/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instruction_simplifier_arm64.h" #include "common_arm64.h" #include "instruction_simplifier_shared.h" #include "mirror/array-inl.h" namespace art { namespace arm64 { using helpers::CanFitInShifterOperand; using helpers::HasShifterOperand; using helpers::ShifterOperandSupportsExtension; void InstructionSimplifierArm64Visitor::TryExtractArrayAccessAddress(HInstruction* access, HInstruction* array, HInstruction* index, int access_size) { if (kEmitCompilerReadBarrier) { // The read barrier instrumentation does not support the // HArm64IntermediateAddress instruction yet. // // TODO: Handle this case properly in the ARM64 code generator and // re-enable this optimization; otherwise, remove this TODO. // b/26601270 return; } if (index->IsConstant() || (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) { // When the index is a constant all the addressing can be fitted in the // memory access instruction, so do not split the access. return; } if (access->IsArraySet() && access->AsArraySet()->GetValue()->GetType() == Primitive::kPrimNot) { // The access may require a runtime call or the original array pointer. return; } // Proceed to extract the base address computation. ArenaAllocator* arena = GetGraph()->GetArena(); HIntConstant* offset = GetGraph()->GetIntConstant(mirror::Array::DataOffset(access_size).Uint32Value()); HArm64IntermediateAddress* address = new (arena) HArm64IntermediateAddress(array, offset, kNoDexPc); address->SetReferenceTypeInfo(array->GetReferenceTypeInfo()); access->GetBlock()->InsertInstructionBefore(address, access); access->ReplaceInput(address, 0); // Both instructions must depend on GC to prevent any instruction that can // trigger GC to be inserted between the two. access->AddSideEffects(SideEffects::DependsOnGC()); DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC())); DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC())); // TODO: Code generation for HArrayGet and HArraySet will check whether the input address // is an HArm64IntermediateAddress and generate appropriate code. // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe // `HArm64Load` and `HArm64Store`). We defer these changes because these new instructions would // not bring any advantages yet. // Also see the comments in // `InstructionCodeGeneratorARM64::VisitArrayGet()` and // `InstructionCodeGeneratorARM64::VisitArraySet()`. RecordSimplification(); } bool InstructionSimplifierArm64Visitor::TryMergeIntoShifterOperand(HInstruction* use, HInstruction* bitfield_op, bool do_merge) { DCHECK(HasShifterOperand(use)); DCHECK(use->IsBinaryOperation() || use->IsNeg()); DCHECK(CanFitInShifterOperand(bitfield_op)); DCHECK(!bitfield_op->HasEnvironmentUses()); Primitive::Type type = use->GetType(); if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) { return false; } HInstruction* left; HInstruction* right; if (use->IsBinaryOperation()) { left = use->InputAt(0); right = use->InputAt(1); } else { DCHECK(use->IsNeg()); right = use->AsNeg()->InputAt(0); left = GetGraph()->GetConstant(right->GetType(), 0); } DCHECK(left == bitfield_op || right == bitfield_op); if (left == right) { // TODO: Handle special transformations in this situation? // For example should we transform `(x << 1) + (x << 1)` into `(x << 2)`? // Or should this be part of a separate transformation logic? return false; } bool is_commutative = use->IsBinaryOperation() && use->AsBinaryOperation()->IsCommutative(); HInstruction* other_input; if (bitfield_op == right) { other_input = left; } else { if (is_commutative) { other_input = right; } else { return false; } } HArm64DataProcWithShifterOp::OpKind op_kind; int shift_amount = 0; HArm64DataProcWithShifterOp::GetOpInfoFromInstruction(bitfield_op, &op_kind, &shift_amount); if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind) && !ShifterOperandSupportsExtension(use)) { return false; } if (do_merge) { HArm64DataProcWithShifterOp* alu_with_op = new (GetGraph()->GetArena()) HArm64DataProcWithShifterOp(use, other_input, bitfield_op->InputAt(0), op_kind, shift_amount, use->GetDexPc()); use->GetBlock()->ReplaceAndRemoveInstructionWith(use, alu_with_op); if (bitfield_op->GetUses().empty()) { bitfield_op->GetBlock()->RemoveInstruction(bitfield_op); } RecordSimplification(); } return true; } // Merge a bitfield move instruction into its uses if it can be merged in all of them. bool InstructionSimplifierArm64Visitor::TryMergeIntoUsersShifterOperand(HInstruction* bitfield_op) { DCHECK(CanFitInShifterOperand(bitfield_op)); if (bitfield_op->HasEnvironmentUses()) { return false; } const HUseList<HInstruction*>& uses = bitfield_op->GetUses(); // Check whether we can merge the instruction in all its users' shifter operand. for (const HUseListNode<HInstruction*>& use : uses) { HInstruction* user = use.GetUser(); if (!HasShifterOperand(user)) { return false; } if (!CanMergeIntoShifterOperand(user, bitfield_op)) { return false; } } // Merge the instruction into its uses. for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) { HInstruction* user = it->GetUser(); // Increment `it` now because `*it` will disappear thanks to MergeIntoShifterOperand(). ++it; bool merged = MergeIntoShifterOperand(user, bitfield_op); DCHECK(merged); } return true; } void InstructionSimplifierArm64Visitor::VisitAnd(HAnd* instruction) { if (TryMergeNegatedInput(instruction)) { RecordSimplification(); } } void InstructionSimplifierArm64Visitor::VisitArrayGet(HArrayGet* instruction) { TryExtractArrayAccessAddress(instruction, instruction->GetArray(), instruction->GetIndex(), Primitive::ComponentSize(instruction->GetType())); } void InstructionSimplifierArm64Visitor::VisitArraySet(HArraySet* instruction) { TryExtractArrayAccessAddress(instruction, instruction->GetArray(), instruction->GetIndex(), Primitive::ComponentSize(instruction->GetComponentType())); } void InstructionSimplifierArm64Visitor::VisitMul(HMul* instruction) { if (TryCombineMultiplyAccumulate(instruction, kArm64)) { RecordSimplification(); } } void InstructionSimplifierArm64Visitor::VisitOr(HOr* instruction) { if (TryMergeNegatedInput(instruction)) { RecordSimplification(); } } void InstructionSimplifierArm64Visitor::VisitShl(HShl* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitShr(HShr* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitTypeConversion(HTypeConversion* instruction) { Primitive::Type result_type = instruction->GetResultType(); Primitive::Type input_type = instruction->GetInputType(); if (input_type == result_type) { // We let the arch-independent code handle this. return; } if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitUShr(HUShr* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitXor(HXor* instruction) { if (TryMergeNegatedInput(instruction)) { RecordSimplification(); } } } // namespace arm64 } // namespace art