/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "inliner.h" #include "art_method-inl.h" #include "builder.h" #include "class_linker.h" #include "constant_folding.h" #include "dead_code_elimination.h" #include "dex/verified_method.h" #include "dex/verification_results.h" #include "driver/compiler_driver-inl.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "instruction_simplifier.h" #include "intrinsics.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "nodes.h" #include "optimizing_compiler.h" #include "reference_type_propagation.h" #include "register_allocator.h" #include "quick/inline_method_analyser.h" #include "sharpening.h" #include "ssa_builder.h" #include "ssa_phi_elimination.h" #include "scoped_thread_state_change.h" #include "thread.h" namespace art { static constexpr size_t kMaximumNumberOfHInstructions = 32; // Limit the number of dex registers that we accumulate while inlining // to avoid creating large amount of nested environments. static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 64; // Avoid inlining within a huge method due to memory pressure. static constexpr size_t kMaximumCodeUnitSize = 4096; void HInliner::Run() { const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions(); if ((compiler_options.GetInlineDepthLimit() == 0) || (compiler_options.GetInlineMaxCodeUnits() == 0)) { return; } if (caller_compilation_unit_.GetCodeItem()->insns_size_in_code_units_ > kMaximumCodeUnitSize) { return; } if (graph_->IsDebuggable()) { // For simplicity, we currently never inline when the graph is debuggable. This avoids // doing some logic in the runtime to discover if a method could have been inlined. return; } const ArenaVector<HBasicBlock*>& blocks = graph_->GetReversePostOrder(); DCHECK(!blocks.empty()); HBasicBlock* next_block = blocks[0]; for (size_t i = 0; i < blocks.size(); ++i) { // Because we are changing the graph when inlining, we need to remember the next block. // This avoids doing the inlining work again on the inlined blocks. if (blocks[i] != next_block) { continue; } HBasicBlock* block = next_block; next_block = (i == blocks.size() - 1) ? nullptr : blocks[i + 1]; for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { HInstruction* next = instruction->GetNext(); HInvoke* call = instruction->AsInvoke(); // As long as the call is not intrinsified, it is worth trying to inline. if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { // We use the original invoke type to ensure the resolution of the called method // works properly. if (!TryInline(call)) { if (kIsDebugBuild && IsCompilingWithCoreImage()) { std::string callee_name = PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile()); bool should_inline = callee_name.find("$inline$") != std::string::npos; CHECK(!should_inline) << "Could not inline " << callee_name; } } else { if (kIsDebugBuild && IsCompilingWithCoreImage()) { std::string callee_name = PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile()); bool must_not_inline = callee_name.find("$noinline$") != std::string::npos; CHECK(!must_not_inline) << "Should not have inlined " << callee_name; } } } instruction = next; } } } static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) { return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); } /** * Given the `resolved_method` looked up in the dex cache, try to find * the actual runtime target of an interface or virtual call. * Return nullptr if the runtime target cannot be proven. */ static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method) SHARED_REQUIRES(Locks::mutator_lock_) { if (IsMethodOrDeclaringClassFinal(resolved_method)) { // No need to lookup further, the resolved method will be the target. return resolved_method; } HInstruction* receiver = invoke->InputAt(0); if (receiver->IsNullCheck()) { // Due to multiple levels of inlining within the same pass, it might be that // null check does not have the reference type of the actual receiver. receiver = receiver->InputAt(0); } ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); if (!info.IsExact()) { // We currently only support inlining with known receivers. // TODO: Remove this check, we should be able to inline final methods // on unknown receivers. return nullptr; } else if (info.GetTypeHandle()->IsInterface()) { // Statically knowing that the receiver has an interface type cannot // help us find what is the target method. return nullptr; } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { // The method that we're trying to call is not in the receiver's class or super classes. return nullptr; } else if (info.GetTypeHandle()->IsErroneous()) { // If the type is erroneous, do not go further, as we are going to query the vtable or // imt table, that we can only safely do on non-erroneous classes. return nullptr; } ClassLinker* cl = Runtime::Current()->GetClassLinker(); size_t pointer_size = cl->GetImagePointerSize(); if (invoke->IsInvokeInterface()) { resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( resolved_method, pointer_size); } else { DCHECK(invoke->IsInvokeVirtual()); resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( resolved_method, pointer_size); } if (resolved_method == nullptr) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (!resolved_method->IsInvokable()) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { // A final method has to be the target method. return resolved_method; } else if (info.IsExact()) { // If we found a method and the receiver's concrete type is statically // known, we know for sure the target. return resolved_method; } else { // Even if we did find a method, the receiver type was not enough to // statically find the runtime target. return nullptr; } } static uint32_t FindClassIndexIn(mirror::Class* cls, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) SHARED_REQUIRES(Locks::mutator_lock_) { uint32_t index = DexFile::kDexNoIndex; if (cls->GetDexCache() == nullptr) { DCHECK(cls->IsArrayClass()) << PrettyClass(cls); index = cls->FindTypeIndexInOtherDexFile(dex_file); } else if (cls->GetDexTypeIndex() == DexFile::kDexNoIndex16) { DCHECK(cls->IsProxyClass()) << PrettyClass(cls); // TODO: deal with proxy classes. } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { DCHECK_EQ(cls->GetDexCache(), dex_cache.Get()); index = cls->GetDexTypeIndex(); // Update the dex cache to ensure the class is in. The generated code will // consider it is. We make it safe by updating the dex cache, as other // dex files might also load the class, and there is no guarantee the dex // cache of the dex file of the class will be updated. if (dex_cache->GetResolvedType(index) == nullptr) { dex_cache->SetResolvedType(index, cls); } } else { index = cls->FindTypeIndexInOtherDexFile(dex_file); // We cannot guarantee the entry in the dex cache will resolve to the same class, // as there may be different class loaders. So only return the index if it's // the right class in the dex cache already. if (index != DexFile::kDexNoIndex && dex_cache->GetResolvedType(index) != cls) { index = DexFile::kDexNoIndex; } } return index; } class ScopedProfilingInfoInlineUse { public: explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self) : method_(method), self_(self), // Fetch the profiling info ahead of using it. If it's null when fetching, // we should not call JitCodeCache::DoneInlining. profiling_info_( Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) { } ~ScopedProfilingInfoInlineUse() { if (profiling_info_ != nullptr) { size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size)); Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_); } } ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } private: ArtMethod* const method_; Thread* const self_; ProfilingInfo* const profiling_info_; }; bool HInliner::TryInline(HInvoke* invoke_instruction) { if (invoke_instruction->IsInvokeUnresolved()) { return false; // Don't bother to move further if we know the method is unresolved. } uint32_t method_index = invoke_instruction->GetDexMethodIndex(); ScopedObjectAccess soa(Thread::Current()); const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); VLOG(compiler) << "Try inlining " << PrettyMethod(method_index, caller_dex_file); ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); // We can query the dex cache directly. The verifier has populated it already. ArtMethod* resolved_method; ArtMethod* actual_method = nullptr; if (invoke_instruction->IsInvokeStaticOrDirect()) { if (invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()) { VLOG(compiler) << "Not inlining a String.<init> method"; return false; } MethodReference ref = invoke_instruction->AsInvokeStaticOrDirect()->GetTargetMethod(); mirror::DexCache* const dex_cache = IsSameDexFile(caller_dex_file, *ref.dex_file) ? caller_compilation_unit_.GetDexCache().Get() : class_linker->FindDexCache(soa.Self(), *ref.dex_file); resolved_method = dex_cache->GetResolvedMethod( ref.dex_method_index, class_linker->GetImagePointerSize()); // actual_method == resolved_method for direct or static calls. actual_method = resolved_method; } else { resolved_method = caller_compilation_unit_.GetDexCache().Get()->GetResolvedMethod( method_index, class_linker->GetImagePointerSize()); if (resolved_method != nullptr) { // Check if we can statically find the method. actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method); } } if (resolved_method == nullptr) { // TODO: Can this still happen? // Method cannot be resolved if it is in another dex file we do not have access to. VLOG(compiler) << "Method cannot be resolved " << PrettyMethod(method_index, caller_dex_file); return false; } if (actual_method != nullptr) { bool result = TryInlineAndReplace(invoke_instruction, actual_method, /* do_rtp */ true); if (result && !invoke_instruction->IsInvokeStaticOrDirect()) { MaybeRecordStat(kInlinedInvokeVirtualOrInterface); } return result; } DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); // Check if we can use an inline cache. ArtMethod* caller = graph_->GetArtMethod(); if (Runtime::Current()->UseJitCompilation()) { // Under JIT, we should always know the caller. DCHECK(caller != nullptr); ScopedProfilingInfoInlineUse spiis(caller, soa.Self()); ProfilingInfo* profiling_info = spiis.GetProfilingInfo(); if (profiling_info != nullptr) { const InlineCache& ic = *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()); if (ic.IsUninitialized()) { VLOG(compiler) << "Interface or virtual call to " << PrettyMethod(method_index, caller_dex_file) << " is not hit and not inlined"; return false; } else if (ic.IsMonomorphic()) { MaybeRecordStat(kMonomorphicCall); if (outermost_graph_->IsCompilingOsr()) { // If we are compiling OSR, we pretend this call is polymorphic, as we may come from the // interpreter and it may have seen different receiver types. return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic); } else { return TryInlineMonomorphicCall(invoke_instruction, resolved_method, ic); } } else if (ic.IsPolymorphic()) { MaybeRecordStat(kPolymorphicCall); return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic); } else { DCHECK(ic.IsMegamorphic()); VLOG(compiler) << "Interface or virtual call to " << PrettyMethod(method_index, caller_dex_file) << " is megamorphic and not inlined"; MaybeRecordStat(kMegamorphicCall); return false; } } } VLOG(compiler) << "Interface or virtual call to " << PrettyMethod(method_index, caller_dex_file) << " could not be statically determined"; return false; } HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, HInstruction* receiver, uint32_t dex_pc) const { ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0); DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet( receiver, Primitive::kPrimNot, field->GetOffset(), field->IsVolatile(), field->GetDexFieldIndex(), field->GetDeclaringClass()->GetDexClassDefIndex(), *field->GetDexFile(), handles_->NewHandle(field->GetDexCache()), dex_pc); // The class of a field is effectively final, and does not have any memory dependencies. result->SetSideEffects(SideEffects::None()); return result; } bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction, ArtMethod* resolved_method, const InlineCache& ic) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); uint32_t class_index = FindClassIndexIn( ic.GetMonomorphicType(), caller_dex_file, caller_compilation_unit_.GetDexCache()); if (class_index == DexFile::kDexNoIndex) { VLOG(compiler) << "Call to " << PrettyMethod(resolved_method) << " from inline cache is not inlined because its class is not" << " accessible to the caller"; return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); if (invoke_instruction->IsInvokeInterface()) { resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForInterface( resolved_method, pointer_size); } else { DCHECK(invoke_instruction->IsInvokeVirtual()); resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForVirtual( resolved_method, pointer_size); } DCHECK(resolved_method != nullptr); HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); if (!TryInlineAndReplace(invoke_instruction, resolved_method, /* do_rtp */ false)) { return false; } // We successfully inlined, now add a guard. bool is_referrer = (ic.GetMonomorphicType() == outermost_graph_->GetArtMethod()->GetDeclaringClass()); AddTypeGuard(receiver, cursor, bb_cursor, class_index, is_referrer, invoke_instruction, /* with_deoptimization */ true); // Run type propagation to get the guard typed, and eventually propagate the // type of the receiver. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); MaybeRecordStat(kInlinedMonomorphicCall); return true; } HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, HInstruction* cursor, HBasicBlock* bb_cursor, uint32_t class_index, bool is_referrer, HInstruction* invoke_instruction, bool with_deoptimization) { ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); // Note that we will just compare the classes, so we don't need Java semantics access checks. // Also, the caller of `AddTypeGuard` must have guaranteed that the class is in the dex cache. HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(), class_index, caller_dex_file, is_referrer, invoke_instruction->GetDexPc(), /* needs_access_check */ false, /* is_in_dex_cache */ true); HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class); // TODO: Extend reference type propagation to understand the guard. if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(load_class, receiver_class); bb_cursor->InsertInstructionAfter(compare, load_class); if (with_deoptimization) { HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( compare, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); } return compare; } bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction, ArtMethod* resolved_method, const InlineCache& ic) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, ic)) { return true; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); bool all_targets_inlined = true; bool one_target_inlined = false; for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { if (ic.GetTypeAt(i) == nullptr) { break; } ArtMethod* method = nullptr; if (invoke_instruction->IsInvokeInterface()) { method = ic.GetTypeAt(i)->FindVirtualMethodForInterface( resolved_method, pointer_size); } else { DCHECK(invoke_instruction->IsInvokeVirtual()); method = ic.GetTypeAt(i)->FindVirtualMethodForVirtual( resolved_method, pointer_size); } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); uint32_t class_index = FindClassIndexIn( ic.GetTypeAt(i), caller_dex_file, caller_compilation_unit_.GetDexCache()); HInstruction* return_replacement = nullptr; if (class_index == DexFile::kDexNoIndex || !TryBuildAndInline(invoke_instruction, method, &return_replacement)) { all_targets_inlined = false; } else { one_target_inlined = true; bool is_referrer = (ic.GetTypeAt(i) == outermost_graph_->GetArtMethod()->GetDeclaringClass()); // If we have inlined all targets before, and this receiver is the last seen, // we deoptimize instead of keeping the original invoke instruction. bool deoptimize = all_targets_inlined && (i != InlineCache::kIndividualCacheSize - 1) && (ic.GetTypeAt(i + 1) == nullptr); if (outermost_graph_->IsCompilingOsr()) { // We do not support HDeoptimize in OSR methods. deoptimize = false; } HInstruction* compare = AddTypeGuard( receiver, cursor, bb_cursor, class_index, is_referrer, invoke_instruction, deoptimize); if (deoptimize) { if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); // Because the inline cache data can be populated concurrently, we force the end of the // iteration. Otherhwise, we could see a new receiver type. break; } else { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } } } if (!one_target_inlined) { VLOG(compiler) << "Call to " << PrettyMethod(resolved_method) << " from inline cache is not inlined because none" << " of its targets could be inlined"; return false; } MaybeRecordStat(kInlinedPolymorphicCall); // Run type propagation to get the guards typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); return true; } void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, HInstruction* return_replacement, HInstruction* invoke_instruction) { uint32_t dex_pc = invoke_instruction->GetDexPc(); HBasicBlock* cursor_block = compare->GetBlock(); HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); ArenaAllocator* allocator = graph_->GetArena(); // Spit the block after the compare: `cursor_block` will now be the start of the diamond, // and the returned block is the start of the then branch (that could contain multiple blocks). HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); // Split the block containing the invoke before and after the invoke. The returned block // of the split before will contain the invoke and will be the otherwise branch of // the diamond. The returned block of the split after will be the merge block // of the diamond. HBasicBlock* end_then = invoke_instruction->GetBlock(); HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); // If the methods we are inlining return a value, we create a phi in the merge block // that will have the `invoke_instruction and the `return_replacement` as inputs. if (return_replacement != nullptr) { HPhi* phi = new (allocator) HPhi( allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); merge->AddPhi(phi); invoke_instruction->ReplaceWith(phi); phi->AddInput(return_replacement); phi->AddInput(invoke_instruction); } // Add the control flow instructions. otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); end_then->AddInstruction(new (allocator) HGoto(dex_pc)); cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); // Add the newly created blocks to the graph. graph_->AddBlock(then); graph_->AddBlock(otherwise); graph_->AddBlock(merge); // Set up successor (and implictly predecessor) relations. cursor_block->AddSuccessor(otherwise); cursor_block->AddSuccessor(then); end_then->AddSuccessor(merge); otherwise->AddSuccessor(merge); // Set up dominance information. then->SetDominator(cursor_block); cursor_block->AddDominatedBlock(then); otherwise->SetDominator(cursor_block); cursor_block->AddDominatedBlock(otherwise); merge->SetDominator(cursor_block); cursor_block->AddDominatedBlock(merge); // Update the revert post order. size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); MakeRoomFor(&graph_->reverse_post_order_, 1, index); graph_->reverse_post_order_[++index] = then; index = IndexOfElement(graph_->reverse_post_order_, end_then); MakeRoomFor(&graph_->reverse_post_order_, 2, index); graph_->reverse_post_order_[++index] = otherwise; graph_->reverse_post_order_[++index] = merge; graph_->UpdateLoopAndTryInformationOfNewBlock( then, original_invoke_block, /* replace_if_back_edge */ false); graph_->UpdateLoopAndTryInformationOfNewBlock( otherwise, original_invoke_block, /* replace_if_back_edge */ false); // In case the original invoke location was a back edge, we need to update // the loop to now have the merge block as a back edge. graph_->UpdateLoopAndTryInformationOfNewBlock( merge, original_invoke_block, /* replace_if_back_edge */ true); } bool HInliner::TryInlinePolymorphicCallToSameTarget(HInvoke* invoke_instruction, ArtMethod* resolved_method, const InlineCache& ic) { // This optimization only works under JIT for now. DCHECK(Runtime::Current()->UseJitCompilation()); if (graph_->GetInstructionSet() == kMips64) { // TODO: Support HClassTableGet for mips64. return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); size_t pointer_size = class_linker->GetImagePointerSize(); DCHECK(resolved_method != nullptr); ArtMethod* actual_method = nullptr; size_t method_index = invoke_instruction->IsInvokeVirtual() ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() : invoke_instruction->AsInvokeInterface()->GetImtIndex(); // Check whether we are actually calling the same method among // the different types seen. for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { if (ic.GetTypeAt(i) == nullptr) { break; } ArtMethod* new_method = nullptr; if (invoke_instruction->IsInvokeInterface()) { new_method = ic.GetTypeAt(i)->GetImt(pointer_size)->Get( method_index % ImTable::kSize, pointer_size); if (new_method->IsRuntimeMethod()) { // Bail out as soon as we see a conflict trampoline in one of the target's // interface table. return false; } } else { DCHECK(invoke_instruction->IsInvokeVirtual()); new_method = ic.GetTypeAt(i)->GetEmbeddedVTableEntry(method_index, pointer_size); } DCHECK(new_method != nullptr); if (actual_method == nullptr) { actual_method = new_method; } else if (actual_method != new_method) { // Different methods, bailout. VLOG(compiler) << "Call to " << PrettyMethod(resolved_method) << " from inline cache is not inlined because it resolves" << " to different methods"; return false; } } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); HInstruction* return_replacement = nullptr; if (!TryBuildAndInline(invoke_instruction, actual_method, &return_replacement)) { return false; } // We successfully inlined, now add a guard. HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) ? Primitive::kPrimLong : Primitive::kPrimInt; HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet( receiver_class, type, invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable : HClassTableGet::TableKind::kIMTable, method_index, invoke_instruction->GetDexPc()); HConstant* constant; if (type == Primitive::kPrimLong) { constant = graph_->GetLongConstant( reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); } else { constant = graph_->GetIntConstant( reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); } HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); bb_cursor->InsertInstructionAfter(compare, class_table_get); if (outermost_graph_->IsCompilingOsr()) { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } else { // TODO: Extend reference type propagation to understand the guard. HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( compare, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); } // Run type propagation to get the guard typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); MaybeRecordStat(kInlinedPolymorphicCall); return true; } bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, bool do_rtp) { HInstruction* return_replacement = nullptr; if (!TryBuildAndInline(invoke_instruction, method, &return_replacement)) { return false; } if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); FixUpReturnReferenceType(invoke_instruction, method, return_replacement, do_rtp); return true; } bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, ArtMethod* method, HInstruction** return_replacement) { if (method->IsProxyMethod()) { VLOG(compiler) << "Method " << PrettyMethod(method) << " is not inlined because of unimplemented inline support for proxy methods."; return false; } // Check whether we're allowed to inline. The outermost compilation unit is the relevant // dex file here (though the transitivity of an inline chain would allow checking the calller). if (!compiler_driver_->MayInline(method->GetDexFile(), outer_compilation_unit_.GetDexFile())) { if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { VLOG(compiler) << "Successfully replaced pattern of invoke " << PrettyMethod(method); MaybeRecordStat(kReplacedInvokeWithSimplePattern); return true; } VLOG(compiler) << "Won't inline " << PrettyMethod(method) << " in " << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " << method->GetDexFile()->GetLocation(); return false; } bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile()); const DexFile::CodeItem* code_item = method->GetCodeItem(); if (code_item == nullptr) { VLOG(compiler) << "Method " << PrettyMethod(method) << " is not inlined because it is native"; return false; } size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits(); if (code_item->insns_size_in_code_units_ > inline_max_code_units) { VLOG(compiler) << "Method " << PrettyMethod(method) << " is too big to inline: " << code_item->insns_size_in_code_units_ << " > " << inline_max_code_units; return false; } if (code_item->tries_size_ != 0) { VLOG(compiler) << "Method " << PrettyMethod(method) << " is not inlined because of try block"; return false; } if (!method->IsCompilable()) { VLOG(compiler) << "Method " << PrettyMethod(method) << " has soft failures un-handled by the compiler, so it cannot be inlined"; } if (!method->GetDeclaringClass()->IsVerified()) { uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex(); if (Runtime::Current()->UseJitCompilation() || !compiler_driver_->IsMethodVerifiedWithoutFailures( method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) { VLOG(compiler) << "Method " << PrettyMethod(method) << " couldn't be verified, so it cannot be inlined"; return false; } } if (invoke_instruction->IsInvokeStaticOrDirect() && invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { // Case of a static method that cannot be inlined because it implicitly // requires an initialization check of its declaring class. VLOG(compiler) << "Method " << PrettyMethod(method) << " is not inlined because it is static and requires a clinit" << " check that cannot be emitted due to Dex cache limitations"; return false; } if (!TryBuildAndInlineHelper(invoke_instruction, method, same_dex_file, return_replacement)) { return false; } VLOG(compiler) << "Successfully inlined " << PrettyMethod(method); MaybeRecordStat(kInlinedInvoke); return true; } static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, size_t arg_vreg_index) SHARED_REQUIRES(Locks::mutator_lock_) { size_t input_index = 0; for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { ++i; DCHECK_NE(i, arg_vreg_index); } } DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); return invoke_instruction->InputAt(input_index); } // Try to recognize known simple patterns and replace invoke call with appropriate instructions. bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, ArtMethod* resolved_method, HInstruction** return_replacement) { InlineMethod inline_method; if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) { return false; } switch (inline_method.opcode) { case kInlineOpNop: DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid); *return_replacement = nullptr; break; case kInlineOpReturnArg: *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, inline_method.d.return_data.arg); break; case kInlineOpNonWideConst: if (resolved_method->GetShorty()[0] == 'L') { DCHECK_EQ(inline_method.d.data, 0u); *return_replacement = graph_->GetNullConstant(); } else { *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); } break; case kInlineOpIGet: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstanceFieldGet* iget = CreateInstanceFieldGet(dex_cache, data.field_idx, obj); DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); *return_replacement = iget; break; } case kInlineOpIPut: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, data.field_idx, obj, value); DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); if (data.return_arg_plus1 != 0u) { size_t return_arg = data.return_arg_plus1 - 1u; *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); } break; } case kInlineOpConstructor: { const InlineConstructorData& data = inline_method.d.constructor_data; // Get the indexes to arrays for easier processing. uint16_t iput_field_indexes[] = { data.iput0_field_index, data.iput1_field_index, data.iput2_field_index }; uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); // Count valid field indexes. size_t number_of_iputs = 0u; while (number_of_iputs != arraysize(iput_field_indexes) && iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { // Check that there are no duplicate valid field indexes. DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, iput_field_indexes + arraysize(iput_field_indexes), iput_field_indexes[number_of_iputs])); ++number_of_iputs; } // Check that there are no valid field indexes in the rest of the array. DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, iput_field_indexes + arraysize(iput_field_indexes), [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); // Create HInstanceFieldSet for each IPUT that stores non-zero data. Handle<mirror::DexCache> dex_cache; HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u); bool needs_constructor_barrier = false; for (size_t i = 0; i != number_of_iputs; ++i) { HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { if (dex_cache.GetReference() == nullptr) { dex_cache = handles_->NewHandle(resolved_method->GetDexCache()); } uint16_t field_index = iput_field_indexes[i]; HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, field_index, obj, value); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); // Check whether the field is final. If it is, we need to add a barrier. size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); DCHECK(resolved_field != nullptr); if (resolved_field->IsFinal()) { needs_constructor_barrier = true; } } } if (needs_constructor_barrier) { HMemoryBarrier* barrier = new (graph_->GetArena()) HMemoryBarrier(kStoreStore, kNoDexPc); invoke_instruction->GetBlock()->InsertInstructionBefore(barrier, invoke_instruction); } *return_replacement = nullptr; break; } default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } return true; } HInstanceFieldGet* HInliner::CreateInstanceFieldGet(Handle<mirror::DexCache> dex_cache, uint32_t field_index, HInstruction* obj) SHARED_REQUIRES(Locks::mutator_lock_) { size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); DCHECK(resolved_field != nullptr); HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet( obj, resolved_field->GetTypeAsPrimitiveType(), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *dex_cache->GetDexFile(), dex_cache, // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc */ 0); if (iget->GetType() == Primitive::kPrimNot) { // Use the same dex_cache that we used for field lookup as the hint_dex_cache. ReferenceTypePropagation rtp(graph_, dex_cache, handles_, /* is_first_run */ false); rtp.Visit(iget); } return iget; } HInstanceFieldSet* HInliner::CreateInstanceFieldSet(Handle<mirror::DexCache> dex_cache, uint32_t field_index, HInstruction* obj, HInstruction* value) SHARED_REQUIRES(Locks::mutator_lock_) { size_t pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet()); ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size); DCHECK(resolved_field != nullptr); HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet( obj, value, resolved_field->GetTypeAsPrimitiveType(), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *dex_cache->GetDexFile(), dex_cache, // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc */ 0); return iput; } bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, ArtMethod* resolved_method, bool same_dex_file, HInstruction** return_replacement) { ScopedObjectAccess soa(Thread::Current()); const DexFile::CodeItem* code_item = resolved_method->GetCodeItem(); const DexFile& callee_dex_file = *resolved_method->GetDexFile(); uint32_t method_index = resolved_method->GetDexMethodIndex(); ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache())); Handle<mirror::ClassLoader> class_loader(handles_->NewHandle( resolved_method->GetDeclaringClass()->GetClassLoader())); DexCompilationUnit dex_compilation_unit( class_loader.ToJObject(), class_linker, callee_dex_file, code_item, resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), method_index, resolved_method->GetAccessFlags(), /* verified_method */ nullptr, dex_cache); bool requires_ctor_barrier = false; if (dex_compilation_unit.IsConstructor()) { // If it's a super invocation and we already generate a barrier there's no need // to generate another one. // We identify super calls by looking at the "this" pointer. If its value is the // same as the local "this" pointer then we must have a super invocation. bool is_super_invocation = invoke_instruction->InputAt(0)->IsParameterValue() && invoke_instruction->InputAt(0)->AsParameterValue()->IsThis(); if (is_super_invocation && graph_->ShouldGenerateConstructorBarrier()) { requires_ctor_barrier = false; } else { Thread* self = Thread::Current(); requires_ctor_barrier = compiler_driver_->RequiresConstructorBarrier(self, dex_compilation_unit.GetDexFile(), dex_compilation_unit.GetClassDefIndex()); } } InvokeType invoke_type = invoke_instruction->GetOriginalInvokeType(); if (invoke_type == kInterface) { // We have statically resolved the dispatch. To please the class linker // at runtime, we change this call as if it was a virtual call. invoke_type = kVirtual; } const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); HGraph* callee_graph = new (graph_->GetArena()) HGraph( graph_->GetArena(), callee_dex_file, method_index, requires_ctor_barrier, compiler_driver_->GetInstructionSet(), invoke_type, graph_->IsDebuggable(), /* osr */ false, caller_instruction_counter); callee_graph->SetArtMethod(resolved_method); // When they are needed, allocate `inline_stats` on the heap instead // of on the stack, as Clang might produce a stack frame too large // for this function, that would not fit the requirements of the // `-Wframe-larger-than` option. std::unique_ptr<OptimizingCompilerStats> inline_stats = (stats_ == nullptr) ? nullptr : MakeUnique<OptimizingCompilerStats>(); HGraphBuilder builder(callee_graph, &dex_compilation_unit, &outer_compilation_unit_, resolved_method->GetDexFile(), *code_item, compiler_driver_, inline_stats.get(), resolved_method->GetQuickenedInfo(), dex_cache, handles_); if (builder.BuildGraph() != kAnalysisSuccess) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be built, so cannot be inlined"; return false; } if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph, compiler_driver_->GetInstructionSet())) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " cannot be inlined because of the register allocator"; return false; } size_t parameter_index = 0; for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); !instructions.Done(); instructions.Advance()) { HInstruction* current = instructions.Current(); if (current->IsParameterValue()) { HInstruction* argument = invoke_instruction->InputAt(parameter_index++); if (argument->IsNullConstant()) { current->ReplaceWith(callee_graph->GetNullConstant()); } else if (argument->IsIntConstant()) { current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); } else if (argument->IsLongConstant()) { current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); } else if (argument->IsFloatConstant()) { current->ReplaceWith( callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); } else if (argument->IsDoubleConstant()) { current->ReplaceWith( callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); } else if (argument->GetType() == Primitive::kPrimNot) { current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); } } } size_t number_of_instructions_budget = kMaximumNumberOfHInstructions; size_t number_of_inlined_instructions = RunOptimizations(callee_graph, code_item, dex_compilation_unit); number_of_instructions_budget += number_of_inlined_instructions; // TODO: We should abort only if all predecessors throw. However, // HGraph::InlineInto currently does not handle an exit block with // a throw predecessor. HBasicBlock* exit_block = callee_graph->GetExitBlock(); if (exit_block == nullptr) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it has an infinite loop"; return false; } bool has_throw_predecessor = false; for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { if (predecessor->GetLastInstruction()->IsThrow()) { has_throw_predecessor = true; break; } } if (has_throw_predecessor) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because one branch always throws"; return false; } HReversePostOrderIterator it(*callee_graph); it.Advance(); // Past the entry block, it does not contain instructions that prevent inlining. size_t number_of_instructions = 0; bool can_inline_environment = total_number_of_dex_registers_ < kMaximumNumberOfCumulatedDexRegisters; for (; !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); if (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible()) { // Don't inline methods with irreducible loops, they could prevent some // optimizations to run. VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it contains an irreducible loop"; return false; } for (HInstructionIterator instr_it(block->GetInstructions()); !instr_it.Done(); instr_it.Advance()) { if (number_of_instructions++ == number_of_instructions_budget) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " is not inlined because its caller has reached" << " its instruction budget limit."; return false; } HInstruction* current = instr_it.Current(); if (!can_inline_environment && current->NeedsEnvironment()) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " is not inlined because its caller has reached" << " its environment budget limit."; return false; } if (current->IsInvokeInterface()) { // Disable inlining of interface calls. The cost in case of entering the // resolution conflict is currently too high. VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it has an interface call."; return false; } if (!same_dex_file && current->NeedsEnvironment()) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because " << current->DebugName() << " needs an environment and is in a different dex file"; return false; } if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because " << current->DebugName() << " it is in a different dex file and requires access to the dex cache"; return false; } if (current->IsNewInstance() && (current->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectWithAccessCheck)) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it is using an entrypoint" << " with access checks"; // Allocation entrypoint does not handle inlined frames. return false; } if (current->IsNewArray() && (current->AsNewArray()->GetEntrypoint() == kQuickAllocArrayWithAccessCheck)) { VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it is using an entrypoint" << " with access checks"; // Allocation entrypoint does not handle inlined frames. return false; } if (current->IsUnresolvedStaticFieldGet() || current->IsUnresolvedInstanceFieldGet() || current->IsUnresolvedStaticFieldSet() || current->IsUnresolvedInstanceFieldSet()) { // Entrypoint for unresolved fields does not handle inlined frames. VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file) << " could not be inlined because it is using an unresolved" << " entrypoint"; return false; } } } number_of_inlined_instructions_ += number_of_instructions; DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) << "No instructions can be added to the outer graph while inner graph is being built"; const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); graph_->SetCurrentInstructionId(callee_instruction_counter); *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) << "No instructions can be added to the inner graph during inlining into the outer graph"; return true; } size_t HInliner::RunOptimizations(HGraph* callee_graph, const DexFile::CodeItem* code_item, const DexCompilationUnit& dex_compilation_unit) { // Note: if the outermost_graph_ is being compiled OSR, we should not run any // optimization that could lead to a HDeoptimize. The following optimizations do not. HDeadCodeElimination dce(callee_graph, stats_); HConstantFolding fold(callee_graph); HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_); InstructionSimplifier simplify(callee_graph, stats_); IntrinsicsRecognizer intrinsics(callee_graph, compiler_driver_, stats_); HOptimization* optimizations[] = { &intrinsics, &sharpening, &simplify, &fold, &dce, }; for (size_t i = 0; i < arraysize(optimizations); ++i) { HOptimization* optimization = optimizations[i]; optimization->Run(); } size_t number_of_inlined_instructions = 0u; if (depth_ + 1 < compiler_driver_->GetCompilerOptions().GetInlineDepthLimit()) { HInliner inliner(callee_graph, outermost_graph_, codegen_, outer_compilation_unit_, dex_compilation_unit, compiler_driver_, handles_, stats_, total_number_of_dex_registers_ + code_item->registers_size_, depth_ + 1); inliner.Run(); number_of_inlined_instructions += inliner.number_of_inlined_instructions_; } return number_of_inlined_instructions; } void HInliner::FixUpReturnReferenceType(HInvoke* invoke_instruction, ArtMethod* resolved_method, HInstruction* return_replacement, bool do_rtp) { // Check the integrity of reference types and run another type propagation if needed. if (return_replacement != nullptr) { if (return_replacement->GetType() == Primitive::kPrimNot) { if (!return_replacement->GetReferenceTypeInfo().IsValid()) { // Make sure that we have a valid type for the return. We may get an invalid one when // we inline invokes with multiple branches and create a Phi for the result. // TODO: we could be more precise by merging the phi inputs but that requires // some functionality from the reference type propagation. DCHECK(return_replacement->IsPhi()); size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */, pointer_size); if (cls != nullptr && !cls->IsErroneous()) { ReferenceTypeInfo::TypeHandle return_handle = handles_->NewHandle(cls); return_replacement->SetReferenceTypeInfo(ReferenceTypeInfo::Create( return_handle, return_handle->CannotBeAssignedFromOtherTypes() /* is_exact */)); } else { // Return inexact object type on failures. return_replacement->SetReferenceTypeInfo(graph_->GetInexactObjectRti()); } } if (do_rtp) { // If the return type is a refinement of the declared type run the type propagation again. ReferenceTypeInfo return_rti = return_replacement->GetReferenceTypeInfo(); ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo(); if (invoke_rti.IsStrictSupertypeOf(return_rti) || (return_rti.IsExact() && !invoke_rti.IsExact()) || !return_replacement->CanBeNull()) { ReferenceTypePropagation(graph_, outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false).Run(); } } } else if (return_replacement->IsInstanceOf()) { if (do_rtp) { // Inlining InstanceOf into an If may put a tighter bound on reference types. ReferenceTypePropagation(graph_, outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false).Run(); } } } } } // namespace art