/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_ #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_ #include "arch/x86_64/instruction_set_features_x86_64.h" #include "code_generator.h" #include "dex/compiler_enums.h" #include "driver/compiler_options.h" #include "nodes.h" #include "parallel_move_resolver.h" #include "utils/x86_64/assembler_x86_64.h" namespace art { namespace x86_64 { // Use a local definition to prevent copying mistakes. static constexpr size_t kX86_64WordSize = kX86_64PointerSize; // Some x86_64 instructions require a register to be available as temp. static constexpr Register TMP = R11; static constexpr Register kParameterCoreRegisters[] = { RSI, RDX, RCX, R8, R9 }; static constexpr FloatRegister kParameterFloatRegisters[] = { XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7 }; static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters); static constexpr size_t kParameterFloatRegistersLength = arraysize(kParameterFloatRegisters); static constexpr Register kRuntimeParameterCoreRegisters[] = { RDI, RSI, RDX, RCX }; static constexpr size_t kRuntimeParameterCoreRegistersLength = arraysize(kRuntimeParameterCoreRegisters); static constexpr FloatRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1 }; static constexpr size_t kRuntimeParameterFpuRegistersLength = arraysize(kRuntimeParameterFpuRegisters); // These XMM registers are non-volatile in ART ABI, but volatile in native ABI. // If the ART ABI changes, this list must be updated. It is used to ensure that // these are not clobbered by any direct call to native code (such as math intrinsics). static constexpr FloatRegister non_volatile_xmm_regs[] = { XMM12, XMM13, XMM14, XMM15 }; class InvokeRuntimeCallingConvention : public CallingConvention<Register, FloatRegister> { public: InvokeRuntimeCallingConvention() : CallingConvention(kRuntimeParameterCoreRegisters, kRuntimeParameterCoreRegistersLength, kRuntimeParameterFpuRegisters, kRuntimeParameterFpuRegistersLength, kX86_64PointerSize) {} private: DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention); }; class InvokeDexCallingConvention : public CallingConvention<Register, FloatRegister> { public: InvokeDexCallingConvention() : CallingConvention( kParameterCoreRegisters, kParameterCoreRegistersLength, kParameterFloatRegisters, kParameterFloatRegistersLength, kX86_64PointerSize) {} private: DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention); }; class FieldAccessCallingConventionX86_64 : public FieldAccessCallingConvention { public: FieldAccessCallingConventionX86_64() {} Location GetObjectLocation() const OVERRIDE { return Location::RegisterLocation(RSI); } Location GetFieldIndexLocation() const OVERRIDE { return Location::RegisterLocation(RDI); } Location GetReturnLocation(Primitive::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return Location::RegisterLocation(RAX); } Location GetSetValueLocation(Primitive::Type type, bool is_instance) const OVERRIDE { return Primitive::Is64BitType(type) ? Location::RegisterLocation(RDX) : (is_instance ? Location::RegisterLocation(RDX) : Location::RegisterLocation(RSI)); } Location GetFpuLocation(Primitive::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return Location::FpuRegisterLocation(XMM0); } private: DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionX86_64); }; class InvokeDexCallingConventionVisitorX86_64 : public InvokeDexCallingConventionVisitor { public: InvokeDexCallingConventionVisitorX86_64() {} virtual ~InvokeDexCallingConventionVisitorX86_64() {} Location GetNextLocation(Primitive::Type type) OVERRIDE; Location GetReturnLocation(Primitive::Type type) const OVERRIDE; Location GetMethodLocation() const OVERRIDE; private: InvokeDexCallingConvention calling_convention; DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorX86_64); }; class CodeGeneratorX86_64; class ParallelMoveResolverX86_64 : public ParallelMoveResolverWithSwap { public: ParallelMoveResolverX86_64(ArenaAllocator* allocator, CodeGeneratorX86_64* codegen) : ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {} void EmitMove(size_t index) OVERRIDE; void EmitSwap(size_t index) OVERRIDE; void SpillScratch(int reg) OVERRIDE; void RestoreScratch(int reg) OVERRIDE; X86_64Assembler* GetAssembler() const; private: void Exchange32(CpuRegister reg, int mem); void Exchange32(XmmRegister reg, int mem); void Exchange32(int mem1, int mem2); void Exchange64(CpuRegister reg1, CpuRegister reg2); void Exchange64(CpuRegister reg, int mem); void Exchange64(XmmRegister reg, int mem); void Exchange64(int mem1, int mem2); CodeGeneratorX86_64* const codegen_; DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverX86_64); }; class LocationsBuilderX86_64 : public HGraphVisitor { public: LocationsBuilderX86_64(HGraph* graph, CodeGeneratorX86_64* codegen) : HGraphVisitor(graph), codegen_(codegen) {} #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_X86_64(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } private: void HandleInvoke(HInvoke* invoke); void HandleBitwiseOperation(HBinaryOperation* operation); void HandleCondition(HCondition* condition); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info); void HandleFieldGet(HInstruction* instruction); CodeGeneratorX86_64* const codegen_; InvokeDexCallingConventionVisitorX86_64 parameter_visitor_; DISALLOW_COPY_AND_ASSIGN(LocationsBuilderX86_64); }; class InstructionCodeGeneratorX86_64 : public InstructionCodeGenerator { public: InstructionCodeGeneratorX86_64(HGraph* graph, CodeGeneratorX86_64* codegen); #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_X86_64(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } X86_64Assembler* GetAssembler() const { return assembler_; } private: // Generate code for the given suspend check. If not null, `successor` // is the block to branch to if the suspend check is not needed, and after // the suspend call. void GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor); void GenerateClassInitializationCheck(SlowPathCode* slow_path, CpuRegister class_reg); void HandleBitwiseOperation(HBinaryOperation* operation); void GenerateRemFP(HRem* rem); void DivRemOneOrMinusOne(HBinaryOperation* instruction); void DivByPowerOfTwo(HDiv* instruction); void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction); void GenerateDivRemIntegral(HBinaryOperation* instruction); void HandleCondition(HCondition* condition); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info); // Generate a heap reference load using one register `out`: // // out <- *(out + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a read barrier and // shall be a register in that case; it may be an invalid location // otherwise. void GenerateReferenceLoadOneRegister(HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp); // Generate a heap reference load using two different registers // `out` and `obj`: // // out <- *(obj + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a Baker's (fast // path) read barrier and shall be a register in that case; it may // be an invalid location otherwise. void GenerateReferenceLoadTwoRegisters(HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp); // Generate a GC root reference load: // // root <- *address // // while honoring read barriers (if any). void GenerateGcRootFieldLoad(HInstruction* instruction, Location root, const Address& address, Label* fixup_label = nullptr); void PushOntoFPStack(Location source, uint32_t temp_offset, uint32_t stack_adjustment, bool is_float); void GenerateCompareTest(HCondition* condition); template<class LabelType> void GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, LabelType* true_target, LabelType* false_target); template<class LabelType> void GenerateCompareTestAndBranch(HCondition* condition, LabelType* true_target, LabelType* false_target); template<class LabelType> void GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label); void HandleGoto(HInstruction* got, HBasicBlock* successor); X86_64Assembler* const assembler_; CodeGeneratorX86_64* const codegen_; DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorX86_64); }; // Class for fixups to jump tables. class JumpTableRIPFixup; class CodeGeneratorX86_64 : public CodeGenerator { public: CodeGeneratorX86_64(HGraph* graph, const X86_64InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats = nullptr); virtual ~CodeGeneratorX86_64() {} void GenerateFrameEntry() OVERRIDE; void GenerateFrameExit() OVERRIDE; void Bind(HBasicBlock* block) OVERRIDE; void MoveConstant(Location destination, int32_t value) OVERRIDE; void MoveLocation(Location dst, Location src, Primitive::Type dst_type) OVERRIDE; void AddLocationAsTemp(Location location, LocationSummary* locations) OVERRIDE; size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; // Generate code to invoke a runtime entry point. void InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) OVERRIDE; void InvokeRuntime(int32_t entry_point_offset, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path); size_t GetWordSize() const OVERRIDE { return kX86_64WordSize; } size_t GetFloatingPointSpillSlotSize() const OVERRIDE { return kX86_64WordSize; } HGraphVisitor* GetLocationBuilder() OVERRIDE { return &location_builder_; } HGraphVisitor* GetInstructionVisitor() OVERRIDE { return &instruction_visitor_; } X86_64Assembler* GetAssembler() OVERRIDE { return &assembler_; } const X86_64Assembler& GetAssembler() const OVERRIDE { return assembler_; } ParallelMoveResolverX86_64* GetMoveResolver() OVERRIDE { return &move_resolver_; } uintptr_t GetAddressOf(HBasicBlock* block) OVERRIDE { return GetLabelOf(block)->Position(); } void SetupBlockedRegisters() const OVERRIDE; void DumpCoreRegister(std::ostream& stream, int reg) const OVERRIDE; void DumpFloatingPointRegister(std::ostream& stream, int reg) const OVERRIDE; void Finalize(CodeAllocator* allocator) OVERRIDE; InstructionSet GetInstructionSet() const OVERRIDE { return InstructionSet::kX86_64; } // Emit a write barrier. void MarkGCCard(CpuRegister temp, CpuRegister card, CpuRegister object, CpuRegister value, bool value_can_be_null); void GenerateMemoryBarrier(MemBarrierKind kind); // Helper method to move a value between two locations. void Move(Location destination, Location source); Label* GetLabelOf(HBasicBlock* block) const { return CommonGetLabelOf<Label>(block_labels_, block); } void Initialize() OVERRIDE { block_labels_ = CommonInitializeLabels<Label>(); } bool NeedsTwoRegisters(Primitive::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return false; } // Check if the desired_string_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadString::LoadKind GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) OVERRIDE; // Check if the desired_dispatch_info is supported. If it is, return it, // otherwise return a fall-back info that should be used instead. HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, MethodReference target_method) OVERRIDE; void GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) OVERRIDE; void GenerateVirtualCall(HInvokeVirtual* invoke, Location temp) OVERRIDE; void RecordSimplePatch(); void RecordStringPatch(HLoadString* load_string); Label* NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, uint32_t element_offset); void MoveFromReturnRegister(Location trg, Primitive::Type type) OVERRIDE; void EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) OVERRIDE; const X86_64InstructionSetFeatures& GetInstructionSetFeatures() const { return isa_features_; } // Fast path implementation of ReadBarrier::Barrier for a heap // reference field load when Baker's read barriers are used. void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, uint32_t offset, Location temp, bool needs_null_check); // Fast path implementation of ReadBarrier::Barrier for a heap // reference array load when Baker's read barriers are used. void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check); // Generate a read barrier for a heap reference within `instruction` // using a slow path. // // A read barrier for an object reference read from the heap is // implemented as a call to the artReadBarrierSlow runtime entry // point, which is passed the values in locations `ref`, `obj`, and // `offset`: // // mirror::Object* artReadBarrierSlow(mirror::Object* ref, // mirror::Object* obj, // uint32_t offset); // // The `out` location contains the value returned by // artReadBarrierSlow. // // When `index` provided (i.e., when it is different from // Location::NoLocation()), the offset value passed to // artReadBarrierSlow is adjusted to take `index` into account. void GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // If read barriers are enabled, generate a read barrier for a heap // reference using a slow path. If heap poisoning is enabled, also // unpoison the reference in `out`. void MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // Generate a read barrier for a GC root within `instruction` using // a slow path. // // A read barrier for an object reference GC root is implemented as // a call to the artReadBarrierForRootSlow runtime entry point, // which is passed the value in location `root`: // // mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root); // // The `out` location contains the value returned by // artReadBarrierForRootSlow. void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root); int ConstantAreaStart() const { return constant_area_start_; } Address LiteralDoubleAddress(double v); Address LiteralFloatAddress(float v); Address LiteralInt32Address(int32_t v); Address LiteralInt64Address(int64_t v); // Load a 32/64-bit value into a register in the most efficient manner. void Load32BitValue(CpuRegister dest, int32_t value); void Load64BitValue(CpuRegister dest, int64_t value); void Load32BitValue(XmmRegister dest, int32_t value); void Load64BitValue(XmmRegister dest, int64_t value); void Load32BitValue(XmmRegister dest, float value); void Load64BitValue(XmmRegister dest, double value); // Compare a register with a 32/64-bit value in the most efficient manner. void Compare32BitValue(CpuRegister dest, int32_t value); void Compare64BitValue(CpuRegister dest, int64_t value); Address LiteralCaseTable(HPackedSwitch* switch_instr); // Store a 64 bit value into a DoubleStackSlot in the most efficient manner. void Store64BitValueToStack(Location dest, int64_t value); // Assign a 64 bit constant to an address. void MoveInt64ToAddress(const Address& addr_low, const Address& addr_high, int64_t v, HInstruction* instruction); // Ensure that prior stores complete to memory before subsequent loads. // The locked add implementation will avoid serializing device memory, but will // touch (but not change) the top of the stack. The locked add should not be used for // ordering non-temporal stores. void MemoryFence(bool force_mfence = false) { if (!force_mfence && isa_features_.PrefersLockedAddSynchronization()) { assembler_.lock()->addl(Address(CpuRegister(RSP), 0), Immediate(0)); } else { assembler_.mfence(); } } void GenerateNop(); void GenerateImplicitNullCheck(HNullCheck* instruction); void GenerateExplicitNullCheck(HNullCheck* instruction); // When we don't know the proper offset for the value, we use kDummy32BitOffset. // We will fix this up in the linker later to have the right value. static constexpr int32_t kDummy32BitOffset = 256; private: // Factored implementation of GenerateFieldLoadWithBakerReadBarrier // and GenerateArrayLoadWithBakerReadBarrier. void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, CpuRegister obj, const Address& src, Location temp, bool needs_null_check); struct PcRelativeDexCacheAccessInfo { PcRelativeDexCacheAccessInfo(const DexFile& dex_file, uint32_t element_off) : target_dex_file(dex_file), element_offset(element_off), label() { } const DexFile& target_dex_file; uint32_t element_offset; Label label; }; // Labels for each block that will be compiled. Label* block_labels_; // Indexed by block id. Label frame_entry_label_; LocationsBuilderX86_64 location_builder_; InstructionCodeGeneratorX86_64 instruction_visitor_; ParallelMoveResolverX86_64 move_resolver_; X86_64Assembler assembler_; const X86_64InstructionSetFeatures& isa_features_; // Offset to the start of the constant area in the assembled code. // Used for fixups to the constant area. int constant_area_start_; // Method patch info. Using ArenaDeque<> which retains element addresses on push/emplace_back(). ArenaDeque<MethodPatchInfo<Label>> method_patches_; ArenaDeque<MethodPatchInfo<Label>> relative_call_patches_; // PC-relative DexCache access info. ArenaDeque<PcRelativeDexCacheAccessInfo> pc_relative_dex_cache_patches_; // Patch locations for patchoat where the linker doesn't do any other work. ArenaDeque<Label> simple_patches_; // String patch locations. ArenaDeque<StringPatchInfo<Label>> string_patches_; // Fixups for jump tables need to be handled specially. ArenaVector<JumpTableRIPFixup*> fixups_to_jump_tables_; DISALLOW_COPY_AND_ASSIGN(CodeGeneratorX86_64); }; } // namespace x86_64 } // namespace art #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_