/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "induction_var_analysis.h" #include "induction_var_range.h" namespace art { /** * Since graph traversal may enter a SCC at any position, an initial representation may be rotated, * along dependences, viz. any of (a, b, c, d), (d, a, b, c) (c, d, a, b), (b, c, d, a) assuming * a chain of dependences (mutual independent items may occur in arbitrary order). For proper * classification, the lexicographically first entry-phi is rotated to the front. */ static void RotateEntryPhiFirst(HLoopInformation* loop, ArenaVector<HInstruction*>* scc, ArenaVector<HInstruction*>* new_scc) { // Find very first entry-phi. const HInstructionList& phis = loop->GetHeader()->GetPhis(); HInstruction* phi = nullptr; size_t phi_pos = -1; const size_t size = scc->size(); for (size_t i = 0; i < size; i++) { HInstruction* other = (*scc)[i]; if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) { phi = other; phi_pos = i; } } // If found, bring that entry-phi to front. if (phi != nullptr) { new_scc->clear(); for (size_t i = 0; i < size; i++) { new_scc->push_back((*scc)[phi_pos]); if (++phi_pos >= size) phi_pos = 0; } DCHECK_EQ(size, new_scc->size()); scc->swap(*new_scc); } } /** * Returns true if the from/to types denote a narrowing, integral conversion (precision loss). */ static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) { switch (from) { case Primitive::kPrimLong: return to == Primitive::kPrimByte || to == Primitive::kPrimShort || to == Primitive::kPrimChar || to == Primitive::kPrimInt; case Primitive::kPrimInt: return to == Primitive::kPrimByte || to == Primitive::kPrimShort || to == Primitive::kPrimChar; case Primitive::kPrimChar: case Primitive::kPrimShort: return to == Primitive::kPrimByte; default: return false; } } /** * Returns narrowest data type. */ static Primitive::Type Narrowest(Primitive::Type type1, Primitive::Type type2) { return Primitive::ComponentSize(type1) <= Primitive::ComponentSize(type2) ? type1 : type2; } // // Class methods. // HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph) : HOptimization(graph, kInductionPassName), global_depth_(0), stack_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)), scc_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)), map_(std::less<HInstruction*>(), graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)), cycle_(std::less<HInstruction*>(), graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)), induction_(std::less<HLoopInformation*>(), graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)) { } void HInductionVarAnalysis::Run() { // Detects sequence variables (generalized induction variables) during an outer to inner // traversal of all loops using Gerlek's algorithm. The order is important to enable // range analysis on outer loop while visiting inner loops. for (HReversePostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) { HBasicBlock* graph_block = it_graph.Current(); // Don't analyze irreducible loops. // TODO(ajcbik): could/should we remove this restriction? if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) { VisitLoop(graph_block->GetLoopInformation()); } } } void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) { // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's // algorithm. Due to the descendant-first nature, classification happens "on-demand". global_depth_ = 0; DCHECK(stack_.empty()); map_.clear(); for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) { HBasicBlock* loop_block = it_loop.Current(); DCHECK(loop_block->IsInLoop()); if (loop_block->GetLoopInformation() != loop) { continue; // Inner loops already visited. } // Visit phi-operations and instructions. for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); } } for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); } } } DCHECK(stack_.empty()); map_.clear(); // Determine the loop's trip-count. VisitControl(loop); } void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) { const uint32_t d1 = ++global_depth_; map_.Put(instruction, NodeInfo(d1)); stack_.push_back(instruction); // Visit all descendants. uint32_t low = d1; for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) { low = std::min(low, VisitDescendant(loop, instruction->InputAt(i))); } // Lower or found SCC? if (low < d1) { map_.find(instruction)->second.depth = low; } else { scc_.clear(); cycle_.clear(); // Pop the stack to build the SCC for classification. while (!stack_.empty()) { HInstruction* x = stack_.back(); scc_.push_back(x); stack_.pop_back(); map_.find(x)->second.done = true; if (x == instruction) { break; } } // Type of induction. type_ = scc_[0]->GetType(); // Classify the SCC. if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) { ClassifyTrivial(loop, scc_[0]); } else { ClassifyNonTrivial(loop); } scc_.clear(); cycle_.clear(); } } uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) { // If the definition is either outside the loop (loop invariant entry value) // or assigned in inner loop (inner exit value), the traversal stops. HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation(); if (otherLoop != loop) { return global_depth_; } // Inspect descendant node. if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); return map_.find(instruction)->second.depth; } else { auto it = map_.find(instruction); return it->second.done ? global_depth_ : it->second.depth; } } void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) { InductionInfo* info = nullptr; if (instruction->IsPhi()) { info = TransferPhi(loop, instruction, /* input_index */ 0); } else if (instruction->IsAdd()) { info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), kAdd); } else if (instruction->IsSub()) { info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), kSub); } else if (instruction->IsMul()) { info = TransferMul(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1))); } else if (instruction->IsShl()) { info = TransferShl(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), instruction->InputAt(0)->GetType()); } else if (instruction->IsNeg()) { info = TransferNeg(LookupInfo(loop, instruction->InputAt(0))); } else if (instruction->IsTypeConversion()) { info = TransferCnv(LookupInfo(loop, instruction->InputAt(0)), instruction->AsTypeConversion()->GetInputType(), instruction->AsTypeConversion()->GetResultType()); } else if (instruction->IsBoundsCheck()) { info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through. } // Successfully classified? if (info != nullptr) { AssignInfo(loop, instruction, info); } } void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { const size_t size = scc_.size(); DCHECK_GE(size, 1u); // Rotate proper entry-phi to front. if (size > 1) { ArenaVector<HInstruction*> other(graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)); RotateEntryPhiFirst(loop, &scc_, &other); } // Analyze from entry-phi onwards. HInstruction* phi = scc_[0]; if (!phi->IsLoopHeaderPhi()) { return; } // External link should be loop invariant. InductionInfo* initial = LookupInfo(loop, phi->InputAt(0)); if (initial == nullptr || initial->induction_class != kInvariant) { return; } // Singleton is wrap-around induction if all internal links have the same meaning. if (size == 1) { InductionInfo* update = TransferPhi(loop, phi, /* input_index */ 1); if (update != nullptr) { AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update, type_)); } return; } // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns // temporary meaning to its nodes, seeded from the phi instruction and back. for (size_t i = 1; i < size; i++) { HInstruction* instruction = scc_[i]; InductionInfo* update = nullptr; if (instruction->IsPhi()) { update = SolvePhiAllInputs(loop, phi, instruction); } else if (instruction->IsAdd()) { update = SolveAddSub( loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true); } else if (instruction->IsSub()) { update = SolveAddSub( loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true); } else if (instruction->IsTypeConversion()) { update = SolveCnv(instruction->AsTypeConversion()); } if (update == nullptr) { return; } cycle_.Put(instruction, update); } // Success if all internal links received the same temporary meaning. InductionInfo* induction = SolvePhi(phi, /* input_index */ 1); if (induction != nullptr) { switch (induction->induction_class) { case kInvariant: // Classify first phi and then the rest of the cycle "on-demand". // Statements are scanned in order. AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial, type_)); for (size_t i = 1; i < size; i++) { ClassifyTrivial(loop, scc_[i]); } break; case kPeriodic: // Classify all elements in the cycle with the found periodic induction while // rotating each first element to the end. Lastly, phi is classified. // Statements are scanned in reverse order. for (size_t i = size - 1; i >= 1; i--) { AssignInfo(loop, scc_[i], induction); induction = RotatePeriodicInduction(induction->op_b, induction->op_a); } AssignInfo(loop, phi, induction); break; default: break; } } } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction( InductionInfo* induction, InductionInfo* last) { // Rotates a periodic induction of the form // (a, b, c, d, e) // into // (b, c, d, e, a) // in preparation of assigning this to the previous variable in the sequence. if (induction->induction_class == kInvariant) { return CreateInduction(kPeriodic, induction, last, type_); } return CreateInduction( kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last), type_); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop, HInstruction* phi, size_t input_index) { // Match all phi inputs from input_index onwards exactly. const size_t count = phi->InputCount(); DCHECK_LT(input_index, count); InductionInfo* a = LookupInfo(loop, phi->InputAt(input_index)); for (size_t i = input_index + 1; i < count; i++) { InductionInfo* b = LookupInfo(loop, phi->InputAt(i)); if (!InductionEqual(a, b)) { return nullptr; } } return a; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a, InductionInfo* b, InductionOp op) { // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic // can be combined with an invariant to yield a similar result. Even two linear inputs can // be combined. All other combinations fail, however. if (a != nullptr && b != nullptr) { if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return CreateInvariantOp(op, a, b); } else if (a->induction_class == kLinear && b->induction_class == kLinear) { return CreateInduction(kLinear, TransferAddSub(a->op_a, b->op_a, op), TransferAddSub(a->op_b, b->op_b, op), type_); } else if (a->induction_class == kInvariant) { InductionInfo* new_a = b->op_a; InductionInfo* new_b = TransferAddSub(a, b->op_b, op); if (b->induction_class != kLinear) { DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic); new_a = TransferAddSub(a, new_a, op); } else if (op == kSub) { // Negation required. new_a = TransferNeg(new_a); } return CreateInduction(b->induction_class, new_a, new_b, type_); } else if (b->induction_class == kInvariant) { InductionInfo* new_a = a->op_a; InductionInfo* new_b = TransferAddSub(a->op_b, b, op); if (a->induction_class != kLinear) { DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic); new_a = TransferAddSub(new_a, b, op); } return CreateInduction(a->induction_class, new_a, new_b, type_); } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a, InductionInfo* b) { // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic // can be multiplied with an invariant to yield a similar but multiplied result. // Two non-invariant inputs cannot be multiplied, however. if (a != nullptr && b != nullptr) { if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return CreateInvariantOp(kMul, a, b); } else if (a->induction_class == kInvariant) { return CreateInduction(b->induction_class, TransferMul(a, b->op_a), TransferMul(a, b->op_b), type_); } else if (b->induction_class == kInvariant) { return CreateInduction(a->induction_class, TransferMul(a->op_a, b), TransferMul(a->op_b, b), type_); } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a, InductionInfo* b, Primitive::Type type) { // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication. int64_t value = -1; if (a != nullptr && IsExact(b, &value)) { // Obtain the constant needed for the multiplication. This yields an existing instruction // if the constants is already there. Otherwise, this has a side effect on the HIR. // The restriction on the shift factor avoids generating a negative constant // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification. if ((type == Primitive::kPrimInt && 0 <= value && value < 31) || (type == Primitive::kPrimLong && 0 <= value && value < 63)) { return TransferMul(a, CreateConstant(1 << value, type)); } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) { // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input // yields a similar but negated induction as result. if (a != nullptr) { if (a->induction_class == kInvariant) { return CreateInvariantOp(kNeg, nullptr, a); } return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b), type_); } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCnv(InductionInfo* a, Primitive::Type from, Primitive::Type to) { if (a != nullptr) { // Allow narrowing conversion in certain cases. if (IsNarrowingIntegralConversion(from, to)) { if (a->induction_class == kLinear) { if (a->type == to || (a->type == from && IsNarrowingIntegralConversion(from, to))) { return CreateInduction(kLinear, a->op_a, a->op_b, to); } } // TODO: other cases useful too? } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi, size_t input_index) { // Match all phi inputs from input_index onwards exactly. const size_t count = phi->InputCount(); DCHECK_LT(input_index, count); auto ita = cycle_.find(phi->InputAt(input_index)); if (ita != cycle_.end()) { for (size_t i = input_index + 1; i < count; i++) { auto itb = cycle_.find(phi->InputAt(i)); if (itb == cycle_.end() || !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) { return nullptr; } } return ita->second; } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs( HLoopInformation* loop, HInstruction* entry_phi, HInstruction* phi) { // Match all phi inputs. InductionInfo* match = SolvePhi(phi, /* input_index */ 0); if (match != nullptr) { return match; } // Otherwise, try to solve for a periodic seeded from phi onward. // Only tight multi-statement cycles are considered in order to // simplify rotating the periodic during the final classification. if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) { InductionInfo* a = LookupInfo(loop, phi->InputAt(0)); if (a != nullptr && a->induction_class == kInvariant) { if (phi->InputAt(1) == entry_phi) { InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0)); return CreateInduction(kPeriodic, a, initial, type_); } InductionInfo* b = SolvePhi(phi, /* input_index */ 1); if (b != nullptr && b->induction_class == kPeriodic) { return CreateInduction(kPeriodic, a, b, type_); } } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop, HInstruction* entry_phi, HInstruction* instruction, HInstruction* x, HInstruction* y, InductionOp op, bool is_first_call) { // Solve within a cycle over an addition or subtraction: adding or subtracting an // invariant value, seeded from phi, keeps adding to the stride of the induction. InductionInfo* b = LookupInfo(loop, y); if (b != nullptr && b->induction_class == kInvariant) { if (x == entry_phi) { return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b); } auto it = cycle_.find(x); if (it != cycle_.end()) { InductionInfo* a = it->second; if (a->induction_class == kInvariant) { return CreateInvariantOp(op, a, b); } } } // Try some alternatives before failing. if (op == kAdd) { // Try the other way around for an addition if considered for first time. if (is_first_call) { return SolveAddSub(loop, entry_phi, instruction, y, x, op, false); } } else if (op == kSub) { // Solve within a tight cycle that is formed by exactly two instructions, // one phi and one update, for a periodic idiom of the form k = c - k; if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) { InductionInfo* a = LookupInfo(loop, x); if (a != nullptr && a->induction_class == kInvariant) { InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0)); return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial, type_); } } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveCnv(HTypeConversion* conversion) { Primitive::Type from = conversion->GetInputType(); Primitive::Type to = conversion->GetResultType(); // A narrowing conversion is allowed within the cycle of a linear induction, provided that the // narrowest encountered type is recorded with the induction to account for the precision loss. if (IsNarrowingIntegralConversion(from, to)) { auto it = cycle_.find(conversion->GetInput()); if (it != cycle_.end() && it->second->induction_class == kInvariant) { type_ = Narrowest(type_, to); return it->second; } } return nullptr; } void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) { HInstruction* control = loop->GetHeader()->GetLastInstruction(); if (control->IsIf()) { HIf* ifs = control->AsIf(); HBasicBlock* if_true = ifs->IfTrueSuccessor(); HBasicBlock* if_false = ifs->IfFalseSuccessor(); HInstruction* if_expr = ifs->InputAt(0); // Determine if loop has following structure in header. // loop-header: .... // if (condition) goto X if (if_expr->IsCondition()) { HCondition* condition = if_expr->AsCondition(); InductionInfo* a = LookupInfo(loop, condition->InputAt(0)); InductionInfo* b = LookupInfo(loop, condition->InputAt(1)); Primitive::Type type = condition->InputAt(0)->GetType(); // Determine if the loop control uses a known sequence on an if-exit (X outside) or on // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition(). if (a == nullptr || b == nullptr) { return; // Loop control is not a sequence. } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) { VisitCondition(loop, a, b, type, condition->GetOppositeCondition()); } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) { VisitCondition(loop, a, b, type, condition->GetCondition()); } } } } void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop, InductionInfo* a, InductionInfo* b, Primitive::Type type, IfCondition cmp) { if (a->induction_class == kInvariant && b->induction_class == kLinear) { // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U). switch (cmp) { case kCondLT: VisitCondition(loop, b, a, type, kCondGT); break; case kCondLE: VisitCondition(loop, b, a, type, kCondGE); break; case kCondGT: VisitCondition(loop, b, a, type, kCondLT); break; case kCondGE: VisitCondition(loop, b, a, type, kCondLE); break; case kCondNE: VisitCondition(loop, b, a, type, kCondNE); break; default: break; } } else if (a->induction_class == kLinear && b->induction_class == kInvariant) { // Analyze condition with induction at left-hand-side (e.g. i < U). InductionInfo* lower_expr = a->op_b; InductionInfo* upper_expr = b; InductionInfo* stride_expr = a->op_a; // Constant stride? int64_t stride_value = 0; if (!IsExact(stride_expr, &stride_value)) { return; } // Rewrite condition i != U into strict end condition i < U or i > U if this end condition // is reached exactly (tested by verifying if the loop has a unit stride and the non-strict // condition would be always taken). if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) || (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) { cmp = stride_value > 0 ? kCondLT : kCondGT; } // Only accept integral condition. A mismatch between the type of condition and the induction // is only allowed if the, necessarily narrower, induction range fits the narrower control. if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) { return; // not integral } else if (type != a->type && !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) { return; // mismatched type } // Normalize a linear loop control with a nonzero stride: // stride > 0, either i < U or i <= U // stride < 0, either i > U or i >= U if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) || (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) { VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp); } } } void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop, InductionInfo* lower_expr, InductionInfo* upper_expr, InductionInfo* stride_expr, int64_t stride_value, Primitive::Type type, IfCondition cmp) { // Any loop of the general form: // // for (i = L; i <= U; i += S) // S > 0 // or for (i = L; i >= U; i += S) // S < 0 // .. i .. // // can be normalized into: // // for (n = 0; n < TC; n++) // where TC = (U + S - L) / S // .. L + S * n .. // // taking the following into consideration: // // (1) Using the same precision, the TC (trip-count) expression should be interpreted as // an unsigned entity, for example, as in the following loop that uses the full range: // for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in: // for (int i = 12; i < U; i++) // TC = 0 when U < 12 // If this cannot be determined at compile-time, the TC is only valid within the // loop-body proper, not the loop-header unless enforced with an explicit taken-test. // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in: // for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX // If this cannot be determined at compile-time, the TC is only valid when enforced // with an explicit finite-test. // (4) For loops which early-exits, the TC forms an upper bound, as in: // for (int i = 0; i < 10 && ....; i++) // TC <= 10 InductionInfo* trip_count = upper_expr; const bool is_taken = IsTaken(lower_expr, upper_expr, cmp); const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp); const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1; if (!cancels) { // Convert exclusive integral inequality into inclusive integral inequality, // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1. if (cmp == kCondLT) { trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type)); } else if (cmp == kCondGT) { trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type)); } // Compensate for stride. trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr); } trip_count = CreateInvariantOp( kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr); // Assign the trip-count expression to the loop control. Clients that use the information // should be aware that the expression is only valid under the conditions listed above. InductionOp tcKind = kTripCountInBodyUnsafe; // needs both tests if (is_taken && is_finite) { tcKind = kTripCountInLoop; // needs neither test } else if (is_finite) { tcKind = kTripCountInBody; // needs taken-test } else if (is_taken) { tcKind = kTripCountInLoopUnsafe; // needs finite-test } InductionOp op = kNop; switch (cmp) { case kCondLT: op = kLT; break; case kCondLE: op = kLE; break; case kCondGT: op = kGT; break; case kCondGE: op = kGE; break; default: LOG(FATAL) << "CONDITION UNREACHABLE"; } InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr); AssignInfo(loop, loop->GetHeader()->GetLastInstruction(), CreateTripCount(tcKind, trip_count, taken_test, type)); } bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr, InductionInfo* upper_expr, IfCondition cmp) { int64_t lower_value; int64_t upper_value; switch (cmp) { case kCondLT: return IsAtMost(lower_expr, &lower_value) && IsAtLeast(upper_expr, &upper_value) && lower_value < upper_value; case kCondLE: return IsAtMost(lower_expr, &lower_value) && IsAtLeast(upper_expr, &upper_value) && lower_value <= upper_value; case kCondGT: return IsAtLeast(lower_expr, &lower_value) && IsAtMost(upper_expr, &upper_value) && lower_value > upper_value; case kCondGE: return IsAtLeast(lower_expr, &lower_value) && IsAtMost(upper_expr, &upper_value) && lower_value >= upper_value; default: LOG(FATAL) << "CONDITION UNREACHABLE"; } return false; // not certain, may be untaken } bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr, int64_t stride_value, Primitive::Type type, IfCondition cmp) { const int64_t min = Primitive::MinValueOfIntegralType(type); const int64_t max = Primitive::MaxValueOfIntegralType(type); // Some rules under which it is certain at compile-time that the loop is finite. int64_t value; switch (cmp) { case kCondLT: return stride_value == 1 || (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1)); case kCondLE: return (IsAtMost(upper_expr, &value) && value <= (max - stride_value)); case kCondGT: return stride_value == -1 || (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1)); case kCondGE: return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value)); default: LOG(FATAL) << "CONDITION UNREACHABLE"; } return false; // not certain, may be infinite } bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr, InductionInfo* upper_expr, int64_t stride_value, Primitive::Type type, IfCondition cmp) { int64_t min = Primitive::MinValueOfIntegralType(type); int64_t max = Primitive::MaxValueOfIntegralType(type); // Inclusive test need one extra. if (stride_value != 1 && stride_value != -1) { return false; // non-unit stride } else if (cmp == kCondLE) { max--; } else if (cmp == kCondGE) { min++; } // Do both bounds fit the range? // Note: The `value` is initialized to please valgrind - the compiler can reorder // the return value check with the `value` check, b/27651442 . int64_t value = 0; return IsAtLeast(lower_expr, &value) && value >= min && IsAtMost(lower_expr, &value) && value <= max && IsAtLeast(upper_expr, &value) && value >= min && IsAtMost(upper_expr, &value) && value <= max; } void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop, HInstruction* instruction, InductionInfo* info) { auto it = induction_.find(loop); if (it == induction_.end()) { it = induction_.Put(loop, ArenaSafeMap<HInstruction*, InductionInfo*>( std::less<HInstruction*>(), graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis))); } it->second.Put(instruction, info); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop, HInstruction* instruction) { auto it = induction_.find(loop); if (it != induction_.end()) { auto loop_it = it->second.find(instruction); if (loop_it != it->second.end()) { return loop_it->second; } } if (loop->IsDefinedOutOfTheLoop(instruction)) { InductionInfo* info = CreateInvariantFetch(instruction); AssignInfo(loop, instruction, info); return info; } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value, Primitive::Type type) { if (type == Primitive::kPrimInt) { return CreateInvariantFetch(graph_->GetIntConstant(value)); } DCHECK_EQ(type, Primitive::kPrimLong); return CreateInvariantFetch(graph_->GetLongConstant(value)); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant( InductionOp op, InductionInfo* a, InductionInfo* b) { // Perform some light-weight simplifications during construction of a new invariant. // This often safes memory and yields a more concise representation of the induction. // More exhaustive simplifications are done by later phases once induction nodes are // translated back into HIR code (e.g. by loop optimizations or BCE). int64_t value = -1; if (IsExact(a, &value)) { if (value == 0) { // Simplify 0 + b = b, 0 * b = 0. if (op == kAdd) { return b; } else if (op == kMul) { return a; } } else if (op == kMul) { // Simplify 1 * b = b, -1 * b = -b if (value == 1) { return b; } else if (value == -1) { return CreateSimplifiedInvariant(kNeg, nullptr, b); } } } if (IsExact(b, &value)) { if (value == 0) { // Simplify a + 0 = a, a - 0 = a, a * 0 = 0, -0 = 0. if (op == kAdd || op == kSub) { return a; } else if (op == kMul || op == kNeg) { return b; } } else if (op == kMul || op == kDiv) { // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a if (value == 1) { return a; } else if (value == -1) { return CreateSimplifiedInvariant(kNeg, nullptr, a); } } } else if (b->operation == kNeg) { // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b. if (op == kAdd) { return CreateSimplifiedInvariant(kSub, a, b->op_b); } else if (op == kSub) { return CreateSimplifiedInvariant(kAdd, a, b->op_b); } else if (op == kNeg) { return b->op_b; } } else if (b->operation == kSub) { // Simplify - (a - b) = b - a. if (op == kNeg) { return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a); } } return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, b->type); } bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) { return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value); } bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) { return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value); } bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) { return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value); } bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1, InductionInfo* info2) { // Test structural equality only, without accounting for simplifications. if (info1 != nullptr && info2 != nullptr) { return info1->induction_class == info2->induction_class && info1->operation == info2->operation && info1->fetch == info2->fetch && info1->type == info2->type && InductionEqual(info1->op_a, info2->op_a) && InductionEqual(info1->op_b, info2->op_b); } // Otherwise only two nullptrs are considered equal. return info1 == info2; } std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) { if (info != nullptr) { if (info->induction_class == kInvariant) { std::string inv = "("; inv += InductionToString(info->op_a); switch (info->operation) { case kNop: inv += " @ "; break; case kAdd: inv += " + "; break; case kSub: case kNeg: inv += " - "; break; case kMul: inv += " * "; break; case kDiv: inv += " / "; break; case kLT: inv += " < "; break; case kLE: inv += " <= "; break; case kGT: inv += " > "; break; case kGE: inv += " >= "; break; case kFetch: DCHECK(info->fetch); if (info->fetch->IsIntConstant()) { inv += std::to_string(info->fetch->AsIntConstant()->GetValue()); } else if (info->fetch->IsLongConstant()) { inv += std::to_string(info->fetch->AsLongConstant()->GetValue()); } else { inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName(); } break; case kTripCountInLoop: inv += " (TC-loop) "; break; case kTripCountInBody: inv += " (TC-body) "; break; case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break; case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break; } inv += InductionToString(info->op_b); inv += ")"; return inv; } else { DCHECK(info->operation == kNop); if (info->induction_class == kLinear) { return "(" + InductionToString(info->op_a) + " * i + " + InductionToString(info->op_b) + "):" + Primitive::PrettyDescriptor(info->type); } else if (info->induction_class == kWrapAround) { return "wrap(" + InductionToString(info->op_a) + ", " + InductionToString(info->op_b) + "):" + Primitive::PrettyDescriptor(info->type); } else if (info->induction_class == kPeriodic) { return "periodic(" + InductionToString(info->op_a) + ", " + InductionToString(info->op_b) + "):" + Primitive::PrettyDescriptor(info->type); } } } return ""; } } // namespace art