/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ #include "code_generator.h" #include "locations.h" #include "nodes.h" #include "utils/arm64/assembler_arm64.h" #include "vixl/a64/disasm-a64.h" #include "vixl/a64/macro-assembler-a64.h" namespace art { namespace arm64 { namespace helpers { // Convenience helpers to ease conversion to and from VIXL operands. static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32), "Unexpected values for register codes."); static inline int VIXLRegCodeFromART(int code) { if (code == SP) { return vixl::kSPRegInternalCode; } if (code == XZR) { return vixl::kZeroRegCode; } return code; } static inline int ARTRegCodeFromVIXL(int code) { if (code == vixl::kSPRegInternalCode) { return SP; } if (code == vixl::kZeroRegCode) { return XZR; } return code; } static inline vixl::Register XRegisterFrom(Location location) { DCHECK(location.IsRegister()) << location; return vixl::Register::XRegFromCode(VIXLRegCodeFromART(location.reg())); } static inline vixl::Register WRegisterFrom(Location location) { DCHECK(location.IsRegister()) << location; return vixl::Register::WRegFromCode(VIXLRegCodeFromART(location.reg())); } static inline vixl::Register RegisterFrom(Location location, Primitive::Type type) { DCHECK(type != Primitive::kPrimVoid && !Primitive::IsFloatingPointType(type)) << type; return type == Primitive::kPrimLong ? XRegisterFrom(location) : WRegisterFrom(location); } static inline vixl::Register OutputRegister(HInstruction* instr) { return RegisterFrom(instr->GetLocations()->Out(), instr->GetType()); } static inline vixl::Register InputRegisterAt(HInstruction* instr, int input_index) { return RegisterFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } static inline vixl::FPRegister DRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::FPRegister::DRegFromCode(location.reg()); } static inline vixl::FPRegister SRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::FPRegister::SRegFromCode(location.reg()); } static inline vixl::FPRegister FPRegisterFrom(Location location, Primitive::Type type) { DCHECK(Primitive::IsFloatingPointType(type)) << type; return type == Primitive::kPrimDouble ? DRegisterFrom(location) : SRegisterFrom(location); } static inline vixl::FPRegister OutputFPRegister(HInstruction* instr) { return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType()); } static inline vixl::FPRegister InputFPRegisterAt(HInstruction* instr, int input_index) { return FPRegisterFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } static inline vixl::CPURegister CPURegisterFrom(Location location, Primitive::Type type) { return Primitive::IsFloatingPointType(type) ? vixl::CPURegister(FPRegisterFrom(location, type)) : vixl::CPURegister(RegisterFrom(location, type)); } static inline vixl::CPURegister OutputCPURegister(HInstruction* instr) { return Primitive::IsFloatingPointType(instr->GetType()) ? static_cast<vixl::CPURegister>(OutputFPRegister(instr)) : static_cast<vixl::CPURegister>(OutputRegister(instr)); } static inline vixl::CPURegister InputCPURegisterAt(HInstruction* instr, int index) { return Primitive::IsFloatingPointType(instr->InputAt(index)->GetType()) ? static_cast<vixl::CPURegister>(InputFPRegisterAt(instr, index)) : static_cast<vixl::CPURegister>(InputRegisterAt(instr, index)); } static inline int64_t Int64ConstantFrom(Location location) { HConstant* instr = location.GetConstant(); if (instr->IsIntConstant()) { return instr->AsIntConstant()->GetValue(); } else if (instr->IsNullConstant()) { return 0; } else { DCHECK(instr->IsLongConstant()) << instr->DebugName(); return instr->AsLongConstant()->GetValue(); } } static inline vixl::Operand OperandFrom(Location location, Primitive::Type type) { if (location.IsRegister()) { return vixl::Operand(RegisterFrom(location, type)); } else { return vixl::Operand(Int64ConstantFrom(location)); } } static inline vixl::Operand InputOperandAt(HInstruction* instr, int input_index) { return OperandFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } static inline vixl::MemOperand StackOperandFrom(Location location) { return vixl::MemOperand(vixl::sp, location.GetStackIndex()); } static inline vixl::MemOperand HeapOperand(const vixl::Register& base, size_t offset = 0) { // A heap reference must be 32bit, so fit in a W register. DCHECK(base.IsW()); return vixl::MemOperand(base.X(), offset); } static inline vixl::MemOperand HeapOperand(const vixl::Register& base, const vixl::Register& regoffset, vixl::Shift shift = vixl::LSL, unsigned shift_amount = 0) { // A heap reference must be 32bit, so fit in a W register. DCHECK(base.IsW()); return vixl::MemOperand(base.X(), regoffset, shift, shift_amount); } static inline vixl::MemOperand HeapOperand(const vixl::Register& base, Offset offset) { return HeapOperand(base, offset.SizeValue()); } static inline vixl::MemOperand HeapOperandFrom(Location location, Offset offset) { return HeapOperand(RegisterFrom(location, Primitive::kPrimNot), offset); } static inline Location LocationFrom(const vixl::Register& reg) { return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.code())); } static inline Location LocationFrom(const vixl::FPRegister& fpreg) { return Location::FpuRegisterLocation(fpreg.code()); } static inline vixl::Operand OperandFromMemOperand(const vixl::MemOperand& mem_op) { if (mem_op.IsImmediateOffset()) { return vixl::Operand(mem_op.offset()); } else { DCHECK(mem_op.IsRegisterOffset()); if (mem_op.extend() != vixl::NO_EXTEND) { return vixl::Operand(mem_op.regoffset(), mem_op.extend(), mem_op.shift_amount()); } else if (mem_op.shift() != vixl::NO_SHIFT) { return vixl::Operand(mem_op.regoffset(), mem_op.shift(), mem_op.shift_amount()); } else { LOG(FATAL) << "Should not reach here"; UNREACHABLE(); } } } static bool CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) { DCHECK(constant->IsIntConstant() || constant->IsLongConstant() || constant->IsNullConstant()) << constant->DebugName(); // For single uses we let VIXL handle the constant generation since it will // use registers that are not managed by the register allocator (wip0, wip1). if (constant->GetUses().HasExactlyOneElement()) { return true; } // Our code generator ensures shift distances are within an encodable range. if (instr->IsRor()) { return true; } int64_t value = CodeGenerator::GetInt64ValueOf(constant); if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) { // Uses logical operations. return vixl::Assembler::IsImmLogical(value, vixl::kXRegSize); } else if (instr->IsNeg()) { // Uses mov -immediate. return vixl::Assembler::IsImmMovn(value, vixl::kXRegSize); } else { DCHECK(instr->IsAdd() || instr->IsArm64IntermediateAddress() || instr->IsBoundsCheck() || instr->IsCompare() || instr->IsCondition() || instr->IsSub()) << instr->DebugName(); // Uses aliases of ADD/SUB instructions. // If `value` does not fit but `-value` does, VIXL will automatically use // the 'opposite' instruction. return vixl::Assembler::IsImmAddSub(value) || vixl::Assembler::IsImmAddSub(-value); } } static inline Location ARM64EncodableConstantOrRegister(HInstruction* constant, HInstruction* instr) { if (constant->IsConstant() && CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } // Check if registers in art register set have the same register code in vixl. If the register // codes are same, we can initialize vixl register list simply by the register masks. Currently, // only SP/WSP and ZXR/WZR codes are different between art and vixl. // Note: This function is only used for debug checks. static inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers, size_t num_core, uint32_t art_fpu_registers, size_t num_fpu) { // The register masks won't work if the number of register is larger than 32. DCHECK_GE(sizeof(art_core_registers) * 8, num_core); DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu); for (size_t art_reg_code = 0; art_reg_code < num_core; ++art_reg_code) { if (RegisterSet::Contains(art_core_registers, art_reg_code)) { if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) { return false; } } } // There is no register code translation for float registers. return true; } static inline vixl::Shift ShiftFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HArm64DataProcWithShifterOp::kASR: return vixl::ASR; case HArm64DataProcWithShifterOp::kLSL: return vixl::LSL; case HArm64DataProcWithShifterOp::kLSR: return vixl::LSR; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); return vixl::NO_SHIFT; } } static inline vixl::Extend ExtendFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HArm64DataProcWithShifterOp::kUXTB: return vixl::UXTB; case HArm64DataProcWithShifterOp::kUXTH: return vixl::UXTH; case HArm64DataProcWithShifterOp::kUXTW: return vixl::UXTW; case HArm64DataProcWithShifterOp::kSXTB: return vixl::SXTB; case HArm64DataProcWithShifterOp::kSXTH: return vixl::SXTH; case HArm64DataProcWithShifterOp::kSXTW: return vixl::SXTW; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); return vixl::NO_EXTEND; } } static inline bool CanFitInShifterOperand(HInstruction* instruction) { if (instruction->IsTypeConversion()) { HTypeConversion* conversion = instruction->AsTypeConversion(); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); // We don't expect to see the same type as input and result. return Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type) && (result_type != input_type); } else { return (instruction->IsShl() && instruction->AsShl()->InputAt(1)->IsIntConstant()) || (instruction->IsShr() && instruction->AsShr()->InputAt(1)->IsIntConstant()) || (instruction->IsUShr() && instruction->AsUShr()->InputAt(1)->IsIntConstant()); } } static inline bool HasShifterOperand(HInstruction* instr) { // `neg` instructions are an alias of `sub` using the zero register as the // first register input. bool res = instr->IsAdd() || instr->IsAnd() || instr->IsNeg() || instr->IsOr() || instr->IsSub() || instr->IsXor(); return res; } static inline bool ShifterOperandSupportsExtension(HInstruction* instruction) { DCHECK(HasShifterOperand(instruction)); // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg` // does *not* support extension. This is because the `extended register` form // of the `sub` instruction interprets the left register with code 31 as the // stack pointer and not the zero register. (So does the `immediate` form.) In // the other form `shifted register, the register with code 31 is interpreted // as the zero register. return instruction->IsAdd() || instruction->IsSub(); } } // namespace helpers } // namespace arm64 } // namespace art #endif // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_