/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86_64.h" #include <limits> #include "arch/x86_64/instruction_set_features_x86_64.h" #include "art_method-inl.h" #include "base/bit_utils.h" #include "code_generator_x86_64.h" #include "entrypoints/quick/quick_entrypoints.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "mirror/array-inl.h" #include "mirror/string.h" #include "thread.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/constants_x86_64.h" namespace art { namespace x86_64 { IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) { } X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { return down_cast<X86_64Assembler*>(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { return codegen_->GetGraph()->GetArena(); } bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } if (kEmitCompilerReadBarrier && res->CanCall()) { // Generating an intrinsic for this HInvoke may produce an // IntrinsicSlowPathX86_64 slow path. Currently this approach // does not work when using read barriers, as the emitted // calling sequence will make use of another slow path // (ReadBarrierForRootSlowPathX86_64 for HInvokeStaticOrDirect, // ReadBarrierSlowPathX86_64 for HInvokeVirtual). So we bail // out in this case. // // TODO: Find a way to have intrinsics work with read barriers. invoke->SetLocations(nullptr); return false; } return res->Intrinsified(); } static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) { InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>; #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit); } void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void GenReverseBytes(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister out = locations->Out().AsRegister<CpuRegister>(); switch (size) { case Primitive::kPrimShort: // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. __ bswapl(out); __ sarl(out, Immediate(16)); break; case Primitive::kPrimInt: __ bswapl(out); break; case Primitive::kPrimLong: __ bswapq(out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we // need is 64b. static void CreateFloatToFloatPlusTemps(ArenaAllocator* arena, HInvoke* invoke) { // TODO: Enable memory operations when the assembler supports them. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask. } static void MathAbsFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location output = locations->Out(); DCHECK(output.IsFpuRegister()); XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // TODO: Can mask directly with constant area using pand if we can guarantee // that the literal is aligned on a 16 byte boundary. This will avoid a // temporary. if (is64bit) { __ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF))); __ andpd(output.AsFpuRegister<XmmRegister>(), xmm_temp); } else { __ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF))); __ andps(output.AsFpuRegister<XmmRegister>(), xmm_temp); } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) { CreateFloatToFloatPlusTemps(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) { CreateFloatToFloatPlusTemps(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_); } static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location output = locations->Out(); CpuRegister out = output.AsRegister<CpuRegister>(); CpuRegister mask = locations->GetTemp(0).AsRegister<CpuRegister>(); if (is64bit) { // Create mask. __ movq(mask, out); __ sarq(mask, Immediate(63)); // Add mask. __ addq(out, mask); __ xorq(out, mask); } else { // Create mask. __ movl(mask, out); __ sarl(mask, Immediate(31)); // Add mask. __ addl(out, mask); __ xorl(out, mask); } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, bool is_double, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); return; } // (out := op1) // out <=? op2 // if Nan jmp Nan_label // if out is min jmp done // if op2 is min jmp op2_label // handle -0/+0 // jmp done // Nan_label: // out := NaN // op2_label: // out := op2 // done: // // This removes one jmp, but needs to copy one input (op1) to out. // // TODO: This is straight from Quick. Make NaN an out-of-line slowpath? XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>(); NearLabel nan, done, op2_label; if (is_double) { __ ucomisd(out, op2); } else { __ ucomiss(out, op2); } __ j(Condition::kParityEven, &nan); __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); // Handle 0.0/-0.0. if (is_min) { if (is_double) { __ orpd(out, op2); } else { __ orps(out, op2); } } else { if (is_double) { __ andpd(out, op2); } else { __ andps(out, op2); } } __ jmp(&done); // NaN handling. __ Bind(&nan); if (is_double) { __ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000))); } else { __ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000))); } __ jmp(&done); // out := op2; __ Bind(&op2_label); if (is_double) { __ movsd(out, op2); } else { __ movss(out, op2); } // Done. __ Bind(&done); } static void CreateFPFPToFP(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); // The following is sub-optimal, but all we can do for now. It would be fine to also accept // the second input to be the output (we can simply swap inputs). locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_); } static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, X86_64Assembler* assembler) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { // Can return immediately, as op1_loc == out_loc. // Note: if we ever support separate registers, e.g., output into memory, we need to check for // a copy here. DCHECK(locations->Out().Equals(op1_loc)); return; } CpuRegister out = locations->Out().AsRegister<CpuRegister>(); CpuRegister op2 = op2_loc.AsRegister<CpuRegister>(); // (out := op1) // out <=? op2 // if out is min jmp done // out := op2 // done: if (is_long) { __ cmpq(out, op2); } else { __ cmpl(out, op2); } __ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long); } static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); GetAssembler()->sqrtsd(out, in); } static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) { MoveArguments(invoke, codegen); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->GenerateStaticOrDirectCall( invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI)); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); // Copy the result back to the expected output. Location out = invoke->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); codegen->MoveFromReturnRegister(out, invoke->GetType()); } } static void CreateSSE41FPToFPLocations(ArenaAllocator* arena, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { CreateFPToFPLocations(arena, invoke); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke, X86_64Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen, invoke); } else { XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); __ roundsd(out, in, Immediate(round_mode)); } } void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); } static void CreateSSE41FPToIntLocations(ArenaAllocator* arena, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { // See intrinsics.h. if (kRoundIsPlusPointFive) { CreateSSE41FPToIntLocations(arena_, invoke, codegen_); } } void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } // Implement RoundFloat as t1 = floor(input + 0.5f); convert to int. XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); NearLabel done, nan; X86_64Assembler* assembler = GetAssembler(); // Load 0.5 into inPlusPointFive. __ movss(inPlusPointFive, codegen_->LiteralFloatAddress(0.5f)); // Add in the input. __ addss(inPlusPointFive, in); // And truncate to an integer. __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1)); // Load maxInt into out. codegen_->Load64BitValue(out, kPrimIntMax); // if inPlusPointFive >= maxInt goto done __ comiss(inPlusPointFive, codegen_->LiteralFloatAddress(static_cast<float>(kPrimIntMax))); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(out, inPlusPointFive); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(out, out); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { // See intrinsics.h. if (kRoundIsPlusPointFive) { CreateSSE41FPToIntLocations(arena_, invoke, codegen_); } } void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } // Implement RoundDouble as t1 = floor(input + 0.5); convert to long. XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); NearLabel done, nan; X86_64Assembler* assembler = GetAssembler(); // Load 0.5 into inPlusPointFive. __ movsd(inPlusPointFive, codegen_->LiteralDoubleAddress(0.5)); // Add in the input. __ addsd(inPlusPointFive, in); // And truncate to an integer. __ roundsd(inPlusPointFive, inPlusPointFive, Immediate(1)); // Load maxLong into out. codegen_->Load64BitValue(out, kPrimLongMax); // if inPlusPointFive >= maxLong goto done __ comisd(inPlusPointFive, codegen_->LiteralDoubleAddress(static_cast<double>(kPrimLongMax))); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-long-truncate(input) __ cvttsd2si(out, inPlusPointFive, /* is64bit */ true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(out, out); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // We have to ensure that the native code doesn't clobber the XMM registers which are // non-volatile for ART, but volatile for Native calls. This will ensure that they are // saved in the prologue and properly restored. for (auto fp_reg : non_volatile_xmm_regs) { locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); } } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->WillCall()); DCHECK(invoke->IsInvokeStaticOrDirect()); X86_64Assembler* assembler = codegen->GetAssembler(); __ gs()->call(Address::Absolute(GetThreadOffset<kX86_64WordSize>(entry), true)); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // We have to ensure that the native code doesn't clobber the XMM registers which are // non-volatile for ART, but volatile for Native calls. This will ensure that they are // saved in the prologue and properly restored. for (auto fp_reg : non_volatile_xmm_regs) { locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); } } void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickHypot); } void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderX86_64::VisitStringCharAt(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitStringCharAt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); // Location of reference to data array. const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count. const int32_t count_offset = mirror::String::CountOffset().Int32Value(); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister idx = locations->InAt(1).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth // the cost. // TODO: For simplicity, the index parameter is requested in a register, so different from Quick // we will not optimize the code for constants (which would save a register). SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); X86_64Assembler* assembler = GetAssembler(); __ cmpl(idx, Address(obj, count_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); __ j(kAboveEqual, slow_path->GetEntryLabel()); // out = out[2*idx]. __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset)); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { // Check to see if we have known failures that will cause us to have to bail out // to the runtime, and just generate the runtime call directly. HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); // The positions must be non-negative. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // The length must be > 0. HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } static void CheckPosition(X86_64Assembler* assembler, Location pos, CpuRegister input, Location length, SlowPathCode* slow_path, CpuRegister input_len, CpuRegister temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. if (length.IsConstant()) { __ cmpl(Address(input, length_offset), Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>()); } __ j(kLess, slow_path->GetEntryLabel()); } } else { // Check that length(input) >= pos. __ movl(input_len, Address(input, length_offset)); __ cmpl(input_len, Immediate(pos_const)); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ leal(temp, Address(input_len, -pos_const)); if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister<CpuRegister>()); } __ j(kLess, slow_path->GetEntryLabel()); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); __ testl(pos_reg, pos_reg); __ j(kNotEqual, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); __ testl(pos_reg, pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ cmpl(Address(input, length_offset), pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ movl(temp, Address(input, length_offset)); __ subl(temp, pos_reg); if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister<CpuRegister>()); } __ j(kLess, slow_path->GetEntryLabel()); } } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); // Temporaries that we need for MOVSW. CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>(); DCHECK_EQ(src_base.AsRegister(), RSI); CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>(); DCHECK_EQ(dest_base.AsRegister(), RDI); CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>(); DCHECK_EQ(count.AsRegister(), RCX); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same. __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant()) { __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); __ j(kLess, slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, slow_path, src_base, dest_base); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base, dest_base); // We need the count in RCX. if (length.IsConstant()) { __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(count, length.AsRegister<CpuRegister>()); } // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, char_size * src_pos_const + data_offset)); } else { __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_2, data_offset)); } if (dest_pos.IsConstant()) { int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset)); } else { __ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_2, data_offset)); } // Do the move. __ rep_movsw(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) { CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); } // TODO: Implement read barriers in the SystemArrayCopy intrinsic. // Note that this code path is not used (yet) because we do not // intrinsify methods that can go into the IntrinsicSlowPathX86_64 // slow path. void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>(); CpuRegister temp3 = locations->GetTemp(2).AsRegister<CpuRegister>(); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); NearLabel conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant)); __ j(kGreater, slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant)); __ j(kLess, slow_path->GetEntryLabel()); } else { __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>()); __ j(kLess, slow_path->GetEntryLabel()); } } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); __ j(kLess, slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, slow_path, temp1, temp2, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, slow_path, temp1, temp2, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. __ movl(temp1, Address(dest, class_offset)); __ movl(temp2, Address(src, class_offset)); bool did_unpoison = false; if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. __ MaybeUnpoisonHeapReference(temp1); __ MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // /* HeapReference<Class> */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ TMP = temp2->component_type_ __ movl(CpuRegister(TMP), Address(temp2, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, slow_path->GetEntryLabel()); } __ cmpl(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { NearLabel do_copy; __ j(kEqual, &do_copy); if (!did_unpoison) { __ MaybeUnpoisonHeapReference(temp1); } // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp1 = temp1->super_class_ __ movl(temp1, Address(temp1, super_offset)); // No need to unpoison the result, we're comparing against null. __ testl(temp1, temp1); __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ j(kNotEqual, slow_path->GetEntryLabel()); } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp1 = src->klass_ __ movl(temp1, Address(src, class_offset)); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, slow_path->GetEntryLabel()); } // Compute base source address, base destination address, and end source address. uint32_t element_size = sizeof(int32_t); uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(temp1, Address(src, element_size * constant + offset)); } else { __ leal(temp1, Address(src, src_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset)); } if (dest_pos.IsConstant()) { int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(temp2, Address(dest, element_size * constant + offset)); } else { __ leal(temp2, Address(dest, dest_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset)); } if (length.IsConstant()) { int32_t constant = length.GetConstant()->AsIntConstant()->GetValue(); __ leal(temp3, Address(temp1, element_size * constant)); } else { __ leal(temp3, Address(temp1, length.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, 0)); } // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison, nor do any read barrier as the next uses of the destination // array will do it. NearLabel loop, done; __ cmpl(temp1, temp3); __ j(kEqual, &done); __ Bind(&loop); __ movl(CpuRegister(TMP), Address(temp1, 0)); __ movl(Address(temp2, 0), CpuRegister(TMP)); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(&done); // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null */ false); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>(); __ testl(argument, argument); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pStringCompareTo), /* no_rip */ true)); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction. locations->AddTemp(Location::RegisterLocation(RCX)); locations->AddTemp(Location::RegisterLocation(RDI)); // Set output, RSI needed for repe_cmpsq instruction anyways. locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap); } void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>(); CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>(); CpuRegister rsi = locations->Out().AsRegister<CpuRegister>(); NearLabel end, return_true, return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check if input is null, return false if it is. __ testl(arg, arg); __ j(kEqual, &return_false); // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ movl(rcx, Address(str, class_offset)); __ cmpl(rcx, Address(arg, class_offset)); __ j(kNotEqual, &return_false); // Reference equality check, return true if same reference. __ cmpl(str, arg); __ j(kEqual, &return_true); // Load length of receiver string. __ movl(rcx, Address(str, count_offset)); // Check if lengths are equal, return false if they're not. __ cmpl(rcx, Address(arg, count_offset)); __ j(kNotEqual, &return_false); // Return true if both strings are empty. __ jrcxz(&return_true); // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction. __ leal(rsi, Address(str, value_offset)); __ leal(rdi, Address(arg, value_offset)); // Divide string length by 4 and adjust for lengths not divisible by 4. __ addl(rcx, Immediate(3)); __ shrl(rcx, Immediate(2)); // Assertions that must hold in order to compare strings 4 characters at a time. DCHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded"); // Loop to compare strings four characters at a time starting at the beginning of the string. __ repe_cmpsq(); // If strings are not equal, zero flag will be cleared. __ j(kNotEqual, &return_false); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ movl(rsi, Immediate(1)); __ jmp(&end); // Return false and exit the function. __ Bind(&return_false); __ xorl(rsi, rsi); __ Bind(&end); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in RDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(RDI)); // If we look for a constant char, we'll still have to copy it into RAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber RAX anywhere. locations->SetInAt(1, Location::RegisterLocation(RAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber RDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses RCX as the counter. locations->AddTemp(Location::RegisterLocation(RCX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); } static void GenerateStringIndexOf(HInvoke* invoke, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>(); CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // Check our assumptions for registers. DCHECK_EQ(string_obj.AsRegister(), RDI); DCHECK_EQ(search_value.AsRegister(), RAX); DCHECK_EQ(counter.AsRegister(), RCX); DCHECK_EQ(out.AsRegister(), RDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch if we have a constant. SlowPathCode* slow_path = nullptr; if (invoke->InputAt(1)->IsIntConstant()) { if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) > std::numeric_limits<uint16_t>::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else { __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load string length, i.e., the count field of the string. __ movl(string_length, Address(string_obj, count_offset)); // Do a length check. // TODO: Support jecxz. NearLabel not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addq(string_obj, Immediate(value_offset)); } else { CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmov(kGreater, counter, start_index, /* is64bit */ false); // 32-bit copy is enough. // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); // Now update ecx, the work counter: it's gonna be string.length - start_index. __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } // Everything is set up for repne scasw: // * Comparison address in RDI. // * Counter in ECX. __ repne_scasw(); // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); NearLabel done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true); } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>(); __ testl(byte_array, byte_array); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromBytes), /* no_rip */ true)); CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromChars), /* no_rip */ true)); CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>(); __ testl(string_to_copy, string_to_copy); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromString), /* no_rip */ true)); CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); Location srcBegin = locations->InAt(1); int srcBegin_value = srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>(); CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>(); CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); // Compute the address of the destination buffer. __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); // Compute the address of the source string. if (srcBegin.IsConstant()) { // Compute the address of the source string by adding the number of chars from // the source beginning to the value offset of a string. __ leaq(CpuRegister(RSI), Address(obj, srcBegin_value * char_size + value_offset)); } else { __ leaq(CpuRegister(RSI), Address(obj, srcBegin.AsRegister<CpuRegister>(), ScaleFactor::TIMES_2, value_offset)); } // Compute the number of chars (words) to move. __ movl(CpuRegister(RCX), srcEnd); if (srcBegin.IsConstant()) { if (srcBegin_value != 0) { __ subl(CpuRegister(RCX), Immediate(srcBegin_value)); } } else { DCHECK(srcBegin.IsRegister()); __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>()); } // Do the move. __ rep_movsw(); } static void GenPeek(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity. // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: __ movsxb(out, Address(address, 0)); break; case Primitive::kPrimShort: __ movsxw(out, Address(address, 0)); break; case Primitive::kPrimInt: __ movl(out, Address(address, 0)); break; case Primitive::kPrimLong: __ movq(out, Address(address, 0)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1))); } static void GenPoke(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); Location value = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: if (value.IsConstant()) { __ movb(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movb(Address(address, 0), value.AsRegister<CpuRegister>()); } break; case Primitive::kPrimShort: if (value.IsConstant()) { __ movw(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movw(Address(address, 0), value.AsRegister<CpuRegister>()); } break; case Primitive::kPrimInt: if (value.IsConstant()) { __ movl(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movl(Address(address, 0), value.AsRegister<CpuRegister>()); } break; case Primitive::kPrimLong: if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(address, 0), Immediate(v_32)); } else { __ movq(Address(address, 0), value.AsRegister<CpuRegister>()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>(); GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64WordSize>(), /* no_rip */ true)); } static void GenUnsafeGet(HInvoke* invoke, Primitive::Type type, bool is_volatile ATTRIBUTE_UNUSED, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Location base_loc = locations->InAt(1); CpuRegister base = base_loc.AsRegister<CpuRegister>(); Location offset_loc = locations->InAt(2); CpuRegister offset = offset_loc.AsRegister<CpuRegister>(); Location output_loc = locations->Out(); CpuRegister output = output_loc.AsRegister<CpuRegister>(); switch (type) { case Primitive::kPrimInt: __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; case Primitive::kPrimNot: { if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateArrayLoadWithBakerReadBarrier( invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false); } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); codegen->GenerateReadBarrierSlow( invoke, output_loc, output_loc, base_loc, 0U, offset_loc); } } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ MaybeUnpoisonHeapReference(output); } break; } case Primitive::kPrimLong: __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (arena) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>(); CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>(); CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>(); if (type == Primitive::kPrimLong) { __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) { CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); __ movl(temp, value); __ PoisonHeapReference(temp); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } if (is_volatile) { codegen->MemoryFence(); } if (type == Primitive::kPrimNot) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(), locations->GetTemp(1).AsRegister<CpuRegister>(), base, value, value_can_be_null); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); // expected value must be in EAX/RAX. locations->SetInAt(3, Location::RegisterLocation(RAX)); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { // The UnsafeCASObject intrinsic is missing a read barrier, and // therefore sometimes does not work as expected (b/25883050). // Turn it off temporarily as a quick fix, until the read barrier is // implemented. // // TODO(rpl): Implement a read barrier in GenCAS below and re-enable // this intrinsic. if (kEmitCompilerReadBarrier) { return; } CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke); } static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>(); CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>(); CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>(); // Ensure `expected` is in RAX (required by the CMPXCHG instruction). DCHECK_EQ(expected.AsRegister(), RAX); CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>(); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (type == Primitive::kPrimNot) { // Mark card for object assuming new value is stored. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(), locations->GetTemp(1).AsRegister<CpuRegister>(), base, value, value_can_be_null); bool base_equals_value = (base.AsRegister() == value.AsRegister()); Register value_reg = value.AsRegister(); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value_reg` to a temporary register. This way, poisoning // `value_reg` won't invalidate `base`. value_reg = locations->GetTemp(0).AsRegister<CpuRegister>().AsRegister(); __ movl(CpuRegister(value_reg), base); } // Check that the register allocator did not assign the location // of `expected` (RAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value_reg, expected.AsRegister()); DCHECK_NE(base.AsRegister(), expected.AsRegister()); __ PoisonHeapReference(expected); __ PoisonHeapReference(CpuRegister(value_reg)); } // TODO: Add a read barrier for the reference stored in the object // before attempting the CAS, similar to the one in the // art::Unsafe_compareAndSwapObject JNI implementation. // // Note that this code is not (yet) used when read barriers are // enabled (see IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject). DCHECK(!kEmitCompilerReadBarrier); __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), CpuRegister(value_reg)); // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the boolean result. __ setcc(kZero, out); __ movzxb(out, out); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value_reg` has been moved to a temporary register, no need // to unpoison it. } else { // Ensure `value` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(value_reg, out.AsRegister()); __ UnpoisonHeapReference(CpuRegister(value_reg)); } // Ensure `expected` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(expected.AsRegister(), out.AsRegister()); __ UnpoisonHeapReference(expected); } } else { if (type == Primitive::kPrimInt) { __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); } else if (type == Primitive::kPrimLong) { __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value); } else { LOG(FATAL) << "Unexpected CAS type " << type; } // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the boolean result. __ setcc(kZero, out); __ movzxb(out, out); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { GenCAS(Primitive::kPrimInt, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { GenCAS(Primitive::kPrimLong, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { GenCAS(Primitive::kPrimNot, invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, int32_t shift, int64_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); __ movq(temp_mask, Immediate(mask)); __ movq(temp, reg); __ shrq(reg, imm_shift); __ andq(temp, temp_mask); __ andq(reg, temp_mask); __ shlq(temp, imm_shift); __ orq(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>(); CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a long number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; */ __ bswapq(reg); SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); } static void CreateBitCountLocations( ArenaAllocator* arena, CodeGeneratorX86_64* codegen, HInvoke* invoke) { if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { // Do nothing if there is no popcnt support. This results in generating // a call for the intrinsic rather than direct code. return; } LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenBitCount(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); int32_t result = is_long ? POPCOUNT(static_cast<uint64_t>(value)) : POPCOUNT(static_cast<uint32_t>(value)); codegen->Load32BitValue(out, result); return; } if (src.IsRegister()) { if (is_long) { __ popcntq(out, src.AsRegister<CpuRegister>()); } else { __ popcntl(out, src.AsRegister<CpuRegister>()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) { CreateBitCountLocations(arena_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) { CreateBitCountLocations(arena_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateOneBitLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_high) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL : Location::RequiresRegister()); // any will do } static void GenOneBit(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_high, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { __ xorl(out, out); // Clears upper bits too. return; } // Nonzero value. if (is_high) { value = is_long ? 63 - CLZ(static_cast<uint64_t>(value)) : 31 - CLZ(static_cast<uint32_t>(value)); } else { value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); } if (is_long) { codegen->Load64BitValue(out, 1L << value); } else { codegen->Load32BitValue(out, 1 << value); } return; } // Handle the non-constant cases. CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); if (is_high) { // Use architectural support: basically 1 << bsr. if (src.IsRegister()) { if (is_long) { __ bsrq(tmp, src.AsRegister<CpuRegister>()); } else { __ bsrl(tmp, src.AsRegister<CpuRegister>()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero. NearLabel is_zero, done; __ j(kEqual, &is_zero); __ movl(out, Immediate(1)); // Clears upper bits too. if (is_long) { __ shlq(out, tmp); } else { __ shll(out, tmp); } __ jmp(&done); __ Bind(&is_zero); __ xorl(out, out); // Clears upper bits too. __ Bind(&done); } else { // Copy input into temporary. if (src.IsRegister()) { if (is_long) { __ movq(tmp, src.AsRegister<CpuRegister>()); } else { __ movl(tmp, src.AsRegister<CpuRegister>()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // Do the bit twiddling: basically tmp & -tmp; if (is_long) { __ movq(out, tmp); __ negq(tmp); __ andq(out, tmp); } else { __ movl(out, tmp); __ negl(tmp); __ andl(out, tmp); } } } void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(arena_, invoke, /* is_high */ true); } void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(arena_, invoke, /* is_high */ true); } void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true); } void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(arena_, invoke, /* is_high */ false); } void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(arena_, invoke, /* is_high */ false); } void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true); } static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenLeadingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsrq(out, src.AsRegister<CpuRegister>()); } else { __ bsrl(out, src.AsRegister<CpuRegister>()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero, and the output is undefined. NearLabel is_zero, done; __ j(kEqual, &is_zero); // Correct the result from BSR to get the CLZ result. __ xorl(out, Immediate(zero_value_result - 1)); __ jmp(&done); // Fix the zero case with the expected result. __ Bind(&is_zero); __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenTrailingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister<CpuRegister>(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsfq(out, src.AsRegister<CpuRegister>()); } else { __ bsfl(out, src.AsRegister<CpuRegister>()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSF sets ZF if the input was zero, and the output is undefined. NearLabel done; __ j(kNotEqual, &done); // Fix the zero case with the expected result. __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite) UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite) // 1.8. UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(X86_64) #undef __ } // namespace x86_64 } // namespace art