/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "code_generator_arm.h" #include "entrypoints/quick/quick_entrypoints.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "mirror/array-inl.h" #include "mirror/string.h" #include "thread.h" #include "utils/arm/assembler_arm.h" namespace art { namespace arm { ArmAssembler* IntrinsicCodeGeneratorARM::GetAssembler() { return codegen_->GetAssembler(); } ArenaAllocator* IntrinsicCodeGeneratorARM::GetAllocator() { return codegen_->GetGraph()->GetArena(); } using IntrinsicSlowPathARM = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARM>; bool IntrinsicLocationsBuilderARM::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } if (kEmitCompilerReadBarrier && res->CanCall()) { // Generating an intrinsic for this HInvoke may produce an // IntrinsicSlowPathARM slow path. Currently this approach // does not work when using read barriers, as the emitted // calling sequence will make use of another slow path // (ReadBarrierForRootSlowPathARM for HInvokeStaticOrDirect, // ReadBarrierSlowPathARM for HInvokeVirtual). So we bail // out in this case. // // TODO: Find a way to have intrinsics work with read barriers. invoke->SetLocations(nullptr); return false; } return res->Intrinsified(); } #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ vmovrrd(output.AsRegisterPairLow<Register>(), output.AsRegisterPairHigh<Register>(), FromLowSToD(input.AsFpuRegisterPairLow<SRegister>())); } else { __ vmovrs(output.AsRegister<Register>(), input.AsFpuRegister<SRegister>()); } } static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ vmovdrr(FromLowSToD(output.AsFpuRegisterPairLow<SRegister>()), input.AsRegisterPairLow<Register>(), input.AsRegisterPairHigh<Register>()); } else { __ vmovsr(output.AsFpuRegister<SRegister>(), input.AsRegister<Register>()); } } void IntrinsicLocationsBuilderARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderARM::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorARM::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } static void GenNumberOfLeadingZeros(LocationSummary* locations, Primitive::Type type, ArmAssembler* assembler) { Location in = locations->InAt(0); Register out = locations->Out().AsRegister<Register>(); DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong)); if (type == Primitive::kPrimLong) { Register in_reg_lo = in.AsRegisterPairLow<Register>(); Register in_reg_hi = in.AsRegisterPairHigh<Register>(); Label end; __ clz(out, in_reg_hi); __ CompareAndBranchIfNonZero(in_reg_hi, &end); __ clz(out, in_reg_lo); __ AddConstant(out, 32); __ Bind(&end); } else { __ clz(out, in.AsRegister<Register>()); } } void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } static void GenNumberOfTrailingZeros(LocationSummary* locations, Primitive::Type type, ArmAssembler* assembler) { DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong)); Register out = locations->Out().AsRegister<Register>(); if (type == Primitive::kPrimLong) { Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Label end; __ rbit(out, in_reg_lo); __ clz(out, out); __ CompareAndBranchIfNonZero(in_reg_lo, &end); __ rbit(out, in_reg_hi); __ clz(out, out); __ AddConstant(out, 32); __ Bind(&end); } else { Register in = locations->InAt(0).AsRegister<Register>(); __ rbit(out, in); __ clz(out, out); } } void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } static void MathAbsFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location in = locations->InAt(0); Location out = locations->Out(); if (is64bit) { __ vabsd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); } else { __ vabss(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>()); } } void IntrinsicLocationsBuilderARM::VisitMathAbsDouble(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathAbsFloat(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location in = locations->InAt(0); Location output = locations->Out(); Register mask = locations->GetTemp(0).AsRegister<Register>(); if (is64bit) { Register in_reg_lo = in.AsRegisterPairLow<Register>(); Register in_reg_hi = in.AsRegisterPairHigh<Register>(); Register out_reg_lo = output.AsRegisterPairLow<Register>(); Register out_reg_hi = output.AsRegisterPairHigh<Register>(); DCHECK_NE(out_reg_lo, in_reg_hi) << "Diagonal overlap unexpected."; __ Asr(mask, in_reg_hi, 31); __ adds(out_reg_lo, in_reg_lo, ShifterOperand(mask)); __ adc(out_reg_hi, in_reg_hi, ShifterOperand(mask)); __ eor(out_reg_lo, mask, ShifterOperand(out_reg_lo)); __ eor(out_reg_hi, mask, ShifterOperand(out_reg_hi)); } else { Register in_reg = in.AsRegister<Register>(); Register out_reg = output.AsRegister<Register>(); __ Asr(mask, in_reg, 31); __ add(out_reg, in_reg, ShifterOperand(mask)); __ eor(out_reg, mask, ShifterOperand(out_reg)); } } void IntrinsicLocationsBuilderARM::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMax(LocationSummary* locations, bool is_min, ArmAssembler* assembler) { Register op1 = locations->InAt(0).AsRegister<Register>(); Register op2 = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); __ cmp(op1, ShifterOperand(op2)); __ it((is_min) ? Condition::LT : Condition::GT, kItElse); __ mov(out, ShifterOperand(op1), is_min ? Condition::LT : Condition::GT); __ mov(out, ShifterOperand(op2), is_min ? Condition::GE : Condition::LE); } static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void IntrinsicLocationsBuilderARM::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); ArmAssembler* assembler = GetAssembler(); __ vsqrtd(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekByte(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldrsb(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekIntNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldr(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekLongNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. Register lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>(); Register hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>(); if (addr == lo) { __ ldr(hi, Address(addr, 4)); __ ldr(lo, Address(addr, 0)); } else { __ ldr(lo, Address(addr, 0)); __ ldr(hi, Address(addr, 4)); } } void IntrinsicLocationsBuilderARM::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekShortNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldrsh(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeByte(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ strb(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeIntNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ str(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeLongNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. __ str(invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>(), Address(addr, 0)); __ str(invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>(), Address(addr, 4)); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeShortNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ strh(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitThreadCurrentThread(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ LoadFromOffset(kLoadWord, invoke->GetLocations()->Out().AsRegister<Register>(), TR, Thread::PeerOffset<kArmPointerSize>().Int32Value()); } static void GenUnsafeGet(HInvoke* invoke, Primitive::Type type, bool is_volatile, CodeGeneratorARM* codegen) { LocationSummary* locations = invoke->GetLocations(); ArmAssembler* assembler = codegen->GetAssembler(); Location base_loc = locations->InAt(1); Register base = base_loc.AsRegister<Register>(); // Object pointer. Location offset_loc = locations->InAt(2); Register offset = offset_loc.AsRegisterPairLow<Register>(); // Long offset, lo part only. Location trg_loc = locations->Out(); switch (type) { case Primitive::kPrimInt: { Register trg = trg_loc.AsRegister<Register>(); __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } break; } case Primitive::kPrimNot: { Register trg = trg_loc.AsRegister<Register>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateArrayLoadWithBakerReadBarrier( invoke, trg_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false); if (is_volatile) { __ dmb(ISH); } } else { __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc); } } else { __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } __ MaybeUnpoisonHeapReference(trg); } break; } case Primitive::kPrimLong: { Register trg_lo = trg_loc.AsRegisterPairLow<Register>(); __ add(IP, base, ShifterOperand(offset)); if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { Register trg_hi = trg_loc.AsRegisterPairHigh<Register>(); __ ldrexd(trg_lo, trg_hi, IP); } else { __ ldrd(trg_lo, Address(IP)); } if (is_volatile) { __ dmb(ISH); } break; } default: LOG(FATAL) << "Unexpected type " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (arena) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderARM::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicCodeGeneratorARM::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoid(ArenaAllocator* arena, const ArmInstructionSetFeatures& features, Primitive::Type type, bool is_volatile, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == Primitive::kPrimLong) { // Potentially need temps for ldrexd-strexd loop. if (is_volatile && !features.HasAtomicLdrdAndStrd()) { locations->AddTemp(Location::RequiresRegister()); // Temp_lo. locations->AddTemp(Location::RequiresRegister()); // Temp_hi. } } else if (type == Primitive::kPrimNot) { // Temps for card-marking. locations->AddTemp(Location::RequiresRegister()); // Temp. locations->AddTemp(Location::RequiresRegister()); // Card. } } void IntrinsicLocationsBuilderARM::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke); } static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile, bool is_ordered, CodeGeneratorARM* codegen) { ArmAssembler* assembler = codegen->GetAssembler(); Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer. Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Long offset, lo part only. Register value; if (is_volatile || is_ordered) { __ dmb(ISH); } if (type == Primitive::kPrimLong) { Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>(); value = value_lo; if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { Register temp_lo = locations->GetTemp(0).AsRegister<Register>(); Register temp_hi = locations->GetTemp(1).AsRegister<Register>(); Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>(); __ add(IP, base, ShifterOperand(offset)); Label loop_head; __ Bind(&loop_head); __ ldrexd(temp_lo, temp_hi, IP); __ strexd(temp_lo, value_lo, value_hi, IP); __ cmp(temp_lo, ShifterOperand(0)); __ b(&loop_head, NE); } else { __ add(IP, base, ShifterOperand(offset)); __ strd(value_lo, Address(IP)); } } else { value = locations->InAt(3).AsRegister<Register>(); Register source = value; if (kPoisonHeapReferences && type == Primitive::kPrimNot) { Register temp = locations->GetTemp(0).AsRegister<Register>(); __ Mov(temp, value); __ PoisonHeapReference(temp); source = temp; } __ str(source, Address(base, offset)); } if (is_volatile) { __ dmb(ISH); } if (type == Primitive::kPrimNot) { Register temp = locations->GetTemp(0).AsRegister<Register>(); Register card = locations->GetTemp(1).AsRegister<Register>(); bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp, card, base, value, value_can_be_null); } } void IntrinsicCodeGeneratorARM::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, /* is_ordered */ false, codegen_); } static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // If heap poisoning is enabled, we don't want the unpoisoning // operations to potentially clobber the output. Location::OutputOverlap overlaps = (kPoisonHeapReferences && type == Primitive::kPrimNot) ? Location::kOutputOverlap : Location::kNoOutputOverlap; locations->SetOut(Location::RequiresRegister(), overlaps); locations->AddTemp(Location::RequiresRegister()); // Pointer. locations->AddTemp(Location::RequiresRegister()); // Temp 1. } static void GenCas(LocationSummary* locations, Primitive::Type type, CodeGeneratorARM* codegen) { DCHECK_NE(type, Primitive::kPrimLong); ArmAssembler* assembler = codegen->GetAssembler(); Register out = locations->Out().AsRegister<Register>(); // Boolean result. Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer. Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Offset (discard high 4B). Register expected_lo = locations->InAt(3).AsRegister<Register>(); // Expected. Register value_lo = locations->InAt(4).AsRegister<Register>(); // Value. Register tmp_ptr = locations->GetTemp(0).AsRegister<Register>(); // Pointer to actual memory. Register tmp_lo = locations->GetTemp(1).AsRegister<Register>(); // Value in memory. if (type == Primitive::kPrimNot) { // Mark card for object assuming new value is stored. Worst case we will mark an unchanged // object and scan the receiver at the next GC for nothing. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(tmp_ptr, tmp_lo, base, value_lo, value_can_be_null); } // Prevent reordering with prior memory operations. // Emit a DMB ISH instruction instead of an DMB ISHST one, as the // latter allows a preceding load to be delayed past the STXR // instruction below. __ dmb(ISH); __ add(tmp_ptr, base, ShifterOperand(offset)); if (kPoisonHeapReferences && type == Primitive::kPrimNot) { codegen->GetAssembler()->PoisonHeapReference(expected_lo); if (value_lo == expected_lo) { // Do not poison `value_lo`, as it is the same register as // `expected_lo`, which has just been poisoned. } else { codegen->GetAssembler()->PoisonHeapReference(value_lo); } } // do { // tmp = [r_ptr] - expected; // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); // result = tmp != 0; Label loop_head; __ Bind(&loop_head); // TODO: When `type == Primitive::kPrimNot`, add a read barrier for // the reference stored in the object before attempting the CAS, // similar to the one in the art::Unsafe_compareAndSwapObject JNI // implementation. // // Note that this code is not (yet) used when read barriers are // enabled (see IntrinsicLocationsBuilderARM::VisitUnsafeCASObject). DCHECK(!(type == Primitive::kPrimNot && kEmitCompilerReadBarrier)); __ ldrex(tmp_lo, tmp_ptr); __ subs(tmp_lo, tmp_lo, ShifterOperand(expected_lo)); __ it(EQ, ItState::kItT); __ strex(tmp_lo, value_lo, tmp_ptr, EQ); __ cmp(tmp_lo, ShifterOperand(1), EQ); __ b(&loop_head, EQ); __ dmb(ISH); __ rsbs(out, tmp_lo, ShifterOperand(1)); __ it(CC); __ mov(out, ShifterOperand(0), CC); if (kPoisonHeapReferences && type == Primitive::kPrimNot) { codegen->GetAssembler()->UnpoisonHeapReference(expected_lo); if (value_lo == expected_lo) { // Do not unpoison `value_lo`, as it is the same register as // `expected_lo`, which has just been unpoisoned. } else { codegen->GetAssembler()->UnpoisonHeapReference(value_lo); } } } void IntrinsicLocationsBuilderARM::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeCASObject(HInvoke* invoke) { // The UnsafeCASObject intrinsic is missing a read barrier, and // therefore sometimes does not work as expected (b/25883050). // Turn it off temporarily as a quick fix, until the read barrier is // implemented (see TODO in GenCAS below). // // TODO(rpl): Fix this issue and re-enable this intrinsic with read barriers. if (kEmitCompilerReadBarrier) { return; } CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot); } void IntrinsicCodeGeneratorARM::VisitUnsafeCASInt(HInvoke* invoke) { GenCas(invoke->GetLocations(), Primitive::kPrimInt, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeCASObject(HInvoke* invoke) { GenCas(invoke->GetLocations(), Primitive::kPrimNot, codegen_); } void IntrinsicLocationsBuilderARM::VisitStringCharAt(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringCharAt(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Location of reference to data array const MemberOffset value_offset = mirror::String::ValueOffset(); // Location of count const MemberOffset count_offset = mirror::String::CountOffset(); Register obj = locations->InAt(0).AsRegister<Register>(); // String object pointer. Register idx = locations->InAt(1).AsRegister<Register>(); // Index of character. Register out = locations->Out().AsRegister<Register>(); // Result character. Register temp = locations->GetTemp(0).AsRegister<Register>(); Register array_temp = locations->GetTemp(1).AsRegister<Register>(); // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth // the cost. // TODO: For simplicity, the index parameter is requested in a register, so different from Quick // we will not optimize the code for constants (which would save a register). SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ ldr(temp, Address(obj, count_offset.Int32Value())); // temp = str.length. codegen_->MaybeRecordImplicitNullCheck(invoke); __ cmp(idx, ShifterOperand(temp)); __ b(slow_path->GetEntryLabel(), CS); __ add(array_temp, obj, ShifterOperand(value_offset.Int32Value())); // array_temp := str.value. // Load the value. __ ldrh(out, Address(array_temp, idx, LSL, 1)); // out := array_temp[idx]. __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitStringCompareTo(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringCompareTo(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register argument = locations->InAt(1).AsRegister<Register>(); __ cmp(argument, ShifterOperand(0)); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), EQ); __ LoadFromOffset( kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pStringCompareTo).Int32Value()); __ blx(LR); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. // Using instruction cbz requires a low register, so explicitly set a temp to be R0. locations->AddTemp(Location::RegisterLocation(R0)); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringEquals(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister<Register>(); Register arg = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); Register temp = locations->GetTemp(0).AsRegister<Register>(); Register temp1 = locations->GetTemp(1).AsRegister<Register>(); Register temp2 = locations->GetTemp(2).AsRegister<Register>(); Label loop; Label end; Label return_true; Label return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check if input is null, return false if it is. __ CompareAndBranchIfZero(arg, &return_false); // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ ldr(temp, Address(str, class_offset)); __ ldr(temp1, Address(arg, class_offset)); __ cmp(temp, ShifterOperand(temp1)); __ b(&return_false, NE); // Load lengths of this and argument strings. __ ldr(temp, Address(str, count_offset)); __ ldr(temp1, Address(arg, count_offset)); // Check if lengths are equal, return false if they're not. __ cmp(temp, ShifterOperand(temp1)); __ b(&return_false, NE); // Return true if both strings are empty. __ cbz(temp, &return_true); // Reference equality check, return true if same reference. __ cmp(str, ShifterOperand(arg)); __ b(&return_true, EQ); // Assertions that must hold in order to compare strings 2 characters at a time. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); __ LoadImmediate(temp1, value_offset); // Loop to compare strings 2 characters at a time starting at the front of the string. // Ok to do this because strings with an odd length are zero-padded. __ Bind(&loop); __ ldr(out, Address(str, temp1)); __ ldr(temp2, Address(arg, temp1)); __ cmp(out, ShifterOperand(temp2)); __ b(&return_false, NE); __ add(temp1, temp1, ShifterOperand(sizeof(uint32_t))); __ subs(temp, temp, ShifterOperand(sizeof(uint32_t) / sizeof(uint16_t))); __ b(&loop, GT); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ LoadImmediate(out, 1); __ b(&end); // Return false and exit the function. __ Bind(&return_false); __ LoadImmediate(out, 0); __ Bind(&end); } static void GenerateVisitStringIndexOf(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); Register tmp_reg = locations->GetTemp(0).AsRegister<Register>(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch if we have a constant. SlowPathCode* slow_path = nullptr; if (invoke->InputAt(1)->IsIntConstant()) { if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) > std::numeric_limits<uint16_t>::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (allocator) IntrinsicSlowPathARM(invoke); codegen->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else { Register char_reg = locations->InAt(1).AsRegister<Register>(); __ LoadImmediate(tmp_reg, std::numeric_limits<uint16_t>::max()); __ cmp(char_reg, ShifterOperand(tmp_reg)); slow_path = new (allocator) IntrinsicSlowPathARM(invoke); codegen->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), HI); } if (start_at_zero) { DCHECK_EQ(tmp_reg, R2); // Start-index = 0. __ LoadImmediate(tmp_reg, 0); } __ LoadFromOffset(kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pIndexOf).Int32Value()); CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); __ blx(LR); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARM::VisitStringIndexOf(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(R0)); // Need a temp for slow-path codepoint compare, and need to send start-index=0. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void IntrinsicCodeGeneratorARM::VisitStringIndexOf(HInvoke* invoke) { GenerateVisitStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true); } void IntrinsicLocationsBuilderARM::VisitStringIndexOfAfter(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(R0)); // Need a temp for slow-path codepoint compare. locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateVisitStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register byte_array = locations->InAt(0).AsRegister<Register>(); __ cmp(byte_array, ShifterOperand(0)); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), EQ); __ LoadFromOffset( kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromBytes).Int32Value()); CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); __ blx(LR); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromChars(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. __ LoadFromOffset( kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromChars).Int32Value()); CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); __ blx(LR); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromString(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register string_to_copy = locations->InAt(0).AsRegister<Register>(); __ cmp(string_to_copy, ShifterOperand(0)); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), EQ); __ LoadFromOffset(kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromString).Int32Value()); CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); __ blx(LR); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitSystemArrayCopy(HInvoke* invoke) { CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); LocationSummary* locations = invoke->GetLocations(); if (locations == nullptr) { return; } HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) { locations->SetInAt(1, Location::RequiresRegister()); } if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) { locations->SetInAt(3, Location::RequiresRegister()); } if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) { locations->SetInAt(4, Location::RequiresRegister()); } } static void CheckPosition(ArmAssembler* assembler, Location pos, Register input, Location length, SlowPathCode* slow_path, Register input_len, Register temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. __ LoadFromOffset(kLoadWord, temp, input, length_offset); if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } else { // Check that length(input) >= pos. __ LoadFromOffset(kLoadWord, input_len, input, length_offset); __ subs(temp, input_len, ShifterOperand(pos_const)); __ b(slow_path->GetEntryLabel(), LT); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. Register pos_reg = pos.AsRegister<Register>(); __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. Register pos_reg = pos.AsRegister<Register>(); __ cmp(pos_reg, ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), LT); // Check that pos <= length(input). __ LoadFromOffset(kLoadWord, temp, input, length_offset); __ subs(temp, temp, ShifterOperand(pos_reg)); __ b(slow_path->GetEntryLabel(), LT); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } // TODO: Implement read barriers in the SystemArrayCopy intrinsic. // Note that this code path is not used (yet) because we do not // intrinsify methods that can go into the IntrinsicSlowPathARM // slow path. void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); Register src = locations->InAt(0).AsRegister<Register>(); Location src_pos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Register temp1 = locations->GetTemp(0).AsRegister<Register>(); Register temp2 = locations->GetTemp(1).AsRegister<Register>(); Register temp3 = locations->GetTemp(2).AsRegister<Register>(); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); Label conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmp(src, ShifterOperand(dest)); __ b(slow_path->GetEntryLabel(), EQ); } // Checked when building locations. DCHECK(!optimizations.GetDestinationIsSource() || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue())); } else { if (!optimizations.GetDestinationIsSource()) { __ cmp(src, ShifterOperand(dest)); __ b(&conditions_on_positions_validated, NE); } __ cmp(dest_pos.AsRegister<Register>(), ShifterOperand(src_pos_constant)); __ b(slow_path->GetEntryLabel(), GT); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmp(src, ShifterOperand(dest)); __ b(&conditions_on_positions_validated, NE); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos_constant)); } else { __ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ CompareAndBranchIfZero(src, slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ CompareAndBranchIfZero(dest, slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ cmp(length.AsRegister<Register>(), ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), LT); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, slow_path, temp1, temp2, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, slow_path, temp1, temp2, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. __ LoadFromOffset(kLoadWord, temp1, dest, class_offset); __ LoadFromOffset(kLoadWord, temp2, src, class_offset); bool did_unpoison = false; if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. __ MaybeUnpoisonHeapReference(temp1); __ MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // /* HeapReference<Class> */ temp3 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp1, component_offset); __ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp3 = temp2->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp2, component_offset); __ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel()); } __ cmp(temp1, ShifterOperand(temp2)); if (optimizations.GetDestinationIsTypedObjectArray()) { Label do_copy; __ b(&do_copy, EQ); if (!did_unpoison) { __ MaybeUnpoisonHeapReference(temp1); } // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp1 = temp1->super_class_ __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); // No need to unpoison the result, we're comparing against null. __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ b(slow_path->GetEntryLabel(), NE); } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp1 = src->klass_ __ LoadFromOffset(kLoadWord, temp1, src, class_offset); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp3 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp1, component_offset); __ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel()); } // Compute base source address, base destination address, and end source address. uint32_t element_size = sizeof(int32_t); uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ AddConstant(temp1, src, element_size * constant + offset); } else { __ add(temp1, src, ShifterOperand(src_pos.AsRegister<Register>(), LSL, 2)); __ AddConstant(temp1, offset); } if (dest_pos.IsConstant()) { int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ AddConstant(temp2, dest, element_size * constant + offset); } else { __ add(temp2, dest, ShifterOperand(dest_pos.AsRegister<Register>(), LSL, 2)); __ AddConstant(temp2, offset); } if (length.IsConstant()) { int32_t constant = length.GetConstant()->AsIntConstant()->GetValue(); __ AddConstant(temp3, temp1, element_size * constant); } else { __ add(temp3, temp1, ShifterOperand(length.AsRegister<Register>(), LSL, 2)); } // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison, nor do any read barrier as the next uses of the destination // array will do it. Label loop, done; __ cmp(temp1, ShifterOperand(temp3)); __ b(&done, EQ); __ Bind(&loop); __ ldr(IP, Address(temp1, element_size, Address::PostIndex)); __ str(IP, Address(temp2, element_size, Address::PostIndex)); __ cmp(temp1, ShifterOperand(temp3)); __ b(&loop, NE); __ Bind(&done); // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, Register(kNoRegister), /* value_can_be_null */ false); __ Bind(slow_path->GetExitLabel()); } static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble); LocationSummary* const locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); const InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble); LocationSummary* const locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); const InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3))); } static void GenFPToFPCall(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); const InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK(locations->WillCall() && locations->Intrinsified()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1))); __ LoadFromOffset(kLoadWord, LR, TR, GetThreadOffset<kArmWordSize>(entry).Int32Value()); // Native code uses the soft float ABI. __ vmovrrd(calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); __ blx(LR); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); __ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)); } static void GenFPFPToFPCall(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); const InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK(locations->WillCall() && locations->Intrinsified()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(2))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(3))); __ LoadFromOffset(kLoadWord, LR, TR, GetThreadOffset<kArmWordSize>(entry).Int32Value()); // Native code uses the soft float ABI. __ vmovrrd(calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); __ vmovrrd(calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3), FromLowSToD(locations->InAt(1).AsFpuRegisterPairLow<SRegister>())); __ blx(LR); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); __ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)); } void IntrinsicLocationsBuilderARM::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos); } void IntrinsicLocationsBuilderARM::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin); } void IntrinsicLocationsBuilderARM::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos); } void IntrinsicLocationsBuilderARM::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin); } void IntrinsicLocationsBuilderARM::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan); } void IntrinsicLocationsBuilderARM::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderARM::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh); } void IntrinsicLocationsBuilderARM::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp); } void IntrinsicLocationsBuilderARM::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderARM::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog); } void IntrinsicLocationsBuilderARM::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10); } void IntrinsicLocationsBuilderARM::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh); } void IntrinsicLocationsBuilderARM::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan); } void IntrinsicLocationsBuilderARM::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh); } void IntrinsicLocationsBuilderARM::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAtan2(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderARM::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathHypot(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot); } void IntrinsicLocationsBuilderARM::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathNextAfter(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderARM::VisitIntegerReverse(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerReverse(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ rbit(out, in); } void IntrinsicLocationsBuilderARM::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongReverse(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); __ rbit(out_reg_lo, in_reg_hi); __ rbit(out_reg_hi, in_reg_lo); } void IntrinsicLocationsBuilderARM::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ rev(out, in); } void IntrinsicLocationsBuilderARM::VisitLongReverseBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); __ rev(out_reg_lo, in_reg_hi); __ rev(out_reg_hi, in_reg_lo); } void IntrinsicLocationsBuilderARM::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitShortReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ revsh(out, in); } void IntrinsicLocationsBuilderARM::VisitStringGetCharsNoCheck(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringGetCharsNoCheck(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. Register srcObj = locations->InAt(0).AsRegister<Register>(); Register srcBegin = locations->InAt(1).AsRegister<Register>(); Register srcEnd = locations->InAt(2).AsRegister<Register>(); Register dstObj = locations->InAt(3).AsRegister<Register>(); Register dstBegin = locations->InAt(4).AsRegister<Register>(); Register src_ptr = locations->GetTemp(0).AsRegister<Register>(); Register src_ptr_end = locations->GetTemp(1).AsRegister<Register>(); Register dst_ptr = locations->GetTemp(2).AsRegister<Register>(); Register tmp = locations->GetTemp(3).AsRegister<Register>(); // src range to copy. __ add(src_ptr, srcObj, ShifterOperand(value_offset)); __ add(src_ptr_end, src_ptr, ShifterOperand(srcEnd, LSL, 1)); __ add(src_ptr, src_ptr, ShifterOperand(srcBegin, LSL, 1)); // dst to be copied. __ add(dst_ptr, dstObj, ShifterOperand(data_offset)); __ add(dst_ptr, dst_ptr, ShifterOperand(dstBegin, LSL, 1)); // Do the copy. Label loop, done; __ Bind(&loop); __ cmp(src_ptr, ShifterOperand(src_ptr_end)); __ b(&done, EQ); __ ldrh(tmp, Address(src_ptr, char_size, Address::PostIndex)); __ strh(tmp, Address(dst_ptr, char_size, Address::PostIndex)); __ b(&loop); __ Bind(&done); } UNIMPLEMENTED_INTRINSIC(ARM, IntegerBitCount) UNIMPLEMENTED_INTRINSIC(ARM, LongBitCount) UNIMPLEMENTED_INTRINSIC(ARM, MathMinDoubleDouble) UNIMPLEMENTED_INTRINSIC(ARM, MathMinFloatFloat) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxDoubleDouble) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxFloatFloat) UNIMPLEMENTED_INTRINSIC(ARM, MathMinLongLong) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxLongLong) UNIMPLEMENTED_INTRINSIC(ARM, MathCeil) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathFloor) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathRint) UNIMPLEMENTED_INTRINSIC(ARM, MathRoundDouble) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathRoundFloat) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, UnsafeCASLong) // High register pressure. UNIMPLEMENTED_INTRINSIC(ARM, SystemArrayCopyChar) UNIMPLEMENTED_INTRINSIC(ARM, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(ARM, FloatIsInfinite) UNIMPLEMENTED_INTRINSIC(ARM, DoubleIsInfinite) UNIMPLEMENTED_INTRINSIC(ARM, IntegerHighestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, LongHighestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, IntegerLowestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, LongLowestOneBit) // 1.8. UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(ARM) #undef __ } // namespace arm } // namespace art