK_EQ(int32_value, value); if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addq(out.AsRegister<CpuRegister>(), Immediate(int32_value)); } else { __ leaq(out.AsRegister<CpuRegister>(), Address( first.AsRegister<CpuRegister>(), int32_value)); } } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ addss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ addss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ addsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ addsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderX86_64::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32Constant(sub->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ subl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (second.IsConstant()) { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); __ subl(first.AsRegister<CpuRegister>(), imm); } else { __ subl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsConstant()) { int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(value)); __ subq(first.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } else { __ subq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ subss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ subss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ subsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ subsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderX86_64::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (mul->InputAt(1)->IsIntConstant()) { // Can use 3 operand multiply. locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::SameAsFirstInput()); } break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (mul->InputAt(1)->IsLongConstant() && IsInt<32>(mul->InputAt(1)->AsLongConstant()->GetValue())) { // Can use 3 operand multiply. locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::SameAsFirstInput()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); switch (mul->GetResultType()) { case Primitive::kPrimInt: // The constant may have ended up in a register, so test explicitly to avoid // problems where the output may not be the same as the first operand. if (mul->InputAt(1)->IsIntConstant()) { Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); __ imull(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>(), imm); } else if (second.IsRegister()) { DCHECK(first.Equals(out)); __ imull(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { DCHECK(first.Equals(out)); DCHECK(second.IsStackSlot()); __ imull(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; case Primitive::kPrimLong: { // The constant may have ended up in a register, so test explicitly to avoid // problems where the output may not be the same as the first operand. if (mul->InputAt(1)->IsLongConstant()) { int64_t value = mul->InputAt(1)->AsLongConstant()->GetValue(); if (IsInt<32>(value)) { __ imulq(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); } else { // Have to use the constant area. DCHECK(first.Equals(out)); __ imulq(first.AsRegister<CpuRegister>(), codegen_->LiteralInt64Address(value)); } } else if (second.IsRegister()) { DCHECK(first.Equals(out)); __ imulq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { DCHECK(second.IsDoubleStackSlot()); DCHECK(first.Equals(out)); __ imulq(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimFloat: { DCHECK(first.Equals(out)); if (second.IsFpuRegister()) { __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ mulss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ mulss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { DCHECK(first.Equals(out)); if (second.IsFpuRegister()) { __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ mulsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86_64::PushOntoFPStack(Location source, uint32_t temp_offset, uint32_t stack_adjustment, bool is_float) { if (source.IsStackSlot()) { DCHECK(is_float); __ flds(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); } else if (source.IsDoubleStackSlot()) { DCHECK(!is_float); __ fldl(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); } else { // Write the value to the temporary location on the stack and load to FP stack. if (is_float) { Location stack_temp = Location::StackSlot(temp_offset); codegen_->Move(stack_temp, source); __ flds(Address(CpuRegister(RSP), temp_offset)); } else { Location stack_temp = Location::DoubleStackSlot(temp_offset); codegen_->Move(stack_temp, source); __ fldl(Address(CpuRegister(RSP), temp_offset)); } } } void InstructionCodeGeneratorX86_64::GenerateRemFP(HRem *rem) { Primitive::Type type = rem->GetResultType(); bool is_float = type == Primitive::kPrimFloat; size_t elem_size = Primitive::ComponentSize(type); LocationSummary* locations = rem->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); // Create stack space for 2 elements. // TODO: enhance register allocator to ask for stack temporaries. __ subq(CpuRegister(RSP), Immediate(2 * elem_size)); // Load the values to the FP stack in reverse order, using temporaries if needed. PushOntoFPStack(second, elem_size, 2 * elem_size, is_float); PushOntoFPStack(first, 0, 2 * elem_size, is_float); // Loop doing FPREM until we stabilize. NearLabel retry; __ Bind(&retry); __ fprem(); // Move FP status to AX. __ fstsw(); // And see if the argument reduction is complete. This is signaled by the // C2 FPU flag bit set to 0. __ andl(CpuRegister(RAX), Immediate(kC2ConditionMask)); __ j(kNotEqual, &retry); // We have settled on the final value. Retrieve it into an XMM register. // Store FP top of stack to real stack. if (is_float) { __ fsts(Address(CpuRegister(RSP), 0)); } else { __ fstl(Address(CpuRegister(RSP), 0)); } // Pop the 2 items from the FP stack. __ fucompp(); // Load the value from the stack into an XMM register. DCHECK(out.IsFpuRegister()) << out; if (is_float) { __ movss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); } else { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); } // And remove the temporary stack space we allocated. __ addq(CpuRegister(RSP), Immediate(2 * elem_size)); } void InstructionCodeGeneratorX86_64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); CpuRegister input_register = locations->InAt(0).AsRegister<CpuRegister>(); int64_t imm = Int64FromConstant(second.GetConstant()); DCHECK(imm == 1 || imm == -1); switch (instruction->GetResultType()) { case Primitive::kPrimInt: { if (instruction->IsRem()) { __ xorl(output_register, output_register); } else { __ movl(output_register, input_register); if (imm == -1) { __ negl(output_register); } } break; } case Primitive::kPrimLong: { if (instruction->IsRem()) { __ xorl(output_register, output_register); } else { __ movq(output_register, input_register); if (imm == -1) { __ negq(output_register); } } break; } default: LOG(FATAL) << "Unexpected type for div by (-)1 " << instruction->GetResultType(); } } void InstructionCodeGeneratorX86_64::DivByPowerOfTwo(HDiv* instruction) { LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); CpuRegister numerator = locations->InAt(0).AsRegister<CpuRegister>(); int64_t imm = Int64FromConstant(second.GetConstant()); DCHECK(IsPowerOfTwo(AbsOrMin(imm))); uint64_t abs_imm = AbsOrMin(imm); CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); if (instruction->GetResultType() == Primitive::kPrimInt) { __ leal(tmp, Address(numerator, abs_imm - 1)); __ testl(numerator, numerator); __ cmov(kGreaterEqual, tmp, numerator); int shift = CTZ(imm); __ sarl(tmp, Immediate(shift)); if (imm < 0) { __ negl(tmp); } __ movl(output_register, tmp); } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>(); codegen_->Load64BitValue(rdx, abs_imm - 1); __ addq(rdx, numerator); __ testq(numerator, numerator); __ cmov(kGreaterEqual, rdx, numerator); int shift = CTZ(imm); __ sarq(rdx, Immediate(shift)); if (imm < 0) { __ negq(rdx); } __ movq(output_register, rdx); } } void InstructionCodeGeneratorX86_64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); CpuRegister numerator = instruction->IsDiv() ? locations->GetTemp(1).AsRegister<CpuRegister>() : locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister eax = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister edx = instruction->IsDiv() ? locations->GetTemp(0).AsRegister<CpuRegister>() : locations->Out().AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); DCHECK_EQ(RAX, eax.AsRegister()); DCHECK_EQ(RDX, edx.AsRegister()); if (instruction->IsDiv()) { DCHECK_EQ(RAX, out.AsRegister()); } else { DCHECK_EQ(RDX, out.AsRegister()); } int64_t magic; int shift; // TODO: can these branches be written as one? if (instruction->GetResultType() == Primitive::kPrimInt) { int imm = second.GetConstant()->AsIntConstant()->GetValue(); CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); __ movl(numerator, eax); NearLabel no_div; NearLabel end; __ testl(eax, eax); __ j(kNotEqual, &no_div); __ xorl(out, out); __ jmp(&end); __ Bind(&no_div); __ movl(eax, Immediate(magic)); __ imull(numerator); if (imm > 0 && magic < 0) { __ addl(edx, numerator); } else if (imm < 0 && magic > 0) { __ subl(edx, numerator); } if (shift != 0) { __ sarl(edx, Immediate(shift)); } __ movl(eax, edx); __ shrl(edx, Immediate(31)); __ addl(edx, eax); if (instruction->IsRem()) { __ movl(eax, numerator); __ imull(edx, Immediate(imm)); __ subl(eax, edx); __ movl(edx, eax); } else { __ movl(eax, edx); } __ Bind(&end); } else { int64_t imm = second.GetConstant()->AsLongConstant()->GetValue(); DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister rax = eax; CpuRegister rdx = edx; CalculateMagicAndShiftForDivRem(imm, true /* is_long */, &magic, &shift); // Save the numerator. __ movq(numerator, rax); // RAX = magic codegen_->Load64BitValue(rax, magic); // RDX:RAX = magic * numerator __ imulq(numerator); if (imm > 0 && magic < 0) { // RDX += numerator __ addq(rdx, numerator); } else if (imm < 0 && magic > 0) { // RDX -= numerator __ subq(rdx, numerator); } // Shift if needed. if (shift != 0) { __ sarq(rdx, Immediate(shift)); } // RDX += 1 if RDX < 0 __ movq(rax, rdx); __ shrq(rdx, Immediate(63)); __ addq(rdx, rax); if (instruction->IsRem()) { __ movq(rax, numerator); if (IsInt<32>(imm)) { __ imulq(rdx, Immediate(static_cast<int32_t>(imm))); } else { __ imulq(rdx, codegen_->LiteralInt64Address(imm)); } __ subq(rax, rdx); __ movq(rdx, rax); } else { __ movq(rax, rdx); } } } void InstructionCodeGeneratorX86_64::GenerateDivRemIntegral(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); Primitive::Type type = instruction->GetResultType(); DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong); bool is_div = instruction->IsDiv(); LocationSummary* locations = instruction->GetLocations(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); Location second = locations->InAt(1); DCHECK_EQ(RAX, locations->InAt(0).AsRegister<CpuRegister>().AsRegister()); DCHECK_EQ(is_div ? RAX : RDX, out.AsRegister()); if (second.IsConstant()) { int64_t imm = Int64FromConstant(second.GetConstant()); if (imm == 0) { // Do not generate anything. DivZeroCheck would prevent any code to be executed. } else if (imm == 1 || imm == -1) { DivRemOneOrMinusOne(instruction); } else if (instruction->IsDiv() && IsPowerOfTwo(AbsOrMin(imm))) { DivByPowerOfTwo(instruction->AsDiv()); } else { DCHECK(imm <= -2 || imm >= 2); GenerateDivRemWithAnyConstant(instruction); } } else { SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86_64( instruction, out.AsRegister(), type, is_div); codegen_->AddSlowPath(slow_path); CpuRegister second_reg = second.AsRegister<CpuRegister>(); // 0x80000000(00000000)/-1 triggers an arithmetic exception! // Dividing by -1 is actually negation and -0x800000000(00000000) = 0x80000000(00000000) // so it's safe to just use negl instead of more complex comparisons. if (type == Primitive::kPrimInt) { __ cmpl(second_reg, Immediate(-1)); __ j(kEqual, slow_path->GetEntryLabel()); // edx:eax <- sign-extended of eax __ cdq(); // eax = quotient, edx = remainder __ idivl(second_reg); } else { __ cmpq(second_reg, Immediate(-1)); __ j(kEqual, slow_path->GetEntryLabel()); // rdx:rax <- sign-extended of rax __ cqo(); // rax = quotient, rdx = remainder __ idivq(second_reg); } __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderX86_64::VisitDiv(HDiv* div) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall); switch (div->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); // Intel uses edx:eax as the dividend. locations->AddTemp(Location::RegisterLocation(RDX)); // We need to save the numerator while we tweak rax and rdx. As we are using imul in a way // which enforces results to be in RAX and RDX, things are simpler if we use RDX also as // output and request another temp. if (div->InputAt(1)->IsConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorX86_64::VisitDiv(HDiv* div) { LocationSummary* locations = div->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); Primitive::Type type = div->GetResultType(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(div); break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ divss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( second.GetConstant()->AsFloatConstant()->GetValue())); } else { DCHECK(second.IsStackSlot()); __ divss(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (second.IsConstant()) { __ divsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( second.GetConstant()->AsDoubleConstant()->GetValue())); } else { DCHECK(second.IsDoubleStackSlot()); __ divsd(first.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderX86_64::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, LocationSummary::kNoCall); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); // Intel uses rdx:rax as the dividend and puts the remainder in rdx locations->SetOut(Location::RegisterLocation(RDX)); // We need to save the numerator while we tweak eax and edx. As we are using imul in a way // which enforces results to be in RAX and RDX, things are simpler if we use EAX also as // output and request another temp. if (rem->InputAt(1)->IsConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::Any()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RegisterLocation(RAX)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorX86_64::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(rem); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { GenerateRemFP(rem); break; } default: LOG(FATAL) << "Unexpected rem type " << rem->GetResultType(); } } void LocationsBuilderX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::Any()); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86_64(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: { if (value.IsRegister()) { __ testl(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); __ j(kEqual, slow_path->GetEntryLabel()); } else if (value.IsStackSlot()) { __ cmpl(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } case Primitive::kPrimLong: { if (value.IsRegister()) { __ testq(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); __ j(kEqual, slow_path->GetEntryLabel()); } else if (value.IsDoubleStackSlot()) { __ cmpq(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } void LocationsBuilderX86_64::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); // The shift count needs to be in CL. locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, op->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void InstructionCodeGeneratorX86_64::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>(); Location second = locations->InAt(1); switch (op->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); if (op->IsShl()) { __ shll(first_reg, second_reg); } else if (op->IsShr()) { __ sarl(first_reg, second_reg); } else { __ shrl(first_reg, second_reg); } } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); if (op->IsShl()) { __ shll(first_reg, imm); } else if (op->IsShr()) { __ sarl(first_reg, imm); } else { __ shrl(first_reg, imm); } } break; } case Primitive::kPrimLong: { if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); if (op->IsShl()) { __ shlq(first_reg, second_reg); } else if (op->IsShr()) { __ sarq(first_reg, second_reg); } else { __ shrq(first_reg, second_reg); } } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance); if (op->IsShl()) { __ shlq(first_reg, imm); } else if (op->IsShr()) { __ sarq(first_reg, imm); } else { __ shrq(first_reg, imm); } } break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); UNREACHABLE(); } } void LocationsBuilderX86_64::VisitRor(HRor* ror) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); switch (ror->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); // The shift count needs to be in CL (unless it is a constant). locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, ror->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); UNREACHABLE(); } } void InstructionCodeGeneratorX86_64::VisitRor(HRor* ror) { LocationSummary* locations = ror->GetLocations(); CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>(); Location second = locations->InAt(1); switch (ror->GetResultType()) { case Primitive::kPrimInt: if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); __ rorl(first_reg, second_reg); } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); __ rorl(first_reg, imm); } break; case Primitive::kPrimLong: if (second.IsRegister()) { CpuRegister second_reg = second.AsRegister<CpuRegister>(); __ rorq(first_reg, second_reg); } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance); __ rorq(first_reg, imm); } break; default: LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); UNREACHABLE(); } } void LocationsBuilderX86_64::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorX86_64::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderX86_64::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorX86_64::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderX86_64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorX86_64::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderX86_64::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; if (instruction->IsStringAlloc()) { locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); } else { locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } locations->SetOut(Location::RegisterLocation(RAX)); } void InstructionCodeGeneratorX86_64::VisitNewInstance(HNewInstance* instruction) { // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. if (instruction->IsStringAlloc()) { // String is allocated through StringFactory. Call NewEmptyString entry point. CpuRegister temp = instruction->GetLocations()->GetTemp(0).AsRegister<CpuRegister>(); MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86_64WordSize); __ gs()->movq(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString), /* no_rip */ true)); __ call(Address(temp, code_offset.SizeValue())); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } else { codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc(), nullptr); CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); DCHECK(!codegen_->IsLeafMethod()); } } void LocationsBuilderX86_64::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void InstructionCodeGeneratorX86_64::VisitNewArray(HNewArray* instruction) { InvokeRuntimeCallingConvention calling_convention; codegen_->Load64BitValue(CpuRegister(calling_convention.GetRegisterAt(0)), instruction->GetTypeIndex()); // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc(), nullptr); CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>(); DCHECK(!codegen_->IsLeafMethod()); } void LocationsBuilderX86_64::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorX86_64::VisitParameterValue( HParameterValue* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the parameter is already at its location. } void LocationsBuilderX86_64::VisitCurrentMethod(HCurrentMethod* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); } void InstructionCodeGeneratorX86_64::VisitCurrentMethod( HCurrentMethod* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the method is already at its location. } void LocationsBuilderX86_64::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = instruction->GetLocations(); if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( instruction->GetIndex(), kX86_64PointerSize).SizeValue(); __ movq(locations->Out().AsRegister<CpuRegister>(), Address(locations->InAt(0).AsRegister<CpuRegister>(), method_offset)); } else { uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( instruction->GetIndex() % ImTable::kSize, kX86_64PointerSize)); __ movq(locations->Out().AsRegister<CpuRegister>(), Address(locations->InAt(0).AsRegister<CpuRegister>(), mirror::Class::ImtPtrOffset(kX86_64PointerSize).Uint32Value())); __ movq(locations->Out().AsRegister<CpuRegister>(), Address(locations->Out().AsRegister<CpuRegister>(), method_offset)); } } void LocationsBuilderX86_64::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), locations->Out().AsRegister<CpuRegister>().AsRegister()); Location out = locations->Out(); switch (not_->GetResultType()) { case Primitive::kPrimInt: __ notl(out.AsRegister<CpuRegister>()); break; case Primitive::kPrimLong: __ notq(out.AsRegister<CpuRegister>()); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderX86_64::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = bool_not->GetLocations(); DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), locations->Out().AsRegister<CpuRegister>().AsRegister()); Location out = locations->Out(); __ xorl(out.AsRegister<CpuRegister>(), Immediate(1)); } void LocationsBuilderX86_64::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorX86_64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unimplemented"; } void CodeGeneratorX86_64::GenerateMemoryBarrier(MemBarrierKind kind) { /* * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86-64 memory model. * For those cases, all we need to ensure is that there is a scheduling barrier in place. */ switch (kind) { case MemBarrierKind::kAnyAny: { MemoryFence(); break; } case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kStoreStore: { // nop break; } default: LOG(FATAL) << "Unexpected memory barier " << kind; } } void LocationsBuilderX86_64::HandleFieldGet(HInstruction* instruction) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); bool object_field_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, object_field_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { // The output overlaps for an object field get when read barriers // are enabled: we do not want the move to overwrite the object's // location, as we need it to emit the read barrier. locations->SetOut( Location::RequiresRegister(), object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in CodeGeneratorX86_64::GenerateFieldLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = instruction->GetLocations(); Location base_loc = locations->InAt(0); CpuRegister base = base_loc.AsRegister<CpuRegister>(); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (field_type) { case Primitive::kPrimBoolean: { __ movzxb(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimByte: { __ movsxb(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimShort: { __ movsxw(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimChar: { __ movzxw(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimInt: { __ movl(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimNot: { // /* HeapReference<Object> */ out = *(base + offset) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp_loc = locations->GetTemp(0); // Note that a potential implicit null check is handled in this // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call. codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, base, offset, temp_loc, /* needs_null_check */ true); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } else { __ movl(out.AsRegister<CpuRegister>(), Address(base, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); } break; } case Primitive::kPrimLong: { __ movq(out.AsRegister<CpuRegister>(), Address(base, offset)); break; } case Primitive::kPrimFloat: { __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimDouble: { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (field_type == Primitive::kPrimNot) { // Potential implicit null checks, in the case of reference // fields, are handled in the previous switch statement. } else { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (is_volatile) { if (field_type == Primitive::kPrimNot) { // Memory barriers, in the case of references, are also handled // in the previous switch statement. } else { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } } void LocationsBuilderX86_64::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Primitive::Type field_type = field_info.GetFieldType(); bool is_volatile = field_info.IsVolatile(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); locations->SetInAt(0, Location::RequiresRegister()); if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) { if (is_volatile) { // In order to satisfy the semantics of volatile, this must be a single instruction store. locations->SetInAt(1, Location::FpuRegisterOrInt32Constant(instruction->InputAt(1))); } else { locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); } } else { if (is_volatile) { // In order to satisfy the semantics of volatile, this must be a single instruction store. locations->SetInAt(1, Location::RegisterOrInt32Constant(instruction->InputAt(1))); } else { locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); } } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } else if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { // Temporary register for the reference poisoning. locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>(); Location value = locations->InAt(1); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } bool maybe_record_implicit_null_check_done = false; switch (field_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { if (value.IsConstant()) { int8_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movb(Address(base, offset), Immediate(v)); } else { __ movb(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { if (value.IsConstant()) { int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movw(Address(base, offset), Immediate(v)); } else { __ movw(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); // `field_type == Primitive::kPrimNot` implies `v == 0`. DCHECK((field_type != Primitive::kPrimNot) || (v == 0)); // Note: if heap poisoning is enabled, no need to poison // (negate) `v` if it is a reference, as it would be null. __ movl(Address(base, offset), Immediate(v)); } else { if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); __ movl(temp, value.AsRegister<CpuRegister>()); __ PoisonHeapReference(temp); __ movl(Address(base, offset), temp); } else { __ movl(Address(base, offset), value.AsRegister<CpuRegister>()); } } break; } case Primitive::kPrimLong: { if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); codegen_->MoveInt64ToAddress(Address(base, offset), Address(base, offset + sizeof(int32_t)), v, instruction); maybe_record_implicit_null_check_done = true; } else { __ movq(Address(base, offset), value.AsRegister<CpuRegister>()); } break; } case Primitive::kPrimFloat: { if (value.IsConstant()) { int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); __ movl(Address(base, offset), Immediate(v)); } else { __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); } break; } case Primitive::kPrimDouble: { if (value.IsConstant()) { int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); codegen_->MoveInt64ToAddress(Address(base, offset), Address(base, offset + sizeof(int32_t)), v, instruction); maybe_record_implicit_null_check_done = true; } else { __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (!maybe_record_implicit_null_check_done) { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); codegen_->MarkGCCard(temp, card, base, value.AsRegister<CpuRegister>(), value_can_be_null); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } void LocationsBuilderX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction); } void InstructionCodeGeneratorX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction); } void InstructionCodeGeneratorX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderX86_64::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86_64::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86_64::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86_64::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86_64::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86_64::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86_64::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86_64::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionX86_64 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86_64::VisitNullCheck(HNullCheck* instruction) { LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); Location loc = codegen_->IsImplicitNullCheckAllowed(instruction) ? Location::RequiresRegister() : Location::Any(); locations->SetInAt(0, loc); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void CodeGeneratorX86_64::GenerateImplicitNullCheck(HNullCheck* instruction) { if (CanMoveNullCheckToUser(instruction)) { return; } LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ testl(CpuRegister(RAX), Address(obj.AsRegister<CpuRegister>(), 0)); RecordPcInfo(instruction, instruction->GetDexPc()); } void CodeGeneratorX86_64::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86_64(instruction); AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); if (obj.IsRegister()) { __ testl(obj.AsRegister<CpuRegister>(), obj.AsRegister<CpuRegister>()); } else if (obj.IsStackSlot()) { __ cmpl(Address(CpuRegister(RSP), obj.GetStackIndex()), Immediate(0)); } else { DCHECK(obj.IsConstant()) << obj; DCHECK(obj.GetConstant()->IsNullConstant()); __ jmp(slow_path->GetEntryLabel()); return; } __ j(kEqual, slow_path->GetEntryLabel()); } void InstructionCodeGeneratorX86_64::VisitNullCheck(HNullCheck* instruction) { codegen_->GenerateNullCheck(instruction); } void LocationsBuilderX86_64::VisitArrayGet(HArrayGet* instruction) { bool object_array_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { // The output overlaps for an object array get when read barriers // are enabled: we do not want the move to overwrite the array's // location, as we need it to emit the read barrier. locations->SetOut( Location::RequiresRegister(), object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } // We need a temporary register for the read barrier marking slow // path in CodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier. if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); Location index = locations->InAt(1); Location out_loc = locations->Out(); Primitive::Type type = instruction->GetType(); switch (type) { case Primitive::kPrimBoolean: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movzxb(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); } else { __ movzxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset)); } break; } case Primitive::kPrimByte: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movsxb(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); } else { __ movsxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset)); } break; } case Primitive::kPrimShort: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movsxw(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); } else { __ movsxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset)); } break; } case Primitive::kPrimChar: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movzxw(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); } else { __ movzxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset)); } break; } case Primitive::kPrimInt: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movl(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); } else { __ movl(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset)); } break; } case Primitive::kPrimNot: { static_assert( sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); // /* HeapReference<Object> */ out = // *(obj + data_offset + index * sizeof(HeapReference<Object>)) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); // Note that a potential implicit null check is handled in this // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call. codegen_->GenerateArrayLoadWithBakerReadBarrier( instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); } else { CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { uint32_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ movl(out, Address(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); } else { __ movl(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow( instruction, out_loc, out_loc, obj_loc, data_offset, index); } } break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); if (index.IsConstant()) { __ movq(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); } else { __ movq(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset)); } break; } case Primitive::kPrimFloat: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); if (index.IsConstant()) { __ movss(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); } else { __ movss(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset)); } break; } case Primitive::kPrimDouble: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); if (index.IsConstant()) { __ movsd(out, Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); } else { __ movsd(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset)); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } if (type == Primitive::kPrimNot) { // Potential implicit null checks, in the case of reference // arrays, are handled in the previous switch statement. } else { codegen_->MaybeRecordImplicitNullCheck(instruction); } } void LocationsBuilderX86_64::VisitArraySet(HArraySet* instruction) { Primitive::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); bool object_array_set_with_read_barrier = kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); } else { locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); } if (needs_write_barrier) { // Temporary registers for the write barrier. // This first temporary register is possibly used for heap // reference poisoning and/or read barrier emission too. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location array_loc = locations->InAt(0); CpuRegister array = array_loc.AsRegister<CpuRegister>(); Location index = locations->InAt(1); Location value = locations->InAt(2); Primitive::Type value_type = instruction->GetComponentType(); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); switch (value_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_1, offset); if (value.IsRegister()) { __ movb(address, value.AsRegister<CpuRegister>()); } else { __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_2, offset); if (value.IsRegister()) { __ movw(address, value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimNot: { uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_4, offset); if (!value.IsRegister()) { // Just setting null. DCHECK(instruction->InputAt(2)->IsNullConstant()); DCHECK(value.IsConstant()) << value; __ movl(address, Immediate(0)); codegen_->MaybeRecordImplicitNullCheck(instruction); DCHECK(!needs_write_barrier); DCHECK(!may_need_runtime_call_for_type_check); break; } DCHECK(needs_write_barrier); CpuRegister register_value = value.AsRegister<CpuRegister>(); NearLabel done, not_null, do_put; SlowPathCode* slow_path = nullptr; CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); if (may_need_runtime_call_for_type_check) { slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86_64(instruction); codegen_->AddSlowPath(slow_path); if (instruction->GetValueCanBeNull()) { __ testl(register_value, register_value); __ j(kNotEqual, ¬_null); __ movl(address, Immediate(0)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ jmp(&done); __ Bind(¬_null); } if (kEmitCompilerReadBarrier) { // When read barriers are enabled, the type checking // instrumentation requires two read barriers: // // __ movl(temp2, temp); // // /* HeapReference<Class> */ temp = temp->component_type_ // __ movl(temp, Address(temp, component_offset)); // codegen_->GenerateReadBarrierSlow( // instruction, temp_loc, temp_loc, temp2_loc, component_offset); // // // /* HeapReference<Class> */ temp2 = register_value->klass_ // __ movl(temp2, Address(register_value, class_offset)); // codegen_->GenerateReadBarrierSlow( // instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc); // // __ cmpl(temp, temp2); // // However, the second read barrier may trash `temp`, as it // is a temporary register, and as such would not be saved // along with live registers before calling the runtime (nor // restored afterwards). So in this case, we bail out and // delegate the work to the array set slow path. // // TODO: Extend the register allocator to support a new // "(locally) live temp" location so as to avoid always // going into the slow path when read barriers are enabled. __ jmp(slow_path->GetEntryLabel()); } else { // /* HeapReference<Class> */ temp = array->klass_ __ movl(temp, Address(array, class_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ MaybeUnpoisonHeapReference(temp); // /* HeapReference<Class> */ temp = temp->component_type_ __ movl(temp, Address(temp, component_offset)); // If heap poisoning is enabled, no need to unpoison `temp` // nor the object reference in `register_value->klass`, as // we are comparing two poisoned references. __ cmpl(temp, Address(register_value, class_offset)); if (instruction->StaticTypeOfArrayIsObjectArray()) { __ j(kEqual, &do_put); // If heap poisoning is enabled, the `temp` reference has // not been unpoisoned yet; unpoison it now. __ MaybeUnpoisonHeapReference(temp); // /* HeapReference<Class> */ temp = temp->super_class_ __ movl(temp, Address(temp, super_offset)); // If heap poisoning is enabled, no need to unpoison // `temp`, as we are comparing against null below. __ testl(temp, temp); __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(&do_put); } else { __ j(kNotEqual, slow_path->GetEntryLabel()); } } } if (kPoisonHeapReferences) { __ movl(temp, register_value); __ PoisonHeapReference(temp); __ movl(address, temp); } else { __ movl(address, register_value); } if (!may_need_runtime_call_for_type_check) { codegen_->MaybeRecordImplicitNullCheck(instruction); } CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); codegen_->MarkGCCard( temp, card, array, value.AsRegister<CpuRegister>(), instruction->GetValueCanBeNull()); __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } break; } case Primitive::kPrimInt: { uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_4, offset); if (value.IsRegister()) { __ movl(address, value.AsRegister<CpuRegister>()); } else { DCHECK(value.IsConstant()) << value; int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(address, Immediate(v)); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimLong: { uint32_t offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_8, offset); if (value.IsRegister()) { __ movq(address, value.AsRegister<CpuRegister>()); codegen_->MaybeRecordImplicitNullCheck(instruction); } else { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); Address address_high = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset + sizeof(int32_t)) : Address(array, index.AsRegister<CpuRegister>(), TIMES_8, offset + sizeof(int32_t)); codegen_->MoveInt64ToAddress(address, address_high, v, instruction); } break; } case Primitive::kPrimFloat: { uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_4, offset); if (value.IsFpuRegister()) { __ movss(address, value.AsFpuRegister<XmmRegister>()); } else { DCHECK(value.IsConstant()); int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); __ movl(address, Immediate(v)); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimDouble: { uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); Address address = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset) : Address(array, index.AsRegister<CpuRegister>(), TIMES_8, offset); if (value.IsFpuRegister()) { __ movsd(address, value.AsFpuRegister<XmmRegister>()); codegen_->MaybeRecordImplicitNullCheck(instruction); } else { int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); Address address_high = index.IsConstant() ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset + sizeof(int32_t)) : Address(array, index.AsRegister<CpuRegister>(), TIMES_8, offset + sizeof(int32_t)); codegen_->MoveInt64ToAddress(address, address_high, v, instruction); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << instruction->GetType(); UNREACHABLE(); } } void LocationsBuilderX86_64::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorX86_64::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = instruction->GetLocations(); uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); __ movl(out, Address(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); } void LocationsBuilderX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); Location index_loc = locations->InAt(0); Location length_loc = locations->InAt(1); SlowPathCode* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathX86_64(instruction); if (length_loc.IsConstant()) { int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); if (index_loc.IsConstant()) { // BCE will remove the bounds check if we are guarenteed to pass. int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); if (index < 0 || index >= length) { codegen_->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); } else { // Some optimization after BCE may have generated this, and we should not // generate a bounds check if it is a valid range. } return; } // We have to reverse the jump condition because the length is the constant. CpuRegister index_reg = index_loc.AsRegister<CpuRegister>(); __ cmpl(index_reg, Immediate(length)); codegen_->AddSlowPath(slow_path); __ j(kAboveEqual, slow_path->GetEntryLabel()); } else { CpuRegister length = length_loc.AsRegister<CpuRegister>(); if (index_loc.IsConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); __ cmpl(length, Immediate(value)); } else { __ cmpl(length, index_loc.AsRegister<CpuRegister>()); } codegen_->AddSlowPath(slow_path); __ j(kBelowEqual, slow_path->GetEntryLabel()); } } void CodeGeneratorX86_64::MarkGCCard(CpuRegister temp, CpuRegister card, CpuRegister object, CpuRegister value, bool value_can_be_null) { NearLabel is_null; if (value_can_be_null) { __ testl(value, value); __ j(kEqual, &is_null); } __ gs()->movq(card, Address::Absolute(Thread::CardTableOffset<kX86_64WordSize>().Int32Value(), /* no_rip */ true)); __ movq(temp, object); __ shrq(temp, Immediate(gc::accounting::CardTable::kCardShift)); __ movb(Address(temp, card, TIMES_1, 0), card); if (value_can_be_null) { __ Bind(&is_null); } } void LocationsBuilderX86_64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unimplemented"; } void InstructionCodeGeneratorX86_64::VisitParallelMove(HParallelMove* instruction) { codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); } void InstructionCodeGeneratorX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); } void InstructionCodeGeneratorX86_64::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathX86_64* slow_path = down_cast<SuspendCheckSlowPathX86_64*>(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86_64(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } __ gs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86_64WordSize>().Int32Value(), /* no_rip */ true), Immediate(0)); if (successor == nullptr) { __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ j(kEqual, codegen_->GetLabelOf(successor)); __ jmp(slow_path->GetEntryLabel()); } } X86_64Assembler* ParallelMoveResolverX86_64::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverX86_64::EmitMove(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>()); } else if (destination.IsStackSlot()) { __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } else { DCHECK(destination.IsDoubleStackSlot()); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsRegister<CpuRegister>()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { __ movl(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else if (destination.IsFpuRegister()) { __ movss(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(destination.IsStackSlot()); __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else if (source.IsDoubleStackSlot()) { if (destination.IsRegister()) { __ movq(destination.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else if (destination.IsFpuRegister()) { __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), source.GetStackIndex())); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); } } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { if (value == 0) { __ xorl(destination.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>()); } else { __ movl(destination.AsRegister<CpuRegister>(), Immediate(value)); } } else { DCHECK(destination.IsStackSlot()) << destination; __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); } } else if (constant->IsLongConstant()) { int64_t value = constant->AsLongConstant()->GetValue(); if (destination.IsRegister()) { codegen_->Load64BitValue(destination.AsRegister<CpuRegister>(), value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; codegen_->Store64BitValueToStack(destination, value); } } else if (constant->IsFloatConstant()) { float fp_value = constant->AsFloatConstant()->GetValue(); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); codegen_->Load32BitValue(dest, fp_value); } else { DCHECK(destination.IsStackSlot()) << destination; Immediate imm(bit_cast<int32_t, float>(fp_value)); __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), imm); } } else { DCHECK(constant->IsDoubleConstant()) << constant->DebugName(); double fp_value = constant->AsDoubleConstant()->GetValue(); int64_t value = bit_cast<int64_t, double>(fp_value); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); codegen_->Load64BitValue(dest, fp_value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; codegen_->Store64BitValueToStack(destination, value); } } } else if (source.IsFpuRegister()) { if (destination.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (destination.IsStackSlot()) { __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } } } void ParallelMoveResolverX86_64::Exchange32(CpuRegister reg, int mem) { __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movl(Address(CpuRegister(RSP), mem), reg); __ movl(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange32(int mem1, int mem2) { ScratchRegisterScope ensure_scratch( this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); __ movl(CpuRegister(ensure_scratch.GetRegister()), Address(CpuRegister(RSP), mem2 + stack_offset)); __ movl(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); __ movl(Address(CpuRegister(RSP), mem1 + stack_offset), CpuRegister(ensure_scratch.GetRegister())); } void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg1, CpuRegister reg2) { __ movq(CpuRegister(TMP), reg1); __ movq(reg1, reg2); __ movq(reg2, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg, int mem) { __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movq(Address(CpuRegister(RSP), mem), reg); __ movq(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange64(int mem1, int mem2) { ScratchRegisterScope ensure_scratch( this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); __ movq(CpuRegister(ensure_scratch.GetRegister()), Address(CpuRegister(RSP), mem2 + stack_offset)); __ movq(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); __ movq(Address(CpuRegister(RSP), mem1 + stack_offset), CpuRegister(ensure_scratch.GetRegister())); } void ParallelMoveResolverX86_64::Exchange32(XmmRegister reg, int mem) { __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movss(Address(CpuRegister(RSP), mem), reg); __ movd(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::Exchange64(XmmRegister reg, int mem) { __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); __ movsd(Address(CpuRegister(RSP), mem), reg); __ movd(reg, CpuRegister(TMP)); } void ParallelMoveResolverX86_64::EmitSwap(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister() && destination.IsRegister()) { Exchange64(source.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>()); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange32(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange32(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange32(destination.GetStackIndex(), source.GetStackIndex()); } else if (source.IsRegister() && destination.IsDoubleStackSlot()) { Exchange64(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsRegister()) { Exchange64(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { Exchange64(destination.GetStackIndex(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { __ movd(CpuRegister(TMP), source.AsFpuRegister<XmmRegister>()); __ movaps(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); __ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP)); } else if (source.IsFpuRegister() && destination.IsStackSlot()) { Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsFpuRegister()) { Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { Exchange64(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); } else if (source.IsDoubleStackSlot() && destination.IsFpuRegister()) { Exchange64(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); } else { LOG(FATAL) << "Unimplemented swap between " << source << " and " << destination; } } void ParallelMoveResolverX86_64::SpillScratch(int reg) { __ pushq(CpuRegister(reg)); } void ParallelMoveResolverX86_64::RestoreScratch(int reg) { __ popq(CpuRegister(reg)); } void InstructionCodeGeneratorX86_64::GenerateClassInitializationCheck( SlowPathCode* slow_path, CpuRegister class_reg) { __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), Immediate(mirror::Class::kStatusInitialized)); __ j(kLess, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); // No need for memory fence, thanks to the x86-64 memory model. } void LocationsBuilderX86_64::VisitLoadClass(HLoadClass* cls) { InvokeRuntimeCallingConvention calling_convention; CodeGenerator::CreateLoadClassLocationSummary( cls, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Location::RegisterLocation(RAX), /* code_generator_supports_read_barrier */ true); } void InstructionCodeGeneratorX86_64::VisitLoadClass(HLoadClass* cls) { LocationSummary* locations = cls->GetLocations(); if (cls->NeedsAccessCheck()) { codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex()); codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess), cls, cls->GetDexPc(), nullptr); CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); return; } Location out_loc = locations->Out(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); CpuRegister current_method = locations->InAt(0).AsRegister<CpuRegister>(); if (cls->IsReferrersClass()) { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ GenerateGcRootFieldLoad( cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); } else { // /* GcRoot<mirror::Class>[] */ out = // current_method.ptr_sized_fields_->dex_cache_resolved_types_ __ movq(out, Address(current_method, ArtMethod::DexCacheResolvedTypesOffset(kX86_64PointerSize).Int32Value())); // /* GcRoot<mirror::Class> */ out = out[type_index] GenerateGcRootFieldLoad( cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()))); if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) { DCHECK(cls->CanCallRuntime()); SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); codegen_->AddSlowPath(slow_path); if (!cls->IsInDexCache()) { __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); } if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } } } } void LocationsBuilderX86_64::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86_64::VisitClinitCheck(HClinitCheck* check) { // We assume the class to not be null. SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( check->GetLoadClass(), check, check->GetDexPc(), true); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, check->GetLocations()->InAt(0).AsRegister<CpuRegister>()); } HLoadString::LoadKind CodeGeneratorX86_64::GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) { if (kEmitCompilerReadBarrier) { switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: case HLoadString::LoadKind::kBootImageLinkTimePcRelative: case HLoadString::LoadKind::kBootImageAddress: // TODO: Implement for read barrier. return HLoadString::LoadKind::kDexCacheViaMethod; default: break; } } switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: DCHECK(!GetCompilerOptions().GetCompilePic()); // We prefer the always-available RIP-relative address for the x86-64 boot image. return HLoadString::LoadKind::kBootImageLinkTimePcRelative; case HLoadString::LoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().GetCompilePic()); break; case HLoadString::LoadKind::kBootImageAddress: break; case HLoadString::LoadKind::kDexCacheAddress: DCHECK(Runtime::Current()->UseJitCompilation()); break; case HLoadString::LoadKind::kDexCachePcRelative: DCHECK(!Runtime::Current()->UseJitCompilation()); break; case HLoadString::LoadKind::kDexCacheViaMethod: break; } return desired_string_load_kind; } void LocationsBuilderX86_64::VisitLoadString(HLoadString* load) { LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); if (load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod) { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitLoadString(HLoadString* load) { LocationSummary* locations = load->GetLocations(); Location out_loc = locations->Out(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); switch (load->GetLoadKind()) { case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(!kEmitCompilerReadBarrier); __ leal(out, Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false)); codegen_->RecordStringPatch(load); return; // No dex cache slow path. } case HLoadString::LoadKind::kBootImageAddress: { DCHECK(!kEmitCompilerReadBarrier); DCHECK_NE(load->GetAddress(), 0u); uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); __ movl(out, Immediate(address)); // Zero-extended. codegen_->RecordSimplePatch(); return; // No dex cache slow path. } case HLoadString::LoadKind::kDexCacheAddress: { DCHECK_NE(load->GetAddress(), 0u); if (IsUint<32>(load->GetAddress())) { Address address = Address::Absolute(load->GetAddress(), /* no_rip */ true); GenerateGcRootFieldLoad(load, out_loc, address); } else { // TODO: Consider using opcode A1, i.e. movl eax, moff32 (with 64-bit address). __ movq(out, Immediate(load->GetAddress())); GenerateGcRootFieldLoad(load, out_loc, Address(out, 0)); } break; } case HLoadString::LoadKind::kDexCachePcRelative: { uint32_t offset = load->GetDexCacheElementOffset(); Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset); Address address = Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false); GenerateGcRootFieldLoad(load, out_loc, address, fixup_label); break; } case HLoadString::LoadKind::kDexCacheViaMethod: { CpuRegister current_method = locations->InAt(0).AsRegister<CpuRegister>(); // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ GenerateGcRootFieldLoad( load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_ __ movq(out, Address(out, mirror::Class::DexCacheStringsOffset().Uint32Value())); // /* GcRoot<mirror::String> */ out = out[string_index] GenerateGcRootFieldLoad( load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex()))); break; } default: LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind(); UNREACHABLE(); } if (!load->IsInDexCache()) { SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86_64(load); codegen_->AddSlowPath(slow_path); __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } } static Address GetExceptionTlsAddress() { return Address::Absolute(Thread::ExceptionOffset<kX86_64WordSize>().Int32Value(), /* no_rip */ true); } void LocationsBuilderX86_64::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitLoadException(HLoadException* load) { __ gs()->movl(load->GetLocations()->Out().AsRegister<CpuRegister>(), GetExceptionTlsAddress()); } void LocationsBuilderX86_64::VisitClearException(HClearException* clear) { new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); } void InstructionCodeGeneratorX86_64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { __ gs()->movl(GetExceptionTlsAddress(), Immediate(0)); } void LocationsBuilderX86_64::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86_64::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr); CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); } static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { return kEmitCompilerReadBarrier && (kUseBakerReadBarrier || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck); } void LocationsBuilderX86_64::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: call_kind = kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; break; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); // Note that TypeCheckSlowPathX86_64 uses this "out" register too. locations->SetOut(Location::RequiresRegister()); // When read barriers are enabled, we need a temporary register for // some cases. if (TypeCheckNeedsATemporary(type_check_kind)) { locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); Location cls = locations->InAt(1); Location out_loc = locations->Out(); CpuRegister out = out_loc.AsRegister<CpuRegister>(); Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ? locations->GetTemp(0) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); SlowPathCode* slow_path = nullptr; NearLabel done, zero; // Return 0 if `obj` is null. // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &zero); } // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc); switch (type_check_kind) { case TypeCheckKind::kExactCheck: { if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } if (zero.IsLinked()) { // Classes must be equal for the instanceof to succeed. __ j(kNotEqual, &zero); __ movl(out, Immediate(1)); __ jmp(&done); } else { __ setcc(kEqual, out); // setcc only sets the low byte. __ andl(out, Immediate(1)); } break; } case TypeCheckKind::kAbstractClassCheck: { // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. NearLabel loop, success; __ Bind(&loop); // /* HeapReference<Class> */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); __ testl(out, out); // If `out` is null, we use it for the result, and jump to `done`. __ j(kEqual, &done); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kNotEqual, &loop); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kClassHierarchyCheck: { // Walk over the class hierarchy to find a match. NearLabel loop, success; __ Bind(&loop); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kEqual, &success); // /* HeapReference<Class> */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); __ testl(out, out); __ j(kNotEqual, &loop); // If `out` is null, we use it for the result, and jump to `done`. __ jmp(&done); __ Bind(&success); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kArrayObjectCheck: { // Do an exact check. NearLabel exact_check; if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kEqual, &exact_check); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference<Class> */ out = out->component_type_ GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc); __ testl(out, out); // If `out` is null, we use it for the result, and jump to `done`. __ j(kEqual, &done); __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, &zero); __ Bind(&exact_check); __ movl(out, Immediate(1)); __ jmp(&done); break; } case TypeCheckKind::kArrayCheck: { if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); } DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ j(kNotEqual, slow_path->GetEntryLabel()); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: { // Note that we indeed only call on slow path, but we always go // into the slow path for the unresolved and interface check // cases. // // We cannot directly call the InstanceofNonTrivial runtime // entry point without resorting to a type checking slow path // here (i.e. by calling InvokeRuntime directly), as it would // require to assign fixed registers for the inputs of this // HInstanceOf instruction (following the runtime calling // convention), which might be cluttered by the potential first // read barrier emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); if (zero.IsLinked()) { __ jmp(&done); } break; } } if (zero.IsLinked()) { __ Bind(&zero); __ xorl(out, out); } if (done.IsLinked()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. break; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); // Note that TypeCheckSlowPathX86_64 uses this "temp" register too. locations->AddTemp(Location::RequiresRegister()); // When read barriers are enabled, we need an additional temporary // register for some cases. if (TypeCheckNeedsATemporary(type_check_kind)) { locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); Location cls = locations->InAt(1); Location temp_loc = locations->GetTemp(0); CpuRegister temp = temp_loc.AsRegister<CpuRegister>(); Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ? locations->GetTemp(1) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); bool is_type_check_slow_path_fatal = (type_check_kind == TypeCheckKind::kExactCheck || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck) && !instruction->CanThrowIntoCatchBlock(); SlowPathCode* type_check_slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, is_type_check_slow_path_fatal); codegen_->AddSlowPath(type_check_slow_path); switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kArrayCheck: { NearLabel done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); } // Jump to slow path for throwing the exception or doing a // more involved array check. __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); __ Bind(&done); break; } case TypeCheckKind::kAbstractClassCheck: { NearLabel done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. NearLabel loop, compare_classes; __ Bind(&loop); // /* HeapReference<Class> */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); // If the class reference currently in `temp` is not null, jump // to the `compare_classes` label to compare it with the checked // class. __ testl(temp, temp); __ j(kNotEqual, &compare_classes); // Otherwise, jump to the slow path to throw the exception. // // But before, move back the object's class into `temp` before // going into the slow path, as it has been overwritten in the // meantime. // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); __ jmp(type_check_slow_path->GetEntryLabel()); __ Bind(&compare_classes); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kNotEqual, &loop); __ Bind(&done); break; } case TypeCheckKind::kClassHierarchyCheck: { NearLabel done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); // Walk over the class hierarchy to find a match. NearLabel loop; __ Bind(&loop); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kEqual, &done); // /* HeapReference<Class> */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); // If the class reference currently in `temp` is not null, jump // back at the beginning of the loop. __ testl(temp, temp); __ j(kNotEqual, &loop); // Otherwise, jump to the slow path to throw the exception. // // But before, move back the object's class into `temp` before // going into the slow path, as it has been overwritten in the // meantime. // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); __ jmp(type_check_slow_path->GetEntryLabel()); __ Bind(&done); break; } case TypeCheckKind::kArrayObjectCheck: { // We cannot use a NearLabel here, as its range might be too // short in some cases when read barriers are enabled. This has // been observed for instance when the code emitted for this // case uses high x86-64 registers (R8-R15). Label done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); // Do an exact check. NearLabel check_non_primitive_component_type; if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<CpuRegister>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); } __ j(kEqual, &done); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference<Class> */ temp = temp->component_type_ GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc); // If the component type is not null (i.e. the object is indeed // an array), jump to label `check_non_primitive_component_type` // to further check that this component type is not a primitive // type. __ testl(temp, temp); __ j(kNotEqual, &check_non_primitive_component_type); // Otherwise, jump to the slow path to throw the exception. // // But before, move back the object's class into `temp` before // going into the slow path, as it has been overwritten in the // meantime. // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); __ jmp(type_check_slow_path->GetEntryLabel()); __ Bind(&check_non_primitive_component_type); __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kEqual, &done); // Same comment as above regarding `temp` and the slow path. // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); __ jmp(type_check_slow_path->GetEntryLabel()); __ Bind(&done); break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: NearLabel done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters( instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); // We always go into the type check slow path for the unresolved // and interface check cases. // // We cannot directly call the CheckCast runtime entry point // without resorting to a type checking slow path here (i.e. by // calling InvokeRuntime directly), as it would require to // assign fixed registers for the inputs of this HInstanceOf // instruction (following the runtime calling convention), which // might be cluttered by the potential first read barrier // emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. __ jmp(type_check_slow_path->GetEntryLabel()); __ Bind(&done); break; } __ Bind(type_check_slow_path->GetExitLabel()); } void LocationsBuilderX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject), instruction, instruction->GetDexPc(), nullptr); if (instruction->IsEnter()) { CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); } else { CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); } } void LocationsBuilderX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); if (instruction->GetResultType() == Primitive::kPrimInt) { if (second.IsRegister()) { if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); } } else if (second.IsConstant()) { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), imm); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), imm); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), imm); } } else { Address address(CpuRegister(RSP), second.GetStackIndex()); if (instruction->IsAnd()) { __ andl(first.AsRegister<CpuRegister>(), address); } else if (instruction->IsOr()) { __ orl(first.AsRegister<CpuRegister>(), address); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<CpuRegister>(), address); } } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); CpuRegister first_reg = first.AsRegister<CpuRegister>(); bool second_is_constant = false; int64_t value = 0; if (second.IsConstant()) { second_is_constant = true; value = second.GetConstant()->AsLongConstant()->GetValue(); } bool is_int32_value = IsInt<32>(value); if (instruction->IsAnd()) { if (second_is_constant) { if (is_int32_value) { __ andq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ andq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ andq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ andq(first_reg, second.AsRegister<CpuRegister>()); } } else if (instruction->IsOr()) { if (second_is_constant) { if (is_int32_value) { __ orq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ orq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ orq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ orq(first_reg, second.AsRegister<CpuRegister>()); } } else { DCHECK(instruction->IsXor()); if (second_is_constant) { if (is_int32_value) { __ xorq(first_reg, Immediate(static_cast<int32_t>(value))); } else { __ xorq(first_reg, codegen_->LiteralInt64Address(value)); } } else if (second.IsDoubleStackSlot()) { __ xorq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); } else { __ xorq(first_reg, second.AsRegister<CpuRegister>()); } } } } void InstructionCodeGeneratorX86_64::GenerateReferenceLoadOneRegister(HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp) { CpuRegister out_reg = out.AsRegister<CpuRegister>(); if (kEmitCompilerReadBarrier) { DCHECK(maybe_temp.IsRegister()) << maybe_temp; if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference<Object> */ out = *(out + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // Save the value of `out` into `maybe_temp` before overwriting it // in the following move operation, as we will need it for the // read barrier below. __ movl(maybe_temp.AsRegister<CpuRegister>(), out_reg); // /* HeapReference<Object> */ out = *(out + offset) __ movl(out_reg, Address(out_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); } } else { // Plain load with no read barrier. // /* HeapReference<Object> */ out = *(out + offset) __ movl(out_reg, Address(out_reg, offset)); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorX86_64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp) { CpuRegister out_reg = out.AsRegister<CpuRegister>(); CpuRegister obj_reg = obj.AsRegister<CpuRegister>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { DCHECK(maybe_temp.IsRegister()) << maybe_temp; // Load with fast path based Baker's read barrier. // /* HeapReference<Object> */ out = *(obj + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // /* HeapReference<Object> */ out = *(obj + offset) __ movl(out_reg, Address(obj_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); } } else { // Plain load with no read barrier. // /* HeapReference<Object> */ out = *(obj + offset) __ movl(out_reg, Address(obj_reg, offset)); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorX86_64::GenerateGcRootFieldLoad(HInstruction* instruction, Location root, const Address& address, Label* fixup_label) { CpuRegister root_reg = root.AsRegister<CpuRegister>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { // Fast path implementation of art::ReadBarrier::BarrierForRoot when // Baker's read barrier are used: // // root = *address; // if (Thread::Current()->GetIsGcMarking()) { // root = ReadBarrier::Mark(root) // } // /* GcRoot<mirror::Object> */ root = *address __ movl(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } static_assert( sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " "have different sizes."); static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), "art::mirror::CompressedReference<mirror::Object> and int32_t " "have different sizes."); // Slow path used to mark the GC root `root`. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86_64(instruction, root, root); codegen_->AddSlowPath(slow_path); __ gs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86_64WordSize>().Int32Value(), /* no_rip */ true), Immediate(0)); __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } else { // GC root loaded through a slow path for read barriers other // than Baker's. // /* GcRoot<mirror::Object>* */ root = address __ leaq(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } // /* mirror::Object* */ root = root->Read() codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); } } else { // Plain GC root load with no read barrier. // /* GcRoot<mirror::Object> */ root = *address __ movl(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } // Note that GC roots are not affected by heap poisoning, thus we // do not have to unpoison `root_reg` here. } } void CodeGeneratorX86_64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, uint32_t offset, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // /* HeapReference<Object> */ ref = *(obj + offset) Address src(obj, offset); GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); } void CodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // /* HeapReference<Object> */ ref = // *(obj + data_offset + index * sizeof(HeapReference<Object>)) Address src = index.IsConstant() ? Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) : Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset); GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); } void CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, const Address& src, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // In slow path based read barriers, the read barrier call is // inserted after the original load. However, in fast path based // Baker's read barriers, we need to perform the load of // mirror::Object::monitor_ *before* the original reference load. // This load-load ordering is required by the read barrier. // The fast path/slow path (for Baker's algorithm) should look like: // // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // HeapReference<Object> ref = *src; // Original reference load. // bool is_gray = (rb_state == ReadBarrier::gray_ptr_); // if (is_gray) { // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. // } // // Note: the original implementation in ReadBarrier::Barrier is // slightly more complex as: // - it implements the load-load fence using a data dependency on // the high-bits of rb_state, which are expected to be all zeroes // (we use CodeGeneratorX86_64::GenerateMemoryBarrier instead // here, which is a no-op thanks to the x86-64 memory model); // - it performs additional checks that we do not do here for // performance reasons. CpuRegister ref_reg = ref.AsRegister<CpuRegister>(); CpuRegister temp_reg = temp.AsRegister<CpuRegister>(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); // /* int32_t */ monitor = obj->monitor_ __ movl(temp_reg, Address(obj, monitor_offset)); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // /* uint32_t */ rb_state = lock_word.ReadBarrierState() __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift)); __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask)); static_assert( LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_, "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_."); // Load fence to prevent load-load reordering. // Note that this is a no-op, thanks to the x86-64 memory model. GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // The actual reference load. // /* HeapReference<Object> */ ref = *src __ movl(ref_reg, src); // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_reg); // Slow path used to mark the object `ref` when it is gray. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86_64(instruction, ref, ref); AddSlowPath(slow_path); // if (rb_state == ReadBarrier::gray_ptr_) // ref = ReadBarrier::Mark(ref); __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_)); __ j(kEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorX86_64::GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the reference load. // // If heap poisoning is enabled, the unpoisoning of the loaded // reference will be carried out by the runtime within the slow // path. // // Note that `ref` currently does not get unpoisoned (when heap // poisoning is enabled), which is alright as the `ref` argument is // not used by the artReadBarrierSlow entry point. // // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierForHeapReferenceSlowPathX86_64(instruction, out, ref, obj, offset, index); AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorX86_64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { if (kEmitCompilerReadBarrier) { // Baker's read barriers shall be handled by the fast path // (CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier). DCHECK(!kUseBakerReadBarrier); // If heap poisoning is enabled, unpoisoning will be taken care of // by the runtime within the slow path. GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); } else if (kPoisonHeapReferences) { __ UnpoisonHeapReference(out.AsRegister<CpuRegister>()); } } void CodeGeneratorX86_64::GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the GC root load. // // Note that GC roots are not affected by heap poisoning, so we do // not need to do anything special for this here. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86_64(instruction, out, root); AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderX86_64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorX86_64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } // Simple implementation of packed switch - generate cascaded compare/jumps. void LocationsBuilderX86_64::VisitPackedSwitch(HPackedSwitch* switch_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void InstructionCodeGeneratorX86_64::VisitPackedSwitch(HPackedSwitch* switch_instr) { int32_t lower_bound = switch_instr->GetStartValue(); uint32_t num_entries = switch_instr->GetNumEntries(); LocationSummary* locations = switch_instr->GetLocations(); CpuRegister value_reg_in = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister temp_reg = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister base_reg = locations->GetTemp(1).AsRegister<CpuRegister>(); HBasicBlock* default_block = switch_instr->GetDefaultBlock(); // Should we generate smaller inline compare/jumps? if (num_entries <= kPackedSwitchJumpTableThreshold) { // Figure out the correct compare values and jump conditions. // Handle the first compare/branch as a special case because it might // jump to the default case. DCHECK_GT(num_entries, 2u); Condition first_condition; uint32_t index; const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); if (lower_bound != 0) { first_condition = kLess; __ cmpl(value_reg_in, Immediate(lower_bound)); __ j(first_condition, codegen_->GetLabelOf(default_block)); __ j(kEqual, codegen_->GetLabelOf(successors[0])); index = 1; } else { // Handle all the compare/jumps below. first_condition = kBelow; index = 0; } // Handle the rest of the compare/jumps. for (; index + 1 < num_entries; index += 2) { int32_t compare_to_value = lower_bound + index + 1; __ cmpl(value_reg_in, Immediate(compare_to_value)); // Jump to successors[index] if value < case_value[index]. __ j(first_condition, codegen_->GetLabelOf(successors[index])); // Jump to successors[index + 1] if value == case_value[index + 1]. __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); } if (index != num_entries) { // There are an odd number of entries. Handle the last one. DCHECK_EQ(index + 1, num_entries); __ cmpl(value_reg_in, Immediate(static_cast<int32_t>(lower_bound + index))); __ j(kEqual, codegen_->GetLabelOf(successors[index])); } // And the default for any other value. if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { __ jmp(codegen_->GetLabelOf(default_block)); } return; } // Remove the bias, if needed. Register value_reg_out = value_reg_in.AsRegister(); if (lower_bound != 0) { __ leal(temp_reg, Address(value_reg_in, -lower_bound)); value_reg_out = temp_reg.AsRegister(); } CpuRegister value_reg(value_reg_out); // Is the value in range? __ cmpl(value_reg, Immediate(num_entries - 1)); __ j(kAbove, codegen_->GetLabelOf(default_block)); // We are in the range of the table. // Load the address of the jump table in the constant area. __ leaq(base_reg, codegen_->LiteralCaseTable(switch_instr)); // Load the (signed) offset from the jump table. __ movsxd(temp_reg, Address(base_reg, value_reg, TIMES_4, 0)); // Add the offset to the address of the table base. __ addq(temp_reg, base_reg); // And jump. __ jmp(temp_reg); } void CodeGeneratorX86_64::Load32BitValue(CpuRegister dest, int32_t value) { if (value == 0) { __ xorl(dest, dest); } else { __ movl(dest, Immediate(value)); } } void CodeGeneratorX86_64::Load64BitValue(CpuRegister dest, int64_t value) { if (value == 0) { // Clears upper bits too. __ xorl(dest, dest); } else if (IsUint<32>(value)) { // We can use a 32 bit move, as it will zero-extend and is shorter. __ movl(dest, Immediate(static_cast<int32_t>(value))); } else { __ movq(dest, Immediate(value)); } } void CodeGeneratorX86_64::Load32BitValue(XmmRegister dest, int32_t value) { if (value == 0) { __ xorps(dest, dest); } else { __ movss(dest, LiteralInt32Address(value)); } } void CodeGeneratorX86_64::Load64BitValue(XmmRegister dest, int64_t value) { if (value == 0) { __ xorpd(dest, dest); } else { __ movsd(dest, LiteralInt64Address(value)); } } void CodeGeneratorX86_64::Load32BitValue(XmmRegister dest, float value) { Load32BitValue(dest, bit_cast<int32_t, float>(value)); } void CodeGeneratorX86_64::Load64BitValue(XmmRegister dest, double value) { Load64BitValue(dest, bit_cast<int64_t, double>(value)); } void CodeGeneratorX86_64::Compare32BitValue(CpuRegister dest, int32_t value) { if (value == 0) { __ testl(dest, dest); } else { __ cmpl(dest, Immediate(value)); } } void CodeGeneratorX86_64::Compare64BitValue(CpuRegister dest, int64_t value) { if (IsInt<32>(value)) { if (value == 0) { __ testq(dest, dest); } else { __ cmpq(dest, Immediate(static_cast<int32_t>(value))); } } else { // Value won't fit in an int. __ cmpq(dest, LiteralInt64Address(value)); } } void CodeGeneratorX86_64::Store64BitValueToStack(Location dest, int64_t value) { DCHECK(dest.IsDoubleStackSlot()); if (IsInt<32>(value)) { // Can move directly as an int32 constant. __ movq(Address(CpuRegister(RSP), dest.GetStackIndex()), Immediate(static_cast<int32_t>(value))); } else { Load64BitValue(CpuRegister(TMP), value); __ movq(Address(CpuRegister(RSP), dest.GetStackIndex()), CpuRegister(TMP)); } } /** * Class to handle late fixup of offsets into constant area. */ class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { public: RIPFixup(CodeGeneratorX86_64& codegen, size_t offset) : codegen_(&codegen), offset_into_constant_area_(offset) {} protected: void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } CodeGeneratorX86_64* codegen_; private: void Process(const MemoryRegion& region, int pos) OVERRIDE { // Patch the correct offset for the instruction. We use the address of the // 'next' instruction, which is 'pos' (patch the 4 bytes before). int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; int32_t relative_position = constant_offset - pos; // Patch in the right value. region.StoreUnaligned<int32_t>(pos - 4, relative_position); } // Location in constant area that the fixup refers to. size_t offset_into_constant_area_; }; /** t * Class to handle late fixup of offsets to a jump table that will be created in the * constant area. */ class JumpTableRIPFixup : public RIPFixup { public: JumpTableRIPFixup(CodeGeneratorX86_64& codegen, HPackedSwitch* switch_instr) : RIPFixup(codegen, -1), switch_instr_(switch_instr) {} void CreateJumpTable() { X86_64Assembler* assembler = codegen_->GetAssembler(); // Ensure that the reference to the jump table has the correct offset. const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); SetOffset(offset_in_constant_table); // Compute the offset from the start of the function to this jump table. const int32_t current_table_offset = assembler->CodeSize() + offset_in_constant_table; // Populate the jump table with the correct values for the jump table. int32_t num_entries = switch_instr_->GetNumEntries(); HBasicBlock* block = switch_instr_->GetBlock(); const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); // The value that we want is the target offset - the position of the table. for (int32_t i = 0; i < num_entries; i++) { HBasicBlock* b = successors[i]; Label* l = codegen_->GetLabelOf(b); DCHECK(l->IsBound()); int32_t offset_to_block = l->Position() - current_table_offset; assembler->AppendInt32(offset_to_block); } } private: const HPackedSwitch* switch_instr_; }; void CodeGeneratorX86_64::Finalize(CodeAllocator* allocator) { // Generate the constant area if needed. X86_64Assembler* assembler = GetAssembler(); if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 byte values. assembler->Align(4, 0); constant_area_start_ = assembler->CodeSize(); // Populate any jump tables. for (auto jump_table : fixups_to_jump_tables_) { jump_table->CreateJumpTable(); } // And now add the constant area to the generated code. assembler->AddConstantArea(); } // And finish up. CodeGenerator::Finalize(allocator); } Address CodeGeneratorX86_64::LiteralDoubleAddress(double v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralFloatAddress(float v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralInt32Address(int32_t v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); return Address::RIP(fixup); } Address CodeGeneratorX86_64::LiteralInt64Address(int64_t v) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); return Address::RIP(fixup); } // TODO: trg as memory. void CodeGeneratorX86_64::MoveFromReturnRegister(Location trg, Primitive::Type type) { if (!trg.IsValid()) { DCHECK_EQ(type, Primitive::kPrimVoid); return; } DCHECK_NE(type, Primitive::kPrimVoid); Location return_loc = InvokeDexCallingConventionVisitorX86_64().GetReturnLocation(type); if (trg.Equals(return_loc)) { return; } // Let the parallel move resolver take care of all of this. HParallelMove parallel_move(GetGraph()->GetArena()); parallel_move.AddMove(return_loc, trg, type, nullptr); GetMoveResolver()->EmitNativeCode(¶llel_move); } Address CodeGeneratorX86_64::LiteralCaseTable(HPackedSwitch* switch_instr) { // Create a fixup to be used to create and address the jump table. JumpTableRIPFixup* table_fixup = new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr); // We have to populate the jump tables. fixups_to_jump_tables_.push_back(table_fixup); return Address::RIP(table_fixup); } void CodeGeneratorX86_64::MoveInt64ToAddress(const Address& addr_low, const Address& addr_high, int64_t v, HInstruction* instruction) { if (IsInt<32>(v)) { int32_t v_32 = v; __ movq(addr_low, Immediate(v_32)); MaybeRecordImplicitNullCheck(instruction); } else { // Didn't fit in a register. Do it in pieces. int32_t low_v = Low32Bits(v); int32_t high_v = High32Bits(v); __ movl(addr_low, Immediate(low_v)); MaybeRecordImplicitNullCheck(instruction); __ movl(addr_high, Immediate(high_v)); } } #undef __ } // namespace x86_64 } // namespace art