/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ #define ART_COMPILER_OPTIMIZING_NODES_H_ #include <algorithm> #include <array> #include <type_traits> #include "base/arena_bit_vector.h" #include "base/arena_containers.h" #include "base/arena_object.h" #include "base/stl_util.h" #include "dex/compiler_enums.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "handle.h" #include "handle_scope.h" #include "invoke_type.h" #include "locations.h" #include "method_reference.h" #include "mirror/class.h" #include "offsets.h" #include "primitive.h" #include "utils/array_ref.h" #include "utils/intrusive_forward_list.h" namespace art { class GraphChecker; class HBasicBlock; class HCurrentMethod; class HDoubleConstant; class HEnvironment; class HFloatConstant; class HGraphBuilder; class HGraphVisitor; class HInstruction; class HIntConstant; class HInvoke; class HLongConstant; class HNullConstant; class HPhi; class HSuspendCheck; class HTryBoundary; class LiveInterval; class LocationSummary; class SlowPathCode; class SsaBuilder; namespace mirror { class DexCache; } // namespace mirror static const int kDefaultNumberOfBlocks = 8; static const int kDefaultNumberOfSuccessors = 2; static const int kDefaultNumberOfPredecessors = 2; static const int kDefaultNumberOfExceptionalPredecessors = 0; static const int kDefaultNumberOfDominatedBlocks = 1; static const int kDefaultNumberOfBackEdges = 1; // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. static constexpr int32_t kMaxIntShiftDistance = 0x1f; // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. static constexpr int32_t kMaxLongShiftDistance = 0x3f; static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); static constexpr uint32_t kNoDexPc = -1; enum IfCondition { // All types. kCondEQ, // == kCondNE, // != // Signed integers and floating-point numbers. kCondLT, // < kCondLE, // <= kCondGT, // > kCondGE, // >= // Unsigned integers. kCondB, // < kCondBE, // <= kCondA, // > kCondAE, // >= }; enum GraphAnalysisResult { kAnalysisSkipped, kAnalysisInvalidBytecode, kAnalysisFailThrowCatchLoop, kAnalysisFailAmbiguousArrayOp, kAnalysisSuccess, }; class HInstructionList : public ValueObject { public: HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} void AddInstruction(HInstruction* instruction); void RemoveInstruction(HInstruction* instruction); // Insert `instruction` before/after an existing instruction `cursor`. void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); // Return true if this list contains `instruction`. bool Contains(HInstruction* instruction) const; // Return true if `instruction1` is found before `instruction2` in // this instruction list and false otherwise. Abort if none // of these instructions is found. bool FoundBefore(const HInstruction* instruction1, const HInstruction* instruction2) const; bool IsEmpty() const { return first_instruction_ == nullptr; } void Clear() { first_instruction_ = last_instruction_ = nullptr; } // Update the block of all instructions to be `block`. void SetBlockOfInstructions(HBasicBlock* block) const; void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); void Add(const HInstructionList& instruction_list); // Return the number of instructions in the list. This is an expensive operation. size_t CountSize() const; private: HInstruction* first_instruction_; HInstruction* last_instruction_; friend class HBasicBlock; friend class HGraph; friend class HInstruction; friend class HInstructionIterator; friend class HBackwardInstructionIterator; DISALLOW_COPY_AND_ASSIGN(HInstructionList); }; class ReferenceTypeInfo : ValueObject { public: typedef Handle<mirror::Class> TypeHandle; static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { return ReferenceTypeInfo(type_handle, is_exact); } static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } static bool IsValidHandle(TypeHandle handle) { return handle.GetReference() != nullptr; } bool IsValid() const { return IsValidHandle(type_handle_); } bool IsExact() const { return is_exact_; } bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsObjectClass(); } bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsStringClass(); } bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); } bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsInterface(); } bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsArrayClass(); } bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsPrimitiveArray(); } bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); } bool CanArrayHold(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); if (!IsExact()) return false; if (!IsArrayClass()) return false; return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); } bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); if (!IsExact()) return false; if (!IsArrayClass()) return false; if (!rti.IsArrayClass()) return false; return GetTypeHandle()->GetComponentType()->IsAssignableFrom( rti.GetTypeHandle()->GetComponentType()); } Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); DCHECK(rti.IsValid()); return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); } bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(IsValid()); DCHECK(rti.IsValid()); return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); } // Returns true if the type information provide the same amount of details. // Note that it does not mean that the instructions have the same actual type // (because the type can be the result of a merge). bool IsEqual(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { if (!IsValid() && !rti.IsValid()) { // Invalid types are equal. return true; } if (!IsValid() || !rti.IsValid()) { // One is valid, the other not. return false; } return IsExact() == rti.IsExact() && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); } private: ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) : type_handle_(type_handle), is_exact_(is_exact) { } // The class of the object. TypeHandle type_handle_; // Whether or not the type is exact or a superclass of the actual type. // Whether or not we have any information about this type. bool is_exact_; }; std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); // Control-flow graph of a method. Contains a list of basic blocks. class HGraph : public ArenaObject<kArenaAllocGraph> { public: HGraph(ArenaAllocator* arena, const DexFile& dex_file, uint32_t method_idx, bool should_generate_constructor_barrier, InstructionSet instruction_set, InvokeType invoke_type = kInvalidInvokeType, bool debuggable = false, bool osr = false, int start_instruction_id = 0) : arena_(arena), blocks_(arena->Adapter(kArenaAllocBlockList)), reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)), linear_order_(arena->Adapter(kArenaAllocLinearOrder)), entry_block_(nullptr), exit_block_(nullptr), maximum_number_of_out_vregs_(0), number_of_vregs_(0), number_of_in_vregs_(0), temporaries_vreg_slots_(0), has_bounds_checks_(false), has_try_catch_(false), has_irreducible_loops_(false), debuggable_(debuggable), current_instruction_id_(start_instruction_id), dex_file_(dex_file), method_idx_(method_idx), invoke_type_(invoke_type), in_ssa_form_(false), should_generate_constructor_barrier_(should_generate_constructor_barrier), instruction_set_(instruction_set), cached_null_constant_(nullptr), cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), cached_current_method_(nullptr), inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), osr_(osr) { blocks_.reserve(kDefaultNumberOfBlocks); } // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. void InitializeInexactObjectRTI(StackHandleScopeCollection* handles); ArenaAllocator* GetArena() const { return arena_; } const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } bool IsInSsaForm() const { return in_ssa_form_; } void SetInSsaForm() { in_ssa_form_ = true; } HBasicBlock* GetEntryBlock() const { return entry_block_; } HBasicBlock* GetExitBlock() const { return exit_block_; } bool HasExitBlock() const { return exit_block_ != nullptr; } void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } void AddBlock(HBasicBlock* block); void ComputeDominanceInformation(); void ClearDominanceInformation(); void ClearLoopInformation(); void FindBackEdges(ArenaBitVector* visited); GraphAnalysisResult BuildDominatorTree(); void SimplifyCFG(); void SimplifyCatchBlocks(); // Analyze all natural loops in this graph. Returns a code specifying that it // was successful or the reason for failure. The method will fail if a loop // is a throw-catch loop, i.e. the header is a catch block. GraphAnalysisResult AnalyzeLoops() const; // Iterate over blocks to compute try block membership. Needs reverse post // order and loop information. void ComputeTryBlockInformation(); // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. // Returns the instruction to replace the invoke expression or null if the // invoke is for a void method. Note that the caller is responsible for replacing // and removing the invoke instruction. HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); // Update the loop and try membership of `block`, which was spawned from `reference`. // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` // should be the new back edge. void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, HBasicBlock* reference, bool replace_if_back_edge); // Need to add a couple of blocks to test if the loop body is entered and // put deoptimization instructions, etc. void TransformLoopHeaderForBCE(HBasicBlock* header); // Removes `block` from the graph. Assumes `block` has been disconnected from // other blocks and has no instructions or phis. void DeleteDeadEmptyBlock(HBasicBlock* block); // Splits the edge between `block` and `successor` while preserving the // indices in the predecessor/successor lists. If there are multiple edges // between the blocks, the lowest indices are used. // Returns the new block which is empty and has the same dex pc as `successor`. HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); void SimplifyLoop(HBasicBlock* header); int32_t GetNextInstructionId() { DCHECK_NE(current_instruction_id_, INT32_MAX); return current_instruction_id_++; } int32_t GetCurrentInstructionId() const { return current_instruction_id_; } void SetCurrentInstructionId(int32_t id) { DCHECK_GE(id, current_instruction_id_); current_instruction_id_ = id; } uint16_t GetMaximumNumberOfOutVRegs() const { return maximum_number_of_out_vregs_; } void SetMaximumNumberOfOutVRegs(uint16_t new_value) { maximum_number_of_out_vregs_ = new_value; } void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); } void UpdateTemporariesVRegSlots(size_t slots) { temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); } size_t GetTemporariesVRegSlots() const { DCHECK(!in_ssa_form_); return temporaries_vreg_slots_; } void SetNumberOfVRegs(uint16_t number_of_vregs) { number_of_vregs_ = number_of_vregs; } uint16_t GetNumberOfVRegs() const { return number_of_vregs_; } void SetNumberOfInVRegs(uint16_t value) { number_of_in_vregs_ = value; } uint16_t GetNumberOfInVRegs() const { return number_of_in_vregs_; } uint16_t GetNumberOfLocalVRegs() const { DCHECK(!in_ssa_form_); return number_of_vregs_ - number_of_in_vregs_; } const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { return reverse_post_order_; } const ArenaVector<HBasicBlock*>& GetLinearOrder() const { return linear_order_; } bool HasBoundsChecks() const { return has_bounds_checks_; } void SetHasBoundsChecks(bool value) { has_bounds_checks_ = value; } bool ShouldGenerateConstructorBarrier() const { return should_generate_constructor_barrier_; } bool IsDebuggable() const { return debuggable_; } // Returns a constant of the given type and value. If it does not exist // already, it is created and inserted into the graph. This method is only for // integral types. HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); // TODO: This is problematic for the consistency of reference type propagation // because it can be created anytime after the pass and thus it will be left // with an invalid type. HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(value, &cached_int_constants_, dex_pc); } HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(value, &cached_long_constants_, dex_pc); } HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); } HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); } HCurrentMethod* GetCurrentMethod(); const DexFile& GetDexFile() const { return dex_file_; } uint32_t GetMethodIdx() const { return method_idx_; } InvokeType GetInvokeType() const { return invoke_type_; } InstructionSet GetInstructionSet() const { return instruction_set_; } bool IsCompilingOsr() const { return osr_; } bool HasTryCatch() const { return has_try_catch_; } void SetHasTryCatch(bool value) { has_try_catch_ = value; } bool HasIrreducibleLoops() const { return has_irreducible_loops_; } void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } ArtMethod* GetArtMethod() const { return art_method_; } void SetArtMethod(ArtMethod* method) { art_method_ = method; } // Returns an instruction with the opposite boolean value from 'cond'. // The instruction has been inserted into the graph, either as a constant, or // before cursor. HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; } private: void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; void RemoveDeadBlocks(const ArenaBitVector& visited); template <class InstructionType, typename ValueType> InstructionType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstructionType*>* cache, uint32_t dex_pc = kNoDexPc) { // Try to find an existing constant of the given value. InstructionType* constant = nullptr; auto cached_constant = cache->find(value); if (cached_constant != cache->end()) { constant = cached_constant->second; } // If not found or previously deleted, create and cache a new instruction. // Don't bother reviving a previously deleted instruction, for simplicity. if (constant == nullptr || constant->GetBlock() == nullptr) { constant = new (arena_) InstructionType(value, dex_pc); cache->Overwrite(value, constant); InsertConstant(constant); } return constant; } void InsertConstant(HConstant* instruction); // Cache a float constant into the graph. This method should only be // called by the SsaBuilder when creating "equivalent" instructions. void CacheFloatConstant(HFloatConstant* constant); // See CacheFloatConstant comment. void CacheDoubleConstant(HDoubleConstant* constant); ArenaAllocator* const arena_; // List of blocks in insertion order. ArenaVector<HBasicBlock*> blocks_; // List of blocks to perform a reverse post order tree traversal. ArenaVector<HBasicBlock*> reverse_post_order_; // List of blocks to perform a linear order tree traversal. ArenaVector<HBasicBlock*> linear_order_; HBasicBlock* entry_block_; HBasicBlock* exit_block_; // The maximum number of virtual registers arguments passed to a HInvoke in this graph. uint16_t maximum_number_of_out_vregs_; // The number of virtual registers in this method. Contains the parameters. uint16_t number_of_vregs_; // The number of virtual registers used by parameters of this method. uint16_t number_of_in_vregs_; // Number of vreg size slots that the temporaries use (used in baseline compiler). size_t temporaries_vreg_slots_; // Has bounds checks. We can totally skip BCE if it's false. bool has_bounds_checks_; // Flag whether there are any try/catch blocks in the graph. We will skip // try/catch-related passes if false. bool has_try_catch_; // Flag whether there are any irreducible loops in the graph. bool has_irreducible_loops_; // Indicates whether the graph should be compiled in a way that // ensures full debuggability. If false, we can apply more // aggressive optimizations that may limit the level of debugging. const bool debuggable_; // The current id to assign to a newly added instruction. See HInstruction.id_. int32_t current_instruction_id_; // The dex file from which the method is from. const DexFile& dex_file_; // The method index in the dex file. const uint32_t method_idx_; // If inlined, this encodes how the callee is being invoked. const InvokeType invoke_type_; // Whether the graph has been transformed to SSA form. Only used // in debug mode to ensure we are not using properties only valid // for non-SSA form (like the number of temporaries). bool in_ssa_form_; const bool should_generate_constructor_barrier_; const InstructionSet instruction_set_; // Cached constants. HNullConstant* cached_null_constant_; ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; HCurrentMethod* cached_current_method_; // The ArtMethod this graph is for. Note that for AOT, it may be null, // for example for methods whose declaring class could not be resolved // (such as when the superclass could not be found). ArtMethod* art_method_; // Keep the RTI of inexact Object to avoid having to pass stack handle // collection pointer to passes which may create NullConstant. ReferenceTypeInfo inexact_object_rti_; // Whether we are compiling this graph for on stack replacement: this will // make all loops seen as irreducible and emit special stack maps to mark // compiled code entries which the interpreter can directly jump to. const bool osr_; friend class SsaBuilder; // For caching constants. friend class SsaLivenessAnalysis; // For the linear order. friend class HInliner; // For the reverse post order. ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); DISALLOW_COPY_AND_ASSIGN(HGraph); }; class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { public: HLoopInformation(HBasicBlock* header, HGraph* graph) : header_(header), suspend_check_(nullptr), irreducible_(false), contains_irreducible_loop_(false), back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)), // Make bit vector growable, as the number of blocks may change. blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) { back_edges_.reserve(kDefaultNumberOfBackEdges); } bool IsIrreducible() const { return irreducible_; } bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } void Dump(std::ostream& os); HBasicBlock* GetHeader() const { return header_; } void SetHeader(HBasicBlock* block) { header_ = block; } HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } bool HasSuspendCheck() const { return suspend_check_ != nullptr; } void AddBackEdge(HBasicBlock* back_edge) { back_edges_.push_back(back_edge); } void RemoveBackEdge(HBasicBlock* back_edge) { RemoveElement(back_edges_, back_edge); } bool IsBackEdge(const HBasicBlock& block) const { return ContainsElement(back_edges_, &block); } size_t NumberOfBackEdges() const { return back_edges_.size(); } HBasicBlock* GetPreHeader() const; const ArenaVector<HBasicBlock*>& GetBackEdges() const { return back_edges_; } // Returns the lifetime position of the back edge that has the // greatest lifetime position. size_t GetLifetimeEnd() const; void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { ReplaceElement(back_edges_, existing, new_back_edge); } // Finds blocks that are part of this loop. void Populate(); // Returns whether this loop information contains `block`. // Note that this loop information *must* be populated before entering this function. bool Contains(const HBasicBlock& block) const; // Returns whether this loop information is an inner loop of `other`. // Note that `other` *must* be populated before entering this function. bool IsIn(const HLoopInformation& other) const; // Returns true if instruction is not defined within this loop. bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; const ArenaBitVector& GetBlocks() const { return blocks_; } void Add(HBasicBlock* block); void Remove(HBasicBlock* block); void ClearAllBlocks() { blocks_.ClearAllBits(); } bool HasBackEdgeNotDominatedByHeader() const; bool IsPopulated() const { return blocks_.GetHighestBitSet() != -1; } bool DominatesAllBackEdges(HBasicBlock* block); private: // Internal recursive implementation of `Populate`. void PopulateRecursive(HBasicBlock* block); void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); HBasicBlock* header_; HSuspendCheck* suspend_check_; bool irreducible_; bool contains_irreducible_loop_; ArenaVector<HBasicBlock*> back_edges_; ArenaBitVector blocks_; DISALLOW_COPY_AND_ASSIGN(HLoopInformation); }; // Stores try/catch information for basic blocks. // Note that HGraph is constructed so that catch blocks cannot simultaneously // be try blocks. class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { public: // Try block information constructor. explicit TryCatchInformation(const HTryBoundary& try_entry) : try_entry_(&try_entry), catch_dex_file_(nullptr), catch_type_index_(DexFile::kDexNoIndex16) { DCHECK(try_entry_ != nullptr); } // Catch block information constructor. TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file) : try_entry_(nullptr), catch_dex_file_(&dex_file), catch_type_index_(catch_type_index) {} bool IsTryBlock() const { return try_entry_ != nullptr; } const HTryBoundary& GetTryEntry() const { DCHECK(IsTryBlock()); return *try_entry_; } bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } bool IsCatchAllTypeIndex() const { DCHECK(IsCatchBlock()); return catch_type_index_ == DexFile::kDexNoIndex16; } uint16_t GetCatchTypeIndex() const { DCHECK(IsCatchBlock()); return catch_type_index_; } const DexFile& GetCatchDexFile() const { DCHECK(IsCatchBlock()); return *catch_dex_file_; } private: // One of possibly several TryBoundary instructions entering the block's try. // Only set for try blocks. const HTryBoundary* try_entry_; // Exception type information. Only set for catch blocks. const DexFile* catch_dex_file_; const uint16_t catch_type_index_; }; static constexpr size_t kNoLifetime = -1; static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); // A block in a method. Contains the list of instructions represented // as a double linked list. Each block knows its predecessors and // successors. class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { public: HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) : graph_(graph), predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)), successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)), loop_information_(nullptr), dominator_(nullptr), dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)), block_id_(kInvalidBlockId), dex_pc_(dex_pc), lifetime_start_(kNoLifetime), lifetime_end_(kNoLifetime), try_catch_information_(nullptr) { predecessors_.reserve(kDefaultNumberOfPredecessors); successors_.reserve(kDefaultNumberOfSuccessors); dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); } const ArenaVector<HBasicBlock*>& GetPredecessors() const { return predecessors_; } const ArenaVector<HBasicBlock*>& GetSuccessors() const { return successors_; } ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { return ContainsElement(successors_, block, start_from); } const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { return dominated_blocks_; } bool IsEntryBlock() const { return graph_->GetEntryBlock() == this; } bool IsExitBlock() const { return graph_->GetExitBlock() == this; } bool IsSingleGoto() const; bool IsSingleTryBoundary() const; // Returns true if this block emits nothing but a jump. bool IsSingleJump() const { HLoopInformation* loop_info = GetLoopInformation(); return (IsSingleGoto() || IsSingleTryBoundary()) // Back edges generate a suspend check. && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); } void AddBackEdge(HBasicBlock* back_edge) { if (loop_information_ == nullptr) { loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_); } DCHECK_EQ(loop_information_->GetHeader(), this); loop_information_->AddBackEdge(back_edge); } HGraph* GetGraph() const { return graph_; } void SetGraph(HGraph* graph) { graph_ = graph; } uint32_t GetBlockId() const { return block_id_; } void SetBlockId(int id) { block_id_ = id; } uint32_t GetDexPc() const { return dex_pc_; } HBasicBlock* GetDominator() const { return dominator_; } void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } void RemoveDominatedBlock(HBasicBlock* block) { RemoveElement(dominated_blocks_, block); } void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { ReplaceElement(dominated_blocks_, existing, new_block); } void ClearDominanceInformation(); int NumberOfBackEdges() const { return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; } HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } const HInstructionList& GetInstructions() const { return instructions_; } HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } HInstruction* GetLastPhi() const { return phis_.last_instruction_; } const HInstructionList& GetPhis() const { return phis_; } HInstruction* GetFirstInstructionDisregardMoves() const; void AddSuccessor(HBasicBlock* block) { successors_.push_back(block); block->predecessors_.push_back(this); } void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { size_t successor_index = GetSuccessorIndexOf(existing); existing->RemovePredecessor(this); new_block->predecessors_.push_back(this); successors_[successor_index] = new_block; } void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { size_t predecessor_index = GetPredecessorIndexOf(existing); existing->RemoveSuccessor(this); new_block->successors_.push_back(this); predecessors_[predecessor_index] = new_block; } // Insert `this` between `predecessor` and `successor. This method // preserves the indicies, and will update the first edge found between // `predecessor` and `successor`. void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); size_t successor_index = predecessor->GetSuccessorIndexOf(successor); successor->predecessors_[predecessor_index] = this; predecessor->successors_[successor_index] = this; successors_.push_back(successor); predecessors_.push_back(predecessor); } void RemovePredecessor(HBasicBlock* block) { predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); } void RemoveSuccessor(HBasicBlock* block) { successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); } void ClearAllPredecessors() { predecessors_.clear(); } void AddPredecessor(HBasicBlock* block) { predecessors_.push_back(block); block->successors_.push_back(this); } void SwapPredecessors() { DCHECK_EQ(predecessors_.size(), 2u); std::swap(predecessors_[0], predecessors_[1]); } void SwapSuccessors() { DCHECK_EQ(successors_.size(), 2u); std::swap(successors_[0], successors_[1]); } size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { return IndexOfElement(predecessors_, predecessor); } size_t GetSuccessorIndexOf(HBasicBlock* successor) const { return IndexOfElement(successors_, successor); } HBasicBlock* GetSinglePredecessor() const { DCHECK_EQ(GetPredecessors().size(), 1u); return GetPredecessors()[0]; } HBasicBlock* GetSingleSuccessor() const { DCHECK_EQ(GetSuccessors().size(), 1u); return GetSuccessors()[0]; } // Returns whether the first occurrence of `predecessor` in the list of // predecessors is at index `idx`. bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { DCHECK_EQ(GetPredecessors()[idx], predecessor); return GetPredecessorIndexOf(predecessor) == idx; } // Create a new block between this block and its predecessors. The new block // is added to the graph, all predecessor edges are relinked to it and an edge // is created to `this`. Returns the new empty block. Reverse post order or // loop and try/catch information are not updated. HBasicBlock* CreateImmediateDominator(); // Split the block into two blocks just before `cursor`. Returns the newly // created, latter block. Note that this method will add the block to the // graph, create a Goto at the end of the former block and will create an edge // between the blocks. It will not, however, update the reverse post order or // loop and try/catch information. HBasicBlock* SplitBefore(HInstruction* cursor); // Split the block into two blocks just before `cursor`. Returns the newly // created block. Note that this method just updates raw block information, // like predecessors, successors, dominators, and instruction list. It does not // update the graph, reverse post order, loop information, nor make sure the // blocks are consistent (for example ending with a control flow instruction). HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); // Similar to `SplitBeforeForInlining` but does it after `cursor`. HBasicBlock* SplitAfterForInlining(HInstruction* cursor); // Merge `other` at the end of `this`. Successors and dominated blocks of // `other` are changed to be successors and dominated blocks of `this`. Note // that this method does not update the graph, reverse post order, loop // information, nor make sure the blocks are consistent (for example ending // with a control flow instruction). void MergeWithInlined(HBasicBlock* other); // Replace `this` with `other`. Predecessors, successors, and dominated blocks // of `this` are moved to `other`. // Note that this method does not update the graph, reverse post order, loop // information, nor make sure the blocks are consistent (for example ending // with a control flow instruction). void ReplaceWith(HBasicBlock* other); // Merge `other` at the end of `this`. This method updates loops, reverse post // order, links to predecessors, successors, dominators and deletes the block // from the graph. The two blocks must be successive, i.e. `this` the only // predecessor of `other` and vice versa. void MergeWith(HBasicBlock* other); // Disconnects `this` from all its predecessors, successors and dominator, // removes it from all loops it is included in and eventually from the graph. // The block must not dominate any other block. Predecessors and successors // are safely updated. void DisconnectAndDelete(); void AddInstruction(HInstruction* instruction); // Insert `instruction` before/after an existing instruction `cursor`. void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); // Replace instruction `initial` with `replacement` within this block. void ReplaceAndRemoveInstructionWith(HInstruction* initial, HInstruction* replacement); void MoveInstructionBefore(HInstruction* insn, HInstruction* cursor); void AddPhi(HPhi* phi); void InsertPhiAfter(HPhi* instruction, HPhi* cursor); // RemoveInstruction and RemovePhi delete a given instruction from the respective // instruction list. With 'ensure_safety' set to true, it verifies that the // instruction is not in use and removes it from the use lists of its inputs. void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); void RemovePhi(HPhi* phi, bool ensure_safety = true); void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); bool IsLoopHeader() const { return IsInLoop() && (loop_information_->GetHeader() == this); } bool IsLoopPreHeaderFirstPredecessor() const { DCHECK(IsLoopHeader()); return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); } bool IsFirstPredecessorBackEdge() const { DCHECK(IsLoopHeader()); return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); } HLoopInformation* GetLoopInformation() const { return loop_information_; } // Set the loop_information_ on this block. Overrides the current // loop_information if it is an outer loop of the passed loop information. // Note that this method is called while creating the loop information. void SetInLoop(HLoopInformation* info) { if (IsLoopHeader()) { // Nothing to do. This just means `info` is an outer loop. } else if (!IsInLoop()) { loop_information_ = info; } else if (loop_information_->Contains(*info->GetHeader())) { // Block is currently part of an outer loop. Make it part of this inner loop. // Note that a non loop header having a loop information means this loop information // has already been populated loop_information_ = info; } else { // Block is part of an inner loop. Do not update the loop information. // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` // at this point, because this method is being called while populating `info`. } } // Raw update of the loop information. void SetLoopInformation(HLoopInformation* info) { loop_information_ = info; } bool IsInLoop() const { return loop_information_ != nullptr; } TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } void SetTryCatchInformation(TryCatchInformation* try_catch_information) { try_catch_information_ = try_catch_information; } bool IsTryBlock() const { return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); } bool IsCatchBlock() const { return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); } // Returns the try entry that this block's successors should have. They will // be in the same try, unless the block ends in a try boundary. In that case, // the appropriate try entry will be returned. const HTryBoundary* ComputeTryEntryOfSuccessors() const; bool HasThrowingInstructions() const; // Returns whether this block dominates the blocked passed as parameter. bool Dominates(HBasicBlock* block) const; size_t GetLifetimeStart() const { return lifetime_start_; } size_t GetLifetimeEnd() const { return lifetime_end_; } void SetLifetimeStart(size_t start) { lifetime_start_ = start; } void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } bool EndsWithControlFlowInstruction() const; bool EndsWithIf() const; bool EndsWithTryBoundary() const; bool HasSinglePhi() const; private: HGraph* graph_; ArenaVector<HBasicBlock*> predecessors_; ArenaVector<HBasicBlock*> successors_; HInstructionList instructions_; HInstructionList phis_; HLoopInformation* loop_information_; HBasicBlock* dominator_; ArenaVector<HBasicBlock*> dominated_blocks_; uint32_t block_id_; // The dex program counter of the first instruction of this block. const uint32_t dex_pc_; size_t lifetime_start_; size_t lifetime_end_; TryCatchInformation* try_catch_information_; friend class HGraph; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HBasicBlock); }; // Iterates over the LoopInformation of all loops which contain 'block' // from the innermost to the outermost. class HLoopInformationOutwardIterator : public ValueObject { public: explicit HLoopInformationOutwardIterator(const HBasicBlock& block) : current_(block.GetLoopInformation()) {} bool Done() const { return current_ == nullptr; } void Advance() { DCHECK(!Done()); current_ = current_->GetPreHeader()->GetLoopInformation(); } HLoopInformation* Current() const { DCHECK(!Done()); return current_; } private: HLoopInformation* current_; DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); }; #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ M(Above, Condition) \ M(AboveOrEqual, Condition) \ M(Add, BinaryOperation) \ M(And, BinaryOperation) \ M(ArrayGet, Instruction) \ M(ArrayLength, Instruction) \ M(ArraySet, Instruction) \ M(Below, Condition) \ M(BelowOrEqual, Condition) \ M(BooleanNot, UnaryOperation) \ M(BoundsCheck, Instruction) \ M(BoundType, Instruction) \ M(CheckCast, Instruction) \ M(ClassTableGet, Instruction) \ M(ClearException, Instruction) \ M(ClinitCheck, Instruction) \ M(Compare, BinaryOperation) \ M(CurrentMethod, Instruction) \ M(Deoptimize, Instruction) \ M(Div, BinaryOperation) \ M(DivZeroCheck, Instruction) \ M(DoubleConstant, Constant) \ M(Equal, Condition) \ M(Exit, Instruction) \ M(FloatConstant, Constant) \ M(Goto, Instruction) \ M(GreaterThan, Condition) \ M(GreaterThanOrEqual, Condition) \ M(If, Instruction) \ M(InstanceFieldGet, Instruction) \ M(InstanceFieldSet, Instruction) \ M(InstanceOf, Instruction) \ M(IntConstant, Constant) \ M(InvokeUnresolved, Invoke) \ M(InvokeInterface, Invoke) \ M(InvokeStaticOrDirect, Invoke) \ M(InvokeVirtual, Invoke) \ M(LessThan, Condition) \ M(LessThanOrEqual, Condition) \ M(LoadClass, Instruction) \ M(LoadException, Instruction) \ M(LoadString, Instruction) \ M(LongConstant, Constant) \ M(MemoryBarrier, Instruction) \ M(MonitorOperation, Instruction) \ M(Mul, BinaryOperation) \ M(NativeDebugInfo, Instruction) \ M(Neg, UnaryOperation) \ M(NewArray, Instruction) \ M(NewInstance, Instruction) \ M(Not, UnaryOperation) \ M(NotEqual, Condition) \ M(NullConstant, Instruction) \ M(NullCheck, Instruction) \ M(Or, BinaryOperation) \ M(PackedSwitch, Instruction) \ M(ParallelMove, Instruction) \ M(ParameterValue, Instruction) \ M(Phi, Instruction) \ M(Rem, BinaryOperation) \ M(Return, Instruction) \ M(ReturnVoid, Instruction) \ M(Ror, BinaryOperation) \ M(Shl, BinaryOperation) \ M(Shr, BinaryOperation) \ M(StaticFieldGet, Instruction) \ M(StaticFieldSet, Instruction) \ M(UnresolvedInstanceFieldGet, Instruction) \ M(UnresolvedInstanceFieldSet, Instruction) \ M(UnresolvedStaticFieldGet, Instruction) \ M(UnresolvedStaticFieldSet, Instruction) \ M(Select, Instruction) \ M(Sub, BinaryOperation) \ M(SuspendCheck, Instruction) \ M(Throw, Instruction) \ M(TryBoundary, Instruction) \ M(TypeConversion, Instruction) \ M(UShr, BinaryOperation) \ M(Xor, BinaryOperation) \ /* * Instructions, shared across several (not all) architectures. */ #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ M(BitwiseNegatedRight, Instruction) \ M(MultiplyAccumulate, Instruction) #endif #ifndef ART_ENABLE_CODEGEN_arm #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ M(ArmDexCacheArraysBase, Instruction) #endif #ifndef ART_ENABLE_CODEGEN_arm64 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ M(Arm64DataProcWithShifterOp, Instruction) \ M(Arm64IntermediateAddress, Instruction) #endif #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) #ifndef ART_ENABLE_CODEGEN_x86 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) #else #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ M(X86ComputeBaseMethodAddress, Instruction) \ M(X86LoadFromConstantTable, Instruction) \ M(X86FPNeg, Instruction) \ M(X86PackedSwitch, Instruction) #endif #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \ FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ M(Condition, BinaryOperation) \ M(Constant, Instruction) \ M(UnaryOperation, Instruction) \ M(BinaryOperation, Instruction) \ M(Invoke, Instruction) #define FOR_EACH_INSTRUCTION(M) \ FOR_EACH_CONCRETE_INSTRUCTION(M) \ FOR_EACH_ABSTRACT_INSTRUCTION(M) #define FORWARD_DECLARATION(type, super) class H##type; FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) #undef FORWARD_DECLARATION #define DECLARE_INSTRUCTION(type) \ InstructionKind GetKindInternal() const OVERRIDE { return k##type; } \ const char* DebugName() const OVERRIDE { return #type; } \ bool InstructionTypeEquals(HInstruction* other) const OVERRIDE { \ return other->Is##type(); \ } \ void Accept(HGraphVisitor* visitor) OVERRIDE #define DECLARE_ABSTRACT_INSTRUCTION(type) \ bool Is##type() const { return As##type() != nullptr; } \ const H##type* As##type() const { return this; } \ H##type* As##type() { return this; } template <typename T> class HUseListNode : public ArenaObject<kArenaAllocUseListNode> { public: T GetUser() const { return user_; } size_t GetIndex() const { return index_; } void SetIndex(size_t index) { index_ = index; } // Hook for the IntrusiveForwardList<>. // TODO: Hide this better. IntrusiveForwardListHook hook; private: HUseListNode(T user, size_t index) : user_(user), index_(index) {} T const user_; size_t index_; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HUseListNode); }; template <typename T> using HUseList = IntrusiveForwardList<HUseListNode<T>>; // This class is used by HEnvironment and HInstruction classes to record the // instructions they use and pointers to the corresponding HUseListNodes kept // by the used instructions. template <typename T> class HUserRecord : public ValueObject { public: HUserRecord() : instruction_(nullptr), before_use_node_() {} explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) : HUserRecord(old_record.instruction_, before_use_node) {} HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) : instruction_(instruction), before_use_node_(before_use_node) { DCHECK(instruction_ != nullptr); } HInstruction* GetInstruction() const { return instruction_; } typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } private: // Instruction used by the user. HInstruction* instruction_; // Iterator before the corresponding entry in the use list kept by 'instruction_'. typename HUseList<T>::iterator before_use_node_; }; /** * Side-effects representation. * * For write/read dependences on fields/arrays, the dependence analysis uses * type disambiguation (e.g. a float field write cannot modify the value of an * integer field read) and the access type (e.g. a reference array write cannot * modify the value of a reference field read [although it may modify the * reference fetch prior to reading the field, which is represented by its own * write/read dependence]). The analysis makes conservative points-to * assumptions on reference types (e.g. two same typed arrays are assumed to be * the same, and any reference read depends on any reference read without * further regard of its type). * * The internal representation uses 38-bit and is described in the table below. * The first line indicates the side effect, and for field/array accesses the * second line indicates the type of the access (in the order of the * Primitive::Type enum). * The two numbered lines below indicate the bit position in the bitfield (read * vertically). * * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | * +-------------+---------+---------+--------------+---------+---------+ * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| * | 3 |333333322|222222221| 1 |111111110|000000000| * | 7 |654321098|765432109| 8 |765432109|876543210| * * Note that, to ease the implementation, 'changes' bits are least significant * bits, while 'dependency' bits are most significant bits. */ class SideEffects : public ValueObject { public: SideEffects() : flags_(0) {} static SideEffects None() { return SideEffects(0); } static SideEffects All() { return SideEffects(kAllChangeBits | kAllDependOnBits); } static SideEffects AllChanges() { return SideEffects(kAllChangeBits); } static SideEffects AllDependencies() { return SideEffects(kAllDependOnBits); } static SideEffects AllExceptGCDependency() { return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); } static SideEffects AllWritesAndReads() { return SideEffects(kAllWrites | kAllReads); } static SideEffects AllWrites() { return SideEffects(kAllWrites); } static SideEffects AllReads() { return SideEffects(kAllReads); } static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) { return is_volatile ? AllWritesAndReads() : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset)); } static SideEffects ArrayWriteOfType(Primitive::Type type) { return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset)); } static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) { return is_volatile ? AllWritesAndReads() : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset)); } static SideEffects ArrayReadOfType(Primitive::Type type) { return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset)); } static SideEffects CanTriggerGC() { return SideEffects(1ULL << kCanTriggerGCBit); } static SideEffects DependsOnGC() { return SideEffects(1ULL << kDependsOnGCBit); } // Combines the side-effects of this and the other. SideEffects Union(SideEffects other) const { return SideEffects(flags_ | other.flags_); } SideEffects Exclusion(SideEffects other) const { return SideEffects(flags_ & ~other.flags_); } void Add(SideEffects other) { flags_ |= other.flags_; } bool Includes(SideEffects other) const { return (other.flags_ & flags_) == other.flags_; } bool HasSideEffects() const { return (flags_ & kAllChangeBits); } bool HasDependencies() const { return (flags_ & kAllDependOnBits); } // Returns true if there are no side effects or dependencies. bool DoesNothing() const { return flags_ == 0; } // Returns true if something is written. bool DoesAnyWrite() const { return (flags_ & kAllWrites); } // Returns true if something is read. bool DoesAnyRead() const { return (flags_ & kAllReads); } // Returns true if potentially everything is written and read // (every type and every kind of access). bool DoesAllReadWrite() const { return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); } bool DoesAll() const { return flags_ == (kAllChangeBits | kAllDependOnBits); } // Returns true if `this` may read something written by `other`. bool MayDependOn(SideEffects other) const { const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; return (other.flags_ & depends_on_flags); } // Returns string representation of flags (for debugging only). // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| std::string ToString() const { std::string flags = "|"; for (int s = kLastBit; s >= 0; s--) { bool current_bit_is_set = ((flags_ >> s) & 1) != 0; if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { // This is a bit for the GC side effect. if (current_bit_is_set) { flags += "GC"; } flags += "|"; } else { // This is a bit for the array/field analysis. // The underscore character stands for the 'can trigger GC' bit. static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; if (current_bit_is_set) { flags += kDebug[s]; } if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || (s == kFieldReadOffset) || (s == kArrayReadOffset)) { flags += "|"; } } } return flags; } bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } private: static constexpr int kFieldArrayAnalysisBits = 9; static constexpr int kFieldWriteOffset = 0; static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; static constexpr int kChangeBits = kCanTriggerGCBit + 1; static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; static constexpr int kDependsOnGCBit = kLastBitForReads + 1; static constexpr int kLastBit = kDependsOnGCBit; static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; // Aliases. static_assert(kChangeBits == kDependOnBits, "the 'change' bits should match the 'depend on' bits."); static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; static constexpr uint64_t kAllWrites = ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; static constexpr uint64_t kAllReads = ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; // Work around the fact that HIR aliases I/F and J/D. // TODO: remove this interceptor once HIR types are clean static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) { switch (type) { case Primitive::kPrimInt: case Primitive::kPrimFloat: return TypeFlag(Primitive::kPrimInt, offset) | TypeFlag(Primitive::kPrimFloat, offset); case Primitive::kPrimLong: case Primitive::kPrimDouble: return TypeFlag(Primitive::kPrimLong, offset) | TypeFlag(Primitive::kPrimDouble, offset); default: return TypeFlag(type, offset); } } // Translates type to bit flag. static uint64_t TypeFlag(Primitive::Type type, int offset) { CHECK_NE(type, Primitive::kPrimVoid); const uint64_t one = 1; const int shift = type; // 0-based consecutive enum DCHECK_LE(kFieldWriteOffset, shift); DCHECK_LT(shift, kArrayWriteOffset); return one << (type + offset); } // Private constructor on direct flags value. explicit SideEffects(uint64_t flags) : flags_(flags) {} uint64_t flags_; }; // A HEnvironment object contains the values of virtual registers at a given location. class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { public: HEnvironment(ArenaAllocator* arena, size_t number_of_vregs, const DexFile& dex_file, uint32_t method_idx, uint32_t dex_pc, InvokeType invoke_type, HInstruction* holder) : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)), locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)), parent_(nullptr), dex_file_(dex_file), method_idx_(method_idx), dex_pc_(dex_pc), invoke_type_(invoke_type), holder_(holder) { } HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder) : HEnvironment(arena, to_copy.Size(), to_copy.GetDexFile(), to_copy.GetMethodIdx(), to_copy.GetDexPc(), to_copy.GetInvokeType(), holder) {} void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { if (parent_ != nullptr) { parent_->SetAndCopyParentChain(allocator, parent); } else { parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); parent_->CopyFrom(parent); if (parent->GetParent() != nullptr) { parent_->SetAndCopyParentChain(allocator, parent->GetParent()); } } } void CopyFrom(const ArenaVector<HInstruction*>& locals); void CopyFrom(HEnvironment* environment); // Copy from `env`. If it's a loop phi for `loop_header`, copy the first // input to the loop phi instead. This is for inserting instructions that // require an environment (like HDeoptimization) in the loop pre-header. void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); void SetRawEnvAt(size_t index, HInstruction* instruction) { vregs_[index] = HUserRecord<HEnvironment*>(instruction); } HInstruction* GetInstructionAt(size_t index) const { return vregs_[index].GetInstruction(); } void RemoveAsUserOfInput(size_t index) const; size_t Size() const { return vregs_.size(); } HEnvironment* GetParent() const { return parent_; } void SetLocationAt(size_t index, Location location) { locations_[index] = location; } Location GetLocationAt(size_t index) const { return locations_[index]; } uint32_t GetDexPc() const { return dex_pc_; } uint32_t GetMethodIdx() const { return method_idx_; } InvokeType GetInvokeType() const { return invoke_type_; } const DexFile& GetDexFile() const { return dex_file_; } HInstruction* GetHolder() const { return holder_; } bool IsFromInlinedInvoke() const { return GetParent() != nullptr; } private: ArenaVector<HUserRecord<HEnvironment*>> vregs_; ArenaVector<Location> locations_; HEnvironment* parent_; const DexFile& dex_file_; const uint32_t method_idx_; const uint32_t dex_pc_; const InvokeType invoke_type_; // The instruction that holds this environment. HInstruction* const holder_; friend class HInstruction; DISALLOW_COPY_AND_ASSIGN(HEnvironment); }; class HInstruction : public ArenaObject<kArenaAllocInstruction> { public: HInstruction(SideEffects side_effects, uint32_t dex_pc) : previous_(nullptr), next_(nullptr), block_(nullptr), dex_pc_(dex_pc), id_(-1), ssa_index_(-1), packed_fields_(0u), environment_(nullptr), locations_(nullptr), live_interval_(nullptr), lifetime_position_(kNoLifetime), side_effects_(side_effects), reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); } virtual ~HInstruction() {} #define DECLARE_KIND(type, super) k##type, enum InstructionKind { FOR_EACH_INSTRUCTION(DECLARE_KIND) }; #undef DECLARE_KIND HInstruction* GetNext() const { return next_; } HInstruction* GetPrevious() const { return previous_; } HInstruction* GetNextDisregardingMoves() const; HInstruction* GetPreviousDisregardingMoves() const; HBasicBlock* GetBlock() const { return block_; } ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); } void SetBlock(HBasicBlock* block) { block_ = block; } bool IsInBlock() const { return block_ != nullptr; } bool IsInLoop() const { return block_->IsInLoop(); } bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } bool IsIrreducibleLoopHeaderPhi() const { return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); } virtual size_t InputCount() const = 0; HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } virtual void Accept(HGraphVisitor* visitor) = 0; virtual const char* DebugName() const = 0; virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; } void SetRawInputAt(size_t index, HInstruction* input) { SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); } virtual bool NeedsEnvironment() const { return false; } uint32_t GetDexPc() const { return dex_pc_; } virtual bool IsControlFlow() const { return false; } virtual bool CanThrow() const { return false; } bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } bool HasSideEffects() const { return side_effects_.HasSideEffects(); } bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } // Does not apply for all instructions, but having this at top level greatly // simplifies the null check elimination. // TODO: Consider merging can_be_null into ReferenceTypeInfo. virtual bool CanBeNull() const { DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types"; return true; } virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { return false; } virtual bool IsActualObject() const { return GetType() == Primitive::kPrimNot; } void SetReferenceTypeInfo(ReferenceTypeInfo rti); ReferenceTypeInfo GetReferenceTypeInfo() const { DCHECK_EQ(GetType(), Primitive::kPrimNot); return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, GetPackedFlag<kFlagReferenceTypeIsExact>()); } void AddUseAt(HInstruction* user, size_t index) { DCHECK(user != nullptr); // Note: fixup_end remains valid across push_front(). auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); HUseListNode<HInstruction*>* new_node = new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index); uses_.push_front(*new_node); FixUpUserRecordsAfterUseInsertion(fixup_end); } void AddEnvUseAt(HEnvironment* user, size_t index) { DCHECK(user != nullptr); // Note: env_fixup_end remains valid across push_front(). auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); HUseListNode<HEnvironment*>* new_node = new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index); env_uses_.push_front(*new_node); FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); } void RemoveAsUserOfInput(size_t input) { HUserRecord<HInstruction*> input_use = InputRecordAt(input); HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); input_use.GetInstruction()->uses_.erase_after(before_use_node); input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); } const HUseList<HInstruction*>& GetUses() const { return uses_; } const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } bool HasEnvironmentUses() const { return !env_uses_.empty(); } bool HasNonEnvironmentUses() const { return !uses_.empty(); } bool HasOnlyOneNonEnvironmentUse() const { return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); } // Does this instruction strictly dominate `other_instruction`? // Returns false if this instruction and `other_instruction` are the same. // Aborts if this instruction and `other_instruction` are both phis. bool StrictlyDominates(HInstruction* other_instruction) const; int GetId() const { return id_; } void SetId(int id) { id_ = id; } int GetSsaIndex() const { return ssa_index_; } void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } bool HasSsaIndex() const { return ssa_index_ != -1; } bool HasEnvironment() const { return environment_ != nullptr; } HEnvironment* GetEnvironment() const { return environment_; } // Set the `environment_` field. Raw because this method does not // update the uses lists. void SetRawEnvironment(HEnvironment* environment) { DCHECK(environment_ == nullptr); DCHECK_EQ(environment->GetHolder(), this); environment_ = environment; } void RemoveEnvironment(); // Set the environment of this instruction, copying it from `environment`. While // copying, the uses lists are being updated. void CopyEnvironmentFrom(HEnvironment* environment) { DCHECK(environment_ == nullptr); ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); environment_ = new (allocator) HEnvironment(allocator, *environment, this); environment_->CopyFrom(environment); if (environment->GetParent() != nullptr) { environment_->SetAndCopyParentChain(allocator, environment->GetParent()); } } void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, HBasicBlock* block) { DCHECK(environment_ == nullptr); ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); environment_ = new (allocator) HEnvironment(allocator, *environment, this); environment_->CopyFromWithLoopPhiAdjustment(environment, block); if (environment->GetParent() != nullptr) { environment_->SetAndCopyParentChain(allocator, environment->GetParent()); } } // Returns the number of entries in the environment. Typically, that is the // number of dex registers in a method. It could be more in case of inlining. size_t EnvironmentSize() const; LocationSummary* GetLocations() const { return locations_; } void SetLocations(LocationSummary* locations) { locations_ = locations; } void ReplaceWith(HInstruction* instruction); void ReplaceInput(HInstruction* replacement, size_t index); // This is almost the same as doing `ReplaceWith()`. But in this helper, the // uses of this instruction by `other` are *not* updated. void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { ReplaceWith(other); other->ReplaceInput(this, use_index); } // Move `this` instruction before `cursor`. void MoveBefore(HInstruction* cursor); // Move `this` before its first user and out of any loops. If there is no // out-of-loop user that dominates all other users, move the instruction // to the end of the out-of-loop common dominator of the user's blocks. // // This can be used only on non-throwing instructions with no side effects that // have at least one use but no environment uses. void MoveBeforeFirstUserAndOutOfLoops(); #define INSTRUCTION_TYPE_CHECK(type, super) \ bool Is##type() const; \ const H##type* As##type() const; \ H##type* As##type(); FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK #define INSTRUCTION_TYPE_CHECK(type, super) \ bool Is##type() const { return (As##type() != nullptr); } \ virtual const H##type* As##type() const { return nullptr; } \ virtual H##type* As##type() { return nullptr; } FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK // Returns whether the instruction can be moved within the graph. virtual bool CanBeMoved() const { return false; } // Returns whether the two instructions are of the same kind. virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const { return false; } // Returns whether any data encoded in the two instructions is equal. // This method does not look at the inputs. Both instructions must be // of the same type, otherwise the method has undefined behavior. virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const { return false; } // Returns whether two instructions are equal, that is: // 1) They have the same type and contain the same data (InstructionDataEquals). // 2) Their inputs are identical. bool Equals(HInstruction* other) const; // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744) // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide // the virtual function because the __attribute__((__pure__)) doesn't really // apply the strong requirement for virtual functions, preventing optimizations. InstructionKind GetKind() const PURE; virtual InstructionKind GetKindInternal() const = 0; virtual size_t ComputeHashCode() const { size_t result = GetKind(); for (size_t i = 0, e = InputCount(); i < e; ++i) { result = (result * 31) + InputAt(i)->GetId(); } return result; } SideEffects GetSideEffects() const { return side_effects_; } void SetSideEffects(SideEffects other) { side_effects_ = other; } void AddSideEffects(SideEffects other) { side_effects_.Add(other); } size_t GetLifetimePosition() const { return lifetime_position_; } void SetLifetimePosition(size_t position) { lifetime_position_ = position; } LiveInterval* GetLiveInterval() const { return live_interval_; } void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } bool HasLiveInterval() const { return live_interval_ != nullptr; } bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } // Returns whether the code generation of the instruction will require to have access // to the current method. Such instructions are: // (1): Instructions that require an environment, as calling the runtime requires // to walk the stack and have the current method stored at a specific stack address. // (2): Object literals like classes and strings, that are loaded from the dex cache // fields of the current method. bool NeedsCurrentMethod() const { return NeedsEnvironment() || IsLoadClass() || IsLoadString(); } // Returns whether the code generation of the instruction will require to have access // to the dex cache of the current method's declaring class via the current method. virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } // Does this instruction have any use in an environment before // control flow hits 'other'? bool HasAnyEnvironmentUseBefore(HInstruction* other); // Remove all references to environment uses of this instruction. // The caller must ensure that this is safe to do. void RemoveEnvironmentUsers(); bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } protected: // If set, the machine code for this instruction is assumed to be generated by // its users. Used by liveness analysis to compute use positions accordingly. static constexpr size_t kFlagEmittedAtUseSite = 0u; static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1; static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0; virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0; uint32_t GetPackedFields() const { return packed_fields_; } template <size_t flag> bool GetPackedFlag() const { return (packed_fields_ & (1u << flag)) != 0u; } template <size_t flag> void SetPackedFlag(bool value = true) { packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); } template <typename BitFieldType> typename BitFieldType::value_type GetPackedField() const { return BitFieldType::Decode(packed_fields_); } template <typename BitFieldType> void SetPackedField(typename BitFieldType::value_type value) { DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); packed_fields_ = BitFieldType::Update(value, packed_fields_); } private: void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { auto before_use_node = uses_.before_begin(); for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { HInstruction* user = use_node->GetUser(); size_t input_index = use_node->GetIndex(); user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); before_use_node = use_node; } } void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { auto next = ++HUseList<HInstruction*>::iterator(before_use_node); if (next != uses_.end()) { HInstruction* next_user = next->GetUser(); size_t next_index = next->GetIndex(); DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); } } void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { auto before_env_use_node = env_uses_.before_begin(); for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { HEnvironment* user = env_use_node->GetUser(); size_t input_index = env_use_node->GetIndex(); user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); before_env_use_node = env_use_node; } } void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); if (next != env_uses_.end()) { HEnvironment* next_user = next->GetUser(); size_t next_index = next->GetIndex(); DCHECK(next_user->vregs_[next_index].GetInstruction() == this); next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); } } HInstruction* previous_; HInstruction* next_; HBasicBlock* block_; const uint32_t dex_pc_; // An instruction gets an id when it is added to the graph. // It reflects creation order. A negative id means the instruction // has not been added to the graph. int id_; // When doing liveness analysis, instructions that have uses get an SSA index. int ssa_index_; // Packed fields. uint32_t packed_fields_; // List of instructions that have this instruction as input. HUseList<HInstruction*> uses_; // List of environments that contain this instruction. HUseList<HEnvironment*> env_uses_; // The environment associated with this instruction. Not null if the instruction // might jump out of the method. HEnvironment* environment_; // Set by the code generator. LocationSummary* locations_; // Set by the liveness analysis. LiveInterval* live_interval_; // Set by the liveness analysis, this is the position in a linear // order of blocks where this instruction's live interval start. size_t lifetime_position_; SideEffects side_effects_; // The reference handle part of the reference type info. // The IsExact() flag is stored in packed fields. // TODO: for primitive types this should be marked as invalid. ReferenceTypeInfo::TypeHandle reference_type_handle_; friend class GraphChecker; friend class HBasicBlock; friend class HEnvironment; friend class HGraph; friend class HInstructionList; DISALLOW_COPY_AND_ASSIGN(HInstruction); }; std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); class HInputIterator : public ValueObject { public: explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {} bool Done() const { return index_ == instruction_->InputCount(); } HInstruction* Current() const { return instruction_->InputAt(index_); } void Advance() { index_++; } private: HInstruction* instruction_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HInputIterator); }; class HInstructionIterator : public ValueObject { public: explicit HInstructionIterator(const HInstructionList& instructions) : instruction_(instructions.first_instruction_) { next_ = Done() ? nullptr : instruction_->GetNext(); } bool Done() const { return instruction_ == nullptr; } HInstruction* Current() const { return instruction_; } void Advance() { instruction_ = next_; next_ = Done() ? nullptr : instruction_->GetNext(); } private: HInstruction* instruction_; HInstruction* next_; DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); }; class HBackwardInstructionIterator : public ValueObject { public: explicit HBackwardInstructionIterator(const HInstructionList& instructions) : instruction_(instructions.last_instruction_) { next_ = Done() ? nullptr : instruction_->GetPrevious(); } bool Done() const { return instruction_ == nullptr; } HInstruction* Current() const { return instruction_; } void Advance() { instruction_ = next_; next_ = Done() ? nullptr : instruction_->GetPrevious(); } private: HInstruction* instruction_; HInstruction* next_; DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); }; template<size_t N> class HTemplateInstruction: public HInstruction { public: HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc) : HInstruction(side_effects, dex_pc), inputs_() {} virtual ~HTemplateInstruction() {} size_t InputCount() const OVERRIDE { return N; } protected: const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { DCHECK_LT(i, N); return inputs_[i]; } void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE { DCHECK_LT(i, N); inputs_[i] = input; } private: std::array<HUserRecord<HInstruction*>, N> inputs_; friend class SsaBuilder; }; // HTemplateInstruction specialization for N=0. template<> class HTemplateInstruction<0>: public HInstruction { public: explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc) : HInstruction(side_effects, dex_pc) {} virtual ~HTemplateInstruction() {} size_t InputCount() const OVERRIDE { return 0; } protected: const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED, const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } private: friend class SsaBuilder; }; template<intptr_t N> class HExpression : public HTemplateInstruction<N> { public: HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc) : HTemplateInstruction<N>(side_effects, dex_pc) { this->template SetPackedField<TypeField>(type); } virtual ~HExpression() {} Primitive::Type GetType() const OVERRIDE { return TypeField::Decode(this->GetPackedFields()); } protected: static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize; static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; }; // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow // instruction that branches to the exit block. class HReturnVoid : public HTemplateInstruction<0> { public: explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(ReturnVoid); private: DISALLOW_COPY_AND_ASSIGN(HReturnVoid); }; // Represents dex's RETURN opcodes. A HReturn is a control flow // instruction that branches to the exit block. class HReturn : public HTemplateInstruction<1> { public: explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) { SetRawInputAt(0, value); } bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Return); private: DISALLOW_COPY_AND_ASSIGN(HReturn); }; class HPhi : public HInstruction { public: HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type, uint32_t dex_pc = kNoDexPc) : HInstruction(SideEffects::None(), dex_pc), inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)), reg_number_(reg_number) { SetPackedField<TypeField>(ToPhiType(type)); DCHECK_NE(GetType(), Primitive::kPrimVoid); // Phis are constructed live and marked dead if conflicting or unused. // Individual steps of SsaBuilder should assume that if a phi has been // marked dead, it can be ignored and will be removed by SsaPhiElimination. SetPackedFlag<kFlagIsLive>(true); SetPackedFlag<kFlagCanBeNull>(true); } // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. static Primitive::Type ToPhiType(Primitive::Type type) { return Primitive::PrimitiveKind(type); } bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } size_t InputCount() const OVERRIDE { return inputs_.size(); } void AddInput(HInstruction* input); void RemoveInputAt(size_t index); Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); } void SetType(Primitive::Type new_type) { // Make sure that only valid type changes occur. The following are allowed: // (1) int -> float/ref (primitive type propagation), // (2) long -> double (primitive type propagation). DCHECK(GetType() == new_type || (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) || (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) || (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble)); SetPackedField<TypeField>(new_type); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } uint32_t GetRegNumber() const { return reg_number_; } void SetDead() { SetPackedFlag<kFlagIsLive>(false); } void SetLive() { SetPackedFlag<kFlagIsLive>(true); } bool IsDead() const { return !IsLive(); } bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } bool IsVRegEquivalentOf(HInstruction* other) const { return other != nullptr && other->IsPhi() && other->AsPhi()->GetBlock() == GetBlock() && other->AsPhi()->GetRegNumber() == GetRegNumber(); } // Returns the next equivalent phi (starting from the current one) or null if there is none. // An equivalent phi is a phi having the same dex register and type. // It assumes that phis with the same dex register are adjacent. HPhi* GetNextEquivalentPhiWithSameType() { HInstruction* next = GetNext(); while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { if (next->GetType() == GetType()) { return next->AsPhi(); } next = next->GetNext(); } return nullptr; } DECLARE_INSTRUCTION(Phi); protected: const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { return inputs_[index]; } void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { inputs_[index] = input; } private: static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize; static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; ArenaVector<HUserRecord<HInstruction*> > inputs_; const uint32_t reg_number_; DISALLOW_COPY_AND_ASSIGN(HPhi); }; // The exit instruction is the only instruction of the exit block. // Instructions aborting the method (HThrow and HReturn) must branch to the // exit block. class HExit : public HTemplateInstruction<0> { public: explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} bool IsControlFlow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Exit); private: DISALLOW_COPY_AND_ASSIGN(HExit); }; // Jumps from one block to another. class HGoto : public HTemplateInstruction<0> { public: explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} bool IsControlFlow() const OVERRIDE { return true; } HBasicBlock* GetSuccessor() const { return GetBlock()->GetSingleSuccessor(); } DECLARE_INSTRUCTION(Goto); private: DISALLOW_COPY_AND_ASSIGN(HGoto); }; class HConstant : public HExpression<0> { public: explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc) : HExpression(type, SideEffects::None(), dex_pc) {} bool CanBeMoved() const OVERRIDE { return true; } // Is this constant -1 in the arithmetic sense? virtual bool IsMinusOne() const { return false; } // Is this constant 0 in the arithmetic sense? virtual bool IsArithmeticZero() const { return false; } // Is this constant a 0-bit pattern? virtual bool IsZeroBitPattern() const { return false; } // Is this constant 1 in the arithmetic sense? virtual bool IsOne() const { return false; } virtual uint64_t GetValueAsUint64() const = 0; DECLARE_ABSTRACT_INSTRUCTION(Constant); private: DISALLOW_COPY_AND_ASSIGN(HConstant); }; class HNullConstant : public HConstant { public: bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } uint64_t GetValueAsUint64() const OVERRIDE { return 0; } size_t ComputeHashCode() const OVERRIDE { return 0; } // The null constant representation is a 0-bit pattern. virtual bool IsZeroBitPattern() const { return true; } DECLARE_INSTRUCTION(NullConstant); private: explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {} friend class HGraph; DISALLOW_COPY_AND_ASSIGN(HNullConstant); }; // Constants of the type int. Those can be from Dex instructions, or // synthesized (for example with the if-eqz instruction). class HIntConstant : public HConstant { public: int32_t GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return static_cast<uint64_t>(static_cast<uint32_t>(value_)); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { DCHECK(other->IsIntConstant()) << other->DebugName(); return other->AsIntConstant()->value_ == value_; } size_t ComputeHashCode() const OVERRIDE { return GetValue(); } bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } bool IsOne() const OVERRIDE { return GetValue() == 1; } // Integer constants are used to encode Boolean values as well, // where 1 means true and 0 means false. bool IsTrue() const { return GetValue() == 1; } bool IsFalse() const { return GetValue() == 0; } DECLARE_INSTRUCTION(IntConstant); private: explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {} explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {} const int32_t value_; friend class HGraph; ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); DISALLOW_COPY_AND_ASSIGN(HIntConstant); }; class HLongConstant : public HConstant { public: int64_t GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return value_; } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { DCHECK(other->IsLongConstant()) << other->DebugName(); return other->AsLongConstant()->value_ == value_; } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } bool IsOne() const OVERRIDE { return GetValue() == 1; } DECLARE_INSTRUCTION(LongConstant); private: explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {} const int64_t value_; friend class HGraph; DISALLOW_COPY_AND_ASSIGN(HLongConstant); }; class HFloatConstant : public HConstant { public: float GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { DCHECK(other->IsFloatConstant()) << other->DebugName(); return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); } bool IsArithmeticZero() const OVERRIDE { return std::fpclassify(value_) == FP_ZERO; } bool IsArithmeticPositiveZero() const { return IsArithmeticZero() && !std::signbit(value_); } bool IsArithmeticNegativeZero() const { return IsArithmeticZero() && std::signbit(value_); } bool IsZeroBitPattern() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); } bool IsOne() const OVERRIDE { return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); } bool IsNaN() const { return std::isnan(value_); } DECLARE_INSTRUCTION(FloatConstant); private: explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {} explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {} const float value_; // Only the SsaBuilder and HGraph can create floating-point constants. friend class SsaBuilder; friend class HGraph; DISALLOW_COPY_AND_ASSIGN(HFloatConstant); }; class HDoubleConstant : public HConstant { public: double GetValue() const { return value_; } uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { DCHECK(other->IsDoubleConstant()) << other->DebugName(); return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); } size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } bool IsMinusOne() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); } bool IsArithmeticZero() const OVERRIDE { return std::fpclassify(value_) == FP_ZERO; } bool IsArithmeticPositiveZero() const { return IsArithmeticZero() && !std::signbit(value_); } bool IsArithmeticNegativeZero() const { return IsArithmeticZero() && std::signbit(value_); } bool IsZeroBitPattern() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); } bool IsOne() const OVERRIDE { return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); } bool IsNaN() const { return std::isnan(value_); } DECLARE_INSTRUCTION(DoubleConstant); private: explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {} explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {} const double value_; // Only the SsaBuilder and HGraph can create floating-point constants. friend class SsaBuilder; friend class HGraph; DISALLOW_COPY_AND_ASSIGN(HDoubleConstant); }; // Conditional branch. A block ending with an HIf instruction must have // two successors. class HIf : public HTemplateInstruction<1> { public: explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) { SetRawInputAt(0, input); } bool IsControlFlow() const OVERRIDE { return true; } HBasicBlock* IfTrueSuccessor() const { return GetBlock()->GetSuccessors()[0]; } HBasicBlock* IfFalseSuccessor() const { return GetBlock()->GetSuccessors()[1]; } DECLARE_INSTRUCTION(If); private: DISALLOW_COPY_AND_ASSIGN(HIf); }; // Abstract instruction which marks the beginning and/or end of a try block and // links it to the respective exception handlers. Behaves the same as a Goto in // non-exceptional control flow. // Normal-flow successor is stored at index zero, exception handlers under // higher indices in no particular order. class HTryBoundary : public HTemplateInstruction<0> { public: enum class BoundaryKind { kEntry, kExit, kLast = kExit }; explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) { SetPackedField<BoundaryKindField>(kind); } bool IsControlFlow() const OVERRIDE { return true; } // Returns the block's non-exceptional successor (index zero). HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); } // Returns whether `handler` is among its exception handlers (non-zero index // successors). bool HasExceptionHandler(const HBasicBlock& handler) const { DCHECK(handler.IsCatchBlock()); return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); } // If not present already, adds `handler` to its block's list of exception // handlers. void AddExceptionHandler(HBasicBlock* handler) { if (!HasExceptionHandler(*handler)) { GetBlock()->AddSuccessor(handler); } } BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; DECLARE_INSTRUCTION(TryBoundary); private: static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; static constexpr size_t kFieldBoundaryKindSize = MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); static constexpr size_t kNumberOfTryBoundaryPackedBits = kFieldBoundaryKind + kFieldBoundaryKindSize; static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; DISALLOW_COPY_AND_ASSIGN(HTryBoundary); }; // Deoptimize to interpreter, upon checking a condition. class HDeoptimize : public HTemplateInstruction<1> { public: // We set CanTriggerGC to prevent any intermediate address to be live // at the point of the `HDeoptimize`. HDeoptimize(HInstruction* cond, uint32_t dex_pc) : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, cond); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Deoptimize); private: DISALLOW_COPY_AND_ASSIGN(HDeoptimize); }; // Represents the ArtMethod that was passed as a first argument to // the method. It is used by instructions that depend on it, like // instructions that work with the dex cache. class HCurrentMethod : public HExpression<0> { public: explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc) : HExpression(type, SideEffects::None(), dex_pc) {} DECLARE_INSTRUCTION(CurrentMethod); private: DISALLOW_COPY_AND_ASSIGN(HCurrentMethod); }; // Fetches an ArtMethod from the virtual table or the interface method table // of a class. class HClassTableGet : public HExpression<1> { public: enum class TableKind { kVTable, kIMTable, kLast = kIMTable }; HClassTableGet(HInstruction* cls, Primitive::Type type, TableKind kind, size_t index, uint32_t dex_pc) : HExpression(type, SideEffects::None(), dex_pc), index_(index) { SetPackedField<TableKindField>(kind); SetRawInputAt(0, cls); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { return other->AsClassTableGet()->GetIndex() == index_ && other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); } TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } size_t GetIndex() const { return index_; } DECLARE_INSTRUCTION(ClassTableGet); private: static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits; static constexpr size_t kFieldTableKindSize = MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; // The index of the ArtMethod in the table. const size_t index_; DISALLOW_COPY_AND_ASSIGN(HClassTableGet); }; // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will // have one successor for each entry in the switch table, and the final successor // will be the block containing the next Dex opcode. class HPackedSwitch : public HTemplateInstruction<1> { public: HPackedSwitch(int32_t start_value, uint32_t num_entries, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc), start_value_(start_value), num_entries_(num_entries) { SetRawInputAt(0, input); } bool IsControlFlow() const OVERRIDE { return true; } int32_t GetStartValue() const { return start_value_; } uint32_t GetNumEntries() const { return num_entries_; } HBasicBlock* GetDefaultBlock() const { // Last entry is the default block. return GetBlock()->GetSuccessors()[num_entries_]; } DECLARE_INSTRUCTION(PackedSwitch); private: const int32_t start_value_; const uint32_t num_entries_; DISALLOW_COPY_AND_ASSIGN(HPackedSwitch); }; class HUnaryOperation : public HExpression<1> { public: HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HExpression(result_type, SideEffects::None(), dex_pc) { SetRawInputAt(0, input); } HInstruction* GetInput() const { return InputAt(0); } Primitive::Type GetResultType() const { return GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate `this` and return a HConstant // containing the result of this evaluation. If `this` cannot // be evaluated as a constant, return null. HConstant* TryStaticEvaluation() const; // Apply this operation to `x`. virtual HConstant* Evaluate(HIntConstant* x) const = 0; virtual HConstant* Evaluate(HLongConstant* x) const = 0; virtual HConstant* Evaluate(HFloatConstant* x) const = 0; virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); private: DISALLOW_COPY_AND_ASSIGN(HUnaryOperation); }; class HBinaryOperation : public HExpression<2> { public: HBinaryOperation(Primitive::Type result_type, HInstruction* left, HInstruction* right, SideEffects side_effects = SideEffects::None(), uint32_t dex_pc = kNoDexPc) : HExpression(result_type, side_effects, dex_pc) { SetRawInputAt(0, left); SetRawInputAt(1, right); } HInstruction* GetLeft() const { return InputAt(0); } HInstruction* GetRight() const { return InputAt(1); } Primitive::Type GetResultType() const { return GetType(); } virtual bool IsCommutative() const { return false; } // Put constant on the right. // Returns whether order is changed. bool OrderInputsWithConstantOnTheRight() { HInstruction* left = InputAt(0); HInstruction* right = InputAt(1); if (left->IsConstant() && !right->IsConstant()) { ReplaceInput(right, 0); ReplaceInput(left, 1); return true; } return false; } // Order inputs by instruction id, but favor constant on the right side. // This helps GVN for commutative ops. void OrderInputs() { DCHECK(IsCommutative()); HInstruction* left = InputAt(0); HInstruction* right = InputAt(1); if (left == right || (!left->IsConstant() && right->IsConstant())) { return; } if (OrderInputsWithConstantOnTheRight()) { return; } // Order according to instruction id. if (left->GetId() > right->GetId()) { ReplaceInput(right, 0); ReplaceInput(left, 1); } } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate `this` and return a HConstant // containing the result of this evaluation. If `this` cannot // be evaluated as a constant, return null. HConstant* TryStaticEvaluation() const; // Apply this operation to `x` and `y`. virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const { LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; UNREACHABLE(); } virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, HIntConstant* y ATTRIBUTE_UNUSED) const { LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; UNREACHABLE(); } virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; // Returns an input that can legally be used as the right input and is // constant, or null. HConstant* GetConstantRight() const; // If `GetConstantRight()` returns one of the input, this returns the other // one. Otherwise it returns null. HInstruction* GetLeastConstantLeft() const; DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); private: DISALLOW_COPY_AND_ASSIGN(HBinaryOperation); }; // The comparison bias applies for floating point operations and indicates how NaN // comparisons are treated: enum class ComparisonBias { kNoBias, // bias is not applicable (i.e. for long operation) kGtBias, // return 1 for NaN comparisons kLtBias, // return -1 for NaN comparisons kLast = kLtBias }; std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); class HCondition : public HBinaryOperation { public: HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) { SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); } // For code generation purposes, returns whether this instruction is just before // `instruction`, and disregard moves in between. bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; DECLARE_ABSTRACT_INSTRUCTION(Condition); virtual IfCondition GetCondition() const = 0; virtual IfCondition GetOppositeCondition() const = 0; bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { return GetPackedFields() == other->AsCondition()->GetPackedFields(); } bool IsFPConditionTrueIfNaN() const { DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); IfCondition if_cond = GetCondition(); if (if_cond == kCondNE) { return true; } else if (if_cond == kCondEQ) { return false; } return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); } bool IsFPConditionFalseIfNaN() const { DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); IfCondition if_cond = GetCondition(); if (if_cond == kCondEQ) { return true; } else if (if_cond == kCondNE) { return false; } return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); } protected: // Needed if we merge a HCompare into a HCondition. static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; static constexpr size_t kFieldComparisonBiasSize = MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); static constexpr size_t kNumberOfConditionPackedBits = kFieldComparisonBias + kFieldComparisonBiasSize; static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ComparisonBiasField = BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; template <typename T> int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } template <typename T> int32_t CompareFP(T x, T y) const { DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); DCHECK_NE(GetBias(), ComparisonBias::kNoBias); // Handle the bias. return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); } // Return an integer constant containing the result of a condition evaluated at compile time. HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); } private: DISALLOW_COPY_AND_ASSIGN(HCondition); }; // Instruction to check if two inputs are equal to each other. class HEqual : public HCondition { public: HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { return MakeConstantCondition(true, GetDexPc()); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HEqual instruction; evaluate it as // `Compare(x, y) == 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(Equal); IfCondition GetCondition() const OVERRIDE { return kCondEQ; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondNE; } private: template <typename T> bool Compute(T x, T y) const { return x == y; } DISALLOW_COPY_AND_ASSIGN(HEqual); }; class HNotEqual : public HCondition { public: HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { return MakeConstantCondition(false, GetDexPc()); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HNotEqual instruction; evaluate it as // `Compare(x, y) != 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(NotEqual); IfCondition GetCondition() const OVERRIDE { return kCondNE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondEQ; } private: template <typename T> bool Compute(T x, T y) const { return x != y; } DISALLOW_COPY_AND_ASSIGN(HNotEqual); }; class HLessThan : public HCondition { public: HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HLessThan instruction; evaluate it as // `Compare(x, y) < 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(LessThan); IfCondition GetCondition() const OVERRIDE { return kCondLT; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondGE; } private: template <typename T> bool Compute(T x, T y) const { return x < y; } DISALLOW_COPY_AND_ASSIGN(HLessThan); }; class HLessThanOrEqual : public HCondition { public: HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HLessThanOrEqual instruction; evaluate it as // `Compare(x, y) <= 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(LessThanOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondLE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondGT; } private: template <typename T> bool Compute(T x, T y) const { return x <= y; } DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual); }; class HGreaterThan : public HCondition { public: HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HGreaterThan instruction; evaluate it as // `Compare(x, y) > 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(GreaterThan); IfCondition GetCondition() const OVERRIDE { return kCondGT; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondLE; } private: template <typename T> bool Compute(T x, T y) const { return x > y; } DISALLOW_COPY_AND_ASSIGN(HGreaterThan); }; class HGreaterThanOrEqual : public HCondition { public: HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } // In the following Evaluate methods, a HCompare instruction has // been merged into this HGreaterThanOrEqual instruction; evaluate it as // `Compare(x, y) >= 0`. HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); } DECLARE_INSTRUCTION(GreaterThanOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondGE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondLT; } private: template <typename T> bool Compute(T x, T y) const { return x >= y; } DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual); }; class HBelow : public HCondition { public: HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Below); IfCondition GetCondition() const OVERRIDE { return kCondB; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondAE; } private: template <typename T> bool Compute(T x, T y) const { return MakeUnsigned(x) < MakeUnsigned(y); } DISALLOW_COPY_AND_ASSIGN(HBelow); }; class HBelowOrEqual : public HCondition { public: HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(BelowOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondBE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondA; } private: template <typename T> bool Compute(T x, T y) const { return MakeUnsigned(x) <= MakeUnsigned(y); } DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual); }; class HAbove : public HCondition { public: HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Above); IfCondition GetCondition() const OVERRIDE { return kCondA; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondBE; } private: template <typename T> bool Compute(T x, T y) const { return MakeUnsigned(x) > MakeUnsigned(y); } DISALLOW_COPY_AND_ASSIGN(HAbove); }; class HAboveOrEqual : public HCondition { public: HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) : HCondition(first, second, dex_pc) {} HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(AboveOrEqual); IfCondition GetCondition() const OVERRIDE { return kCondAE; } IfCondition GetOppositeCondition() const OVERRIDE { return kCondB; } private: template <typename T> bool Compute(T x, T y) const { return MakeUnsigned(x) >= MakeUnsigned(y); } DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual); }; // Instruction to check how two inputs compare to each other. // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. class HCompare : public HBinaryOperation { public: // Note that `comparison_type` is the type of comparison performed // between the comparison's inputs, not the type of the instantiated // HCompare instruction (which is always Primitive::kPrimInt). HCompare(Primitive::Type comparison_type, HInstruction* first, HInstruction* second, ComparisonBias bias, uint32_t dex_pc) : HBinaryOperation(Primitive::kPrimInt, first, second, SideEffectsForArchRuntimeCalls(comparison_type), dex_pc) { SetPackedField<ComparisonBiasField>(bias); DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType())); DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType())); } template <typename T> int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } template <typename T> int32_t ComputeFP(T x, T y) const { DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); DCHECK_NE(GetBias(), ComparisonBias::kNoBias); // Handle the bias. return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { // Note that there is no "cmp-int" Dex instruction so we shouldn't // reach this code path when processing a freshly built HIR // graph. However HCompare integer instructions can be synthesized // by the instruction simplifier to implement IntegerCompare and // IntegerSignum intrinsics, so we have to handle this case. return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { return GetPackedFields() == other->AsCompare()->GetPackedFields(); } ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } // Does this compare instruction have a "gt bias" (vs an "lt bias")? // Only meaningful for floating-point comparisons. bool IsGtBias() const { DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); return GetBias() == ComparisonBias::kGtBias; } static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) { // Comparisons do not require a runtime call in any back end. return SideEffects::None(); } DECLARE_INSTRUCTION(Compare); protected: static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; static constexpr size_t kFieldComparisonBiasSize = MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); static constexpr size_t kNumberOfComparePackedBits = kFieldComparisonBias + kFieldComparisonBiasSize; static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ComparisonBiasField = BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; // Return an integer constant containing the result of a comparison evaluated at compile time. HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { DCHECK(value == -1 || value == 0 || value == 1) << value; return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); } private: DISALLOW_COPY_AND_ASSIGN(HCompare); }; class HNewInstance : public HExpression<2> { public: HNewInstance(HInstruction* cls, HCurrentMethod* current_method, uint32_t dex_pc, uint16_t type_index, const DexFile& dex_file, bool can_throw, bool finalizable, QuickEntrypointEnum entrypoint) : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), type_index_(type_index), dex_file_(dex_file), entrypoint_(entrypoint) { SetPackedFlag<kFlagCanThrow>(can_throw); SetPackedFlag<kFlagFinalizable>(finalizable); SetRawInputAt(0, cls); SetRawInputAt(1, current_method); } uint16_t GetTypeIndex() const { return type_index_; } const DexFile& GetDexFile() const { return dex_file_; } // Calls runtime so needs an environment. bool NeedsEnvironment() const OVERRIDE { return true; } // It may throw when called on type that's not instantiable/accessible. // It can throw OOME. // TODO: distinguish between the two cases so we can for example allow allocation elimination. bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>() || true; } bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } bool CanBeNull() const OVERRIDE { return false; } QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } void SetEntrypoint(QuickEntrypointEnum entrypoint) { entrypoint_ = entrypoint; } bool IsStringAlloc() const; DECLARE_INSTRUCTION(NewInstance); private: static constexpr size_t kFlagCanThrow = kNumberOfExpressionPackedBits; static constexpr size_t kFlagFinalizable = kFlagCanThrow + 1; static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const uint16_t type_index_; const DexFile& dex_file_; QuickEntrypointEnum entrypoint_; DISALLOW_COPY_AND_ASSIGN(HNewInstance); }; enum class Intrinsics { #define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \ k ## Name, #include "intrinsics_list.h" kNone, INTRINSICS_LIST(OPTIMIZING_INTRINSICS) #undef INTRINSICS_LIST #undef OPTIMIZING_INTRINSICS }; std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic); enum IntrinsicNeedsEnvironmentOrCache { kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache. kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache. }; enum IntrinsicSideEffects { kNoSideEffects, // Intrinsic does not have any heap memory side effects. kReadSideEffects, // Intrinsic may read heap memory. kWriteSideEffects, // Intrinsic may write heap memory. kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. }; enum IntrinsicExceptions { kNoThrow, // Intrinsic does not throw any exceptions. kCanThrow // Intrinsic may throw exceptions. }; class HInvoke : public HInstruction { public: size_t InputCount() const OVERRIDE { return inputs_.size(); } bool NeedsEnvironment() const OVERRIDE; void SetArgumentAt(size_t index, HInstruction* argument) { SetRawInputAt(index, argument); } // Return the number of arguments. This number can be lower than // the number of inputs returned by InputCount(), as some invoke // instructions (e.g. HInvokeStaticOrDirect) can have non-argument // inputs at the end of their list of inputs. uint32_t GetNumberOfArguments() const { return number_of_arguments_; } Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); } uint32_t GetDexMethodIndex() const { return dex_method_index_; } const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); } InvokeType GetOriginalInvokeType() const { return GetPackedField<OriginalInvokeTypeField>(); } Intrinsics GetIntrinsic() const { return intrinsic_; } void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, IntrinsicSideEffects side_effects, IntrinsicExceptions exceptions); bool IsFromInlinedInvoke() const { return GetEnvironment()->IsFromInlinedInvoke(); } bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); } bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; } uint32_t* GetIntrinsicOptimizations() { return &intrinsic_optimizations_; } const uint32_t* GetIntrinsicOptimizations() const { return &intrinsic_optimizations_; } bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } DECLARE_ABSTRACT_INSTRUCTION(Invoke); protected: static constexpr size_t kFieldOriginalInvokeType = kNumberOfGenericPackedBits; static constexpr size_t kFieldOriginalInvokeTypeSize = MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); static constexpr size_t kFieldReturnType = kFieldOriginalInvokeType + kFieldOriginalInvokeTypeSize; static constexpr size_t kFieldReturnTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize; static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1; static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using OriginalInvokeTypeField = BitField<InvokeType, kFieldOriginalInvokeType, kFieldOriginalInvokeTypeSize>; using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>; HInvoke(ArenaAllocator* arena, uint32_t number_of_arguments, uint32_t number_of_other_inputs, Primitive::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, InvokeType original_invoke_type) : HInstruction( SideEffects::AllExceptGCDependency(), dex_pc), // Assume write/read on all fields/arrays. number_of_arguments_(number_of_arguments), inputs_(number_of_arguments + number_of_other_inputs, arena->Adapter(kArenaAllocInvokeInputs)), dex_method_index_(dex_method_index), intrinsic_(Intrinsics::kNone), intrinsic_optimizations_(0) { SetPackedField<ReturnTypeField>(return_type); SetPackedField<OriginalInvokeTypeField>(original_invoke_type); SetPackedFlag<kFlagCanThrow>(true); } const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { return inputs_[index]; } void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { inputs_[index] = input; } void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } uint32_t number_of_arguments_; ArenaVector<HUserRecord<HInstruction*>> inputs_; const uint32_t dex_method_index_; Intrinsics intrinsic_; // A magic word holding optimizations for intrinsics. See intrinsics.h. uint32_t intrinsic_optimizations_; private: DISALLOW_COPY_AND_ASSIGN(HInvoke); }; class HInvokeUnresolved : public HInvoke { public: HInvokeUnresolved(ArenaAllocator* arena, uint32_t number_of_arguments, Primitive::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, InvokeType invoke_type) : HInvoke(arena, number_of_arguments, 0u /* number_of_other_inputs */, return_type, dex_pc, dex_method_index, invoke_type) { } DECLARE_INSTRUCTION(InvokeUnresolved); private: DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved); }; class HInvokeStaticOrDirect : public HInvoke { public: // Requirements of this method call regarding the class // initialization (clinit) check of its declaring class. enum class ClinitCheckRequirement { kNone, // Class already initialized. kExplicit, // Static call having explicit clinit check as last input. kImplicit, // Static call implicitly requiring a clinit check. kLast = kImplicit }; // Determines how to load the target ArtMethod*. enum class MethodLoadKind { // Use a String init ArtMethod* loaded from Thread entrypoints. kStringInit, // Use the method's own ArtMethod* loaded by the register allocator. kRecursive, // Use ArtMethod* at a known address, embed the direct address in the code. // Used for app->boot calls with non-relocatable image and for JIT-compiled calls. kDirectAddress, // Use ArtMethod* at an address that will be known at link time, embed the direct // address in the code. If the image is relocatable, emit .patch_oat entry. // Used for app->boot calls with relocatable image and boot->boot calls, whether // the image relocatable or not. kDirectAddressWithFixup, // Load from resolved methods array in the dex cache using a PC-relative load. // Used when we need to use the dex cache, for example for invoke-static that // may cause class initialization (the entry may point to a resolution method), // and we know that we can access the dex cache arrays using a PC-relative load. kDexCachePcRelative, // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*. // Used for JIT when we need to use the dex cache. This is also the last-resort-kind // used when other kinds are unavailable (say, dex cache arrays are not PC-relative) // or unimplemented or impractical (i.e. slow) on a particular architecture. kDexCacheViaMethod, }; // Determines the location of the code pointer. enum class CodePtrLocation { // Recursive call, use local PC-relative call instruction. kCallSelf, // Use PC-relative call instruction patched at link time. // Used for calls within an oat file, boot->boot or app->app. kCallPCRelative, // Call to a known target address, embed the direct address in code. // Used for app->boot call with non-relocatable image and for JIT-compiled calls. kCallDirect, // Call to a target address that will be known at link time, embed the direct // address in code. If the image is relocatable, emit .patch_oat entry. // Used for app->boot calls with relocatable image and boot->boot calls, whether // the image relocatable or not. kCallDirectWithFixup, // Use code pointer from the ArtMethod*. // Used when we don't know the target code. This is also the last-resort-kind used when // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. kCallArtMethod, }; struct DispatchInfo { MethodLoadKind method_load_kind; CodePtrLocation code_ptr_location; // The method load data holds // - thread entrypoint offset for kStringInit method if this is a string init invoke. // Note that there are multiple string init methods, each having its own offset. // - the method address for kDirectAddress // - the dex cache arrays offset for kDexCachePcRel. uint64_t method_load_data; uint64_t direct_code_ptr; }; HInvokeStaticOrDirect(ArenaAllocator* arena, uint32_t number_of_arguments, Primitive::Type return_type, uint32_t dex_pc, uint32_t method_index, MethodReference target_method, DispatchInfo dispatch_info, InvokeType original_invoke_type, InvokeType optimized_invoke_type, ClinitCheckRequirement clinit_check_requirement) : HInvoke(arena, number_of_arguments, // There is potentially one extra argument for the HCurrentMethod node, and // potentially one other if the clinit check is explicit, and potentially // one other if the method is a string factory. (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), return_type, dex_pc, method_index, original_invoke_type), target_method_(target_method), dispatch_info_(dispatch_info) { SetPackedField<OptimizedInvokeTypeField>(optimized_invoke_type); SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); } void SetDispatchInfo(const DispatchInfo& dispatch_info) { bool had_current_method_input = HasCurrentMethodInput(); bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); // Using the current method is the default and once we find a better // method load kind, we should not go back to using the current method. DCHECK(had_current_method_input || !needs_current_method_input); if (had_current_method_input && !needs_current_method_input) { DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); RemoveInputAt(GetSpecialInputIndex()); } dispatch_info_ = dispatch_info; } void AddSpecialInput(HInstruction* input) { // We allow only one special input. DCHECK(!IsStringInit() && !HasCurrentMethodInput()); DCHECK(InputCount() == GetSpecialInputIndex() || (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); InsertInputAt(GetSpecialInputIndex(), input); } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // We access the method via the dex cache so we can't do an implicit null check. // TODO: for intrinsics we can generate implicit null checks. return false; } bool CanBeNull() const OVERRIDE { return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit(); } // Get the index of the special input, if any. // // If the invoke HasCurrentMethodInput(), the "special input" is the current // method pointer; otherwise there may be one platform-specific special input, // such as PC-relative addressing base. uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } InvokeType GetOptimizedInvokeType() const { return GetPackedField<OptimizedInvokeTypeField>(); } void SetOptimizedInvokeType(InvokeType invoke_type) { SetPackedField<OptimizedInvokeTypeField>(invoke_type); } MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE; bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; } bool HasPcRelativeDexCache() const { return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; } bool HasCurrentMethodInput() const { // This function can be called only after the invoke has been fully initialized by the builder. if (NeedsCurrentMethodInput(GetMethodLoadKind())) { DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); return true; } else { DCHECK(InputCount() == GetSpecialInputIndex() || !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); return false; } } bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; } MethodReference GetTargetMethod() const { return target_method_; } void SetTargetMethod(MethodReference method) { target_method_ = method; } int32_t GetStringInitOffset() const { DCHECK(IsStringInit()); return dispatch_info_.method_load_data; } uint64_t GetMethodAddress() const { DCHECK(HasMethodAddress()); return dispatch_info_.method_load_data; } uint32_t GetDexCacheArrayOffset() const { DCHECK(HasPcRelativeDexCache()); return dispatch_info_.method_load_data; } uint64_t GetDirectCodePtr() const { DCHECK(HasDirectCodePtr()); return dispatch_info_.direct_code_ptr; } ClinitCheckRequirement GetClinitCheckRequirement() const { return GetPackedField<ClinitCheckRequirementField>(); } // Is this instruction a call to a static method? bool IsStatic() const { return GetOriginalInvokeType() == kStatic; } // Remove the HClinitCheck or the replacement HLoadClass (set as last input by // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) // instruction; only relevant for static calls with explicit clinit check. void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { DCHECK(IsStaticWithExplicitClinitCheck()); size_t last_input_index = InputCount() - 1; HInstruction* last_input = InputAt(last_input_index); DCHECK(last_input != nullptr); DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); RemoveAsUserOfInput(last_input_index); inputs_.pop_back(); SetPackedField<ClinitCheckRequirementField>(new_requirement); DCHECK(!IsStaticWithExplicitClinitCheck()); } // Is this a call to a static method whose declaring class has an // explicit initialization check in the graph? bool IsStaticWithExplicitClinitCheck() const { return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); } // Is this a call to a static method whose declaring class has an // implicit intialization check requirement? bool IsStaticWithImplicitClinitCheck() const { return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); } // Does this method load kind need the current method as an input? static bool NeedsCurrentMethodInput(MethodLoadKind kind) { return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod; } DECLARE_INSTRUCTION(InvokeStaticOrDirect); protected: const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i); if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) { HInstruction* input = input_record.GetInstruction(); // `input` is the last input of a static invoke marked as having // an explicit clinit check. It must either be: // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. DCHECK(input != nullptr); DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName(); } return input_record; } void InsertInputAt(size_t index, HInstruction* input); void RemoveInputAt(size_t index); private: static constexpr size_t kFieldOptimizedInvokeType = kNumberOfInvokePackedBits; static constexpr size_t kFieldOptimizedInvokeTypeSize = MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); static constexpr size_t kFieldClinitCheckRequirement = kFieldOptimizedInvokeType + kFieldOptimizedInvokeTypeSize; static constexpr size_t kFieldClinitCheckRequirementSize = MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using OptimizedInvokeTypeField = BitField<InvokeType, kFieldOptimizedInvokeType, kFieldOptimizedInvokeTypeSize>; using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, kFieldClinitCheckRequirement, kFieldClinitCheckRequirementSize>; // The target method may refer to different dex file or method index than the original // invoke. This happens for sharpened calls and for calls where a method was redeclared // in derived class to increase visibility. MethodReference target_method_; DispatchInfo dispatch_info_; DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect); }; std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); class HInvokeVirtual : public HInvoke { public: HInvokeVirtual(ArenaAllocator* arena, uint32_t number_of_arguments, Primitive::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, uint32_t vtable_index) : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual), vtable_index_(vtable_index) {} bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { // TODO: Add implicit null checks in intrinsics. return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); } uint32_t GetVTableIndex() const { return vtable_index_; } DECLARE_INSTRUCTION(InvokeVirtual); private: const uint32_t vtable_index_; DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual); }; class HInvokeInterface : public HInvoke { public: HInvokeInterface(ArenaAllocator* arena, uint32_t number_of_arguments, Primitive::Type return_type, uint32_t dex_pc, uint32_t dex_method_index, uint32_t imt_index) : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface), imt_index_(imt_index) {} bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { // TODO: Add implicit null checks in intrinsics. return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); } uint32_t GetImtIndex() const { return imt_index_; } uint32_t GetDexMethodIndex() const { return dex_method_index_; } DECLARE_INSTRUCTION(InvokeInterface); private: const uint32_t imt_index_; DISALLOW_COPY_AND_ASSIGN(HInvokeInterface); }; class HNeg : public HUnaryOperation { public: HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(result_type, input, dex_pc) { DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType())); } template <typename T> T Compute(T x) const { return -x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Neg); private: DISALLOW_COPY_AND_ASSIGN(HNeg); }; class HNewArray : public HExpression<2> { public: HNewArray(HInstruction* length, HCurrentMethod* current_method, uint32_t dex_pc, uint16_t type_index, const DexFile& dex_file, QuickEntrypointEnum entrypoint) : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), type_index_(type_index), dex_file_(dex_file), entrypoint_(entrypoint) { SetRawInputAt(0, length); SetRawInputAt(1, current_method); } uint16_t GetTypeIndex() const { return type_index_; } const DexFile& GetDexFile() const { return dex_file_; } // Calls runtime so needs an environment. bool NeedsEnvironment() const OVERRIDE { return true; } // May throw NegativeArraySizeException, OutOfMemoryError, etc. bool CanThrow() const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return false; } QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } DECLARE_INSTRUCTION(NewArray); private: const uint16_t type_index_; const DexFile& dex_file_; const QuickEntrypointEnum entrypoint_; DISALLOW_COPY_AND_ASSIGN(HNewArray); }; class HAdd : public HBinaryOperation { public: HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } template <typename T> T Compute(T x, T y) const { return x + y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Add); private: DISALLOW_COPY_AND_ASSIGN(HAdd); }; class HSub : public HBinaryOperation { public: HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} template <typename T> T Compute(T x, T y) const { return x - y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Sub); private: DISALLOW_COPY_AND_ASSIGN(HSub); }; class HMul : public HBinaryOperation { public: HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } template <typename T> T Compute(T x, T y) const { return x * y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } DECLARE_INSTRUCTION(Mul); private: DISALLOW_COPY_AND_ASSIGN(HMul); }; class HDiv : public HBinaryOperation { public: HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc) : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} template <typename T> T ComputeIntegral(T x, T y) const { DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); // Our graph structure ensures we never have 0 for `y` during // constant folding. DCHECK_NE(y, 0); // Special case -1 to avoid getting a SIGFPE on x86(_64). return (y == -1) ? -x : x / y; } template <typename T> T ComputeFP(T x, T y) const { DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); return x / y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } static SideEffects SideEffectsForArchRuntimeCalls() { // The generated code can use a runtime call. return SideEffects::CanTriggerGC(); } DECLARE_INSTRUCTION(Div); private: DISALLOW_COPY_AND_ASSIGN(HDiv); }; class HRem : public HBinaryOperation { public: HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc) : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} template <typename T> T ComputeIntegral(T x, T y) const { DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); // Our graph structure ensures we never have 0 for `y` during // constant folding. DCHECK_NE(y, 0); // Special case -1 to avoid getting a SIGFPE on x86(_64). return (y == -1) ? 0 : x % y; } template <typename T> T ComputeFP(T x, T y) const { DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); return std::fmod(x, y); } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetFloatConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetDoubleConstant( ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); } static SideEffects SideEffectsForArchRuntimeCalls() { return SideEffects::CanTriggerGC(); } DECLARE_INSTRUCTION(Rem); private: DISALLOW_COPY_AND_ASSIGN(HRem); }; class HDivZeroCheck : public HExpression<1> { public: // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` // constructor. HDivZeroCheck(HInstruction* value, uint32_t dex_pc) : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, value); } Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(DivZeroCheck); private: DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck); }; class HShl : public HBinaryOperation { public: HShl(Primitive::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); } template <typename T> T Compute(T value, int32_t distance, int32_t max_shift_distance) const { return value << (distance & max_shift_distance); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Shl); private: DISALLOW_COPY_AND_ASSIGN(HShl); }; class HShr : public HBinaryOperation { public: HShr(Primitive::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); } template <typename T> T Compute(T value, int32_t distance, int32_t max_shift_distance) const { return value >> (distance & max_shift_distance); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Shr); private: DISALLOW_COPY_AND_ASSIGN(HShr); }; class HUShr : public HBinaryOperation { public: HUShr(Primitive::Type result_type, HInstruction* value, HInstruction* distance, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); } template <typename T> T Compute(T value, int32_t distance, int32_t max_shift_distance) const { typedef typename std::make_unsigned<T>::type V; V ux = static_cast<V>(value); return static_cast<T>(ux >> (distance & max_shift_distance)); } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(UShr); private: DISALLOW_COPY_AND_ASSIGN(HUShr); }; class HAnd : public HBinaryOperation { public: HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } template <typename T> T Compute(T x, T y) const { return x & y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(And); private: DISALLOW_COPY_AND_ASSIGN(HAnd); }; class HOr : public HBinaryOperation { public: HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } template <typename T> T Compute(T x, T y) const { return x | y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Or); private: DISALLOW_COPY_AND_ASSIGN(HOr); }; class HXor : public HBinaryOperation { public: HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc = kNoDexPc) : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} bool IsCommutative() const OVERRIDE { return true; } template <typename T> T Compute(T x, T y) const { return x ^ y; } HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(x->GetValue(), y->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Xor); private: DISALLOW_COPY_AND_ASSIGN(HXor); }; class HRor : public HBinaryOperation { public: HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance) : HBinaryOperation(result_type, value, distance) { DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); } template <typename T> T Compute(T value, int32_t distance, int32_t max_shift_value) const { typedef typename std::make_unsigned<T>::type V; V ux = static_cast<V>(value); if ((distance & max_shift_value) == 0) { return static_cast<T>(ux); } else { const V reg_bits = sizeof(T) * 8; return static_cast<T>(ux >> (distance & max_shift_value)) | (value << (reg_bits - (distance & max_shift_value))); } } HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant( Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant( Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); } HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Ror); private: DISALLOW_COPY_AND_ASSIGN(HRor); }; // The value of a parameter in this method. Its location depends on // the calling convention. class HParameterValue : public HExpression<0> { public: HParameterValue(const DexFile& dex_file, uint16_t type_index, uint8_t index, Primitive::Type parameter_type, bool is_this = false) : HExpression(parameter_type, SideEffects::None(), kNoDexPc), dex_file_(dex_file), type_index_(type_index), index_(index) { SetPackedFlag<kFlagIsThis>(is_this); SetPackedFlag<kFlagCanBeNull>(!is_this); } const DexFile& GetDexFile() const { return dex_file_; } uint16_t GetTypeIndex() const { return type_index_; } uint8_t GetIndex() const { return index_; } bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } DECLARE_INSTRUCTION(ParameterValue); private: // Whether or not the parameter value corresponds to 'this' argument. static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits; static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const DexFile& dex_file_; const uint16_t type_index_; // The index of this parameter in the parameters list. Must be less // than HGraph::number_of_in_vregs_. const uint8_t index_; DISALLOW_COPY_AND_ASSIGN(HParameterValue); }; class HNot : public HUnaryOperation { public: HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(result_type, input, dex_pc) {} bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } template <typename T> T Compute(T x) const { return ~x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(Not); private: DISALLOW_COPY_AND_ASSIGN(HNot); }; class HBooleanNot : public HUnaryOperation { public: explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {} bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } template <typename T> bool Compute(T x) const { DCHECK(IsUint<1>(x)) << x; return !x; } HConstant* Evaluate(HIntConstant* x) const OVERRIDE { return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); } HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for long values"; UNREACHABLE(); } HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for float values"; UNREACHABLE(); } HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { LOG(FATAL) << DebugName() << " is not defined for double values"; UNREACHABLE(); } DECLARE_INSTRUCTION(BooleanNot); private: DISALLOW_COPY_AND_ASSIGN(HBooleanNot); }; class HTypeConversion : public HExpression<1> { public: // Instantiate a type conversion of `input` to `result_type`. HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc) : HExpression(result_type, SideEffectsForArchRuntimeCalls(input->GetType(), result_type), dex_pc) { SetRawInputAt(0, input); // Invariant: We should never generate a conversion to a Boolean value. DCHECK_NE(Primitive::kPrimBoolean, result_type); } HInstruction* GetInput() const { return InputAt(0); } Primitive::Type GetInputType() const { return GetInput()->GetType(); } Primitive::Type GetResultType() const { return GetType(); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } // Try to statically evaluate the conversion and return a HConstant // containing the result. If the input cannot be converted, return nullptr. HConstant* TryStaticEvaluation() const; static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type, Primitive::Type result_type) { // Some architectures may not require the 'GC' side effects, but at this point // in the compilation process we do not know what architecture we will // generate code for, so we must be conservative. if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type)) || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) { return SideEffects::CanTriggerGC(); } return SideEffects::None(); } DECLARE_INSTRUCTION(TypeConversion); private: DISALLOW_COPY_AND_ASSIGN(HTypeConversion); }; static constexpr uint32_t kNoRegNumber = -1; class HNullCheck : public HExpression<1> { public: // `HNullCheck` can trigger GC, as it may call the `NullPointerException` // constructor. HNullCheck(HInstruction* value, uint32_t dex_pc) : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, value); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return false; } DECLARE_INSTRUCTION(NullCheck); private: DISALLOW_COPY_AND_ASSIGN(HNullCheck); }; class FieldInfo : public ValueObject { public: FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile, uint32_t index, uint16_t declaring_class_def_index, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache) : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile), index_(index), declaring_class_def_index_(declaring_class_def_index), dex_file_(dex_file), dex_cache_(dex_cache) {} MemberOffset GetFieldOffset() const { return field_offset_; } Primitive::Type GetFieldType() const { return field_type_; } uint32_t GetFieldIndex() const { return index_; } uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} const DexFile& GetDexFile() const { return dex_file_; } bool IsVolatile() const { return is_volatile_; } Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; } private: const MemberOffset field_offset_; const Primitive::Type field_type_; const bool is_volatile_; const uint32_t index_; const uint16_t declaring_class_def_index_; const DexFile& dex_file_; const Handle<mirror::DexCache> dex_cache_; }; class HInstanceFieldGet : public HExpression<1> { public: HInstanceFieldGet(HInstruction* value, Primitive::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, uint32_t dex_pc) : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), field_info_(field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file, dex_cache) { SetRawInputAt(0, value); } bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; } size_t ComputeHashCode() const OVERRIDE { return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } DECLARE_INSTRUCTION(InstanceFieldGet); private: const FieldInfo field_info_; DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet); }; class HInstanceFieldSet : public HTemplateInstruction<2> { public: HInstanceFieldSet(HInstruction* object, HInstruction* value, Primitive::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, uint32_t dex_pc) : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), field_info_(field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file, dex_cache) { SetPackedFlag<kFlagValueCanBeNull>(true); SetRawInputAt(0, object); SetRawInputAt(1, value); } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } HInstruction* GetValue() const { return InputAt(1); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } DECLARE_INSTRUCTION(InstanceFieldSet); private: static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const FieldInfo field_info_; DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet); }; class HArrayGet : public HExpression<2> { public: HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type, uint32_t dex_pc, SideEffects additional_side_effects = SideEffects::None()) : HExpression(type, SideEffects::ArrayReadOfType(type).Union(additional_side_effects), dex_pc) { SetRawInputAt(0, array); SetRawInputAt(1, index); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // TODO: We can be smarter here. // Currently, the array access is always preceded by an ArrayLength or a NullCheck // which generates the implicit null check. There are cases when these can be removed // to produce better code. If we ever add optimizations to do so we should allow an // implicit check here (as long as the address falls in the first page). return false; } bool IsEquivalentOf(HArrayGet* other) const { bool result = (GetDexPc() == other->GetDexPc()); if (kIsDebugBuild && result) { DCHECK_EQ(GetBlock(), other->GetBlock()); DCHECK_EQ(GetArray(), other->GetArray()); DCHECK_EQ(GetIndex(), other->GetIndex()); if (Primitive::IsIntOrLongType(GetType())) { DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType(); } else { DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType(); } } return result; } HInstruction* GetArray() const { return InputAt(0); } HInstruction* GetIndex() const { return InputAt(1); } DECLARE_INSTRUCTION(ArrayGet); private: DISALLOW_COPY_AND_ASSIGN(HArrayGet); }; class HArraySet : public HTemplateInstruction<3> { public: HArraySet(HInstruction* array, HInstruction* index, HInstruction* value, Primitive::Type expected_component_type, uint32_t dex_pc, SideEffects additional_side_effects = SideEffects::None()) : HTemplateInstruction( SideEffects::ArrayWriteOfType(expected_component_type).Union( SideEffectsForArchRuntimeCalls(value->GetType())).Union( additional_side_effects), dex_pc) { SetPackedField<ExpectedComponentTypeField>(expected_component_type); SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot); SetPackedFlag<kFlagValueCanBeNull>(true); SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); SetRawInputAt(0, array); SetRawInputAt(1, index); SetRawInputAt(2, value); } bool NeedsEnvironment() const OVERRIDE { // We call a runtime method to throw ArrayStoreException. return NeedsTypeCheck(); } // Can throw ArrayStoreException. bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); } bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { // TODO: Same as for ArrayGet. return false; } void ClearNeedsTypeCheck() { SetPackedFlag<kFlagNeedsTypeCheck>(false); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } void SetStaticTypeOfArrayIsObjectArray() { SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } bool StaticTypeOfArrayIsObjectArray() const { return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); } HInstruction* GetArray() const { return InputAt(0); } HInstruction* GetIndex() const { return InputAt(1); } HInstruction* GetValue() const { return InputAt(2); } Primitive::Type GetComponentType() const { // The Dex format does not type floating point index operations. Since the // `expected_component_type_` is set during building and can therefore not // be correct, we also check what is the value type. If it is a floating // point type, we must use that type. Primitive::Type value_type = GetValue()->GetType(); return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble)) ? value_type : GetRawExpectedComponentType(); } Primitive::Type GetRawExpectedComponentType() const { return GetPackedField<ExpectedComponentTypeField>(); } static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) { return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None(); } DECLARE_INSTRUCTION(ArraySet); private: static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; static constexpr size_t kFieldExpectedComponentTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kFlagNeedsTypeCheck = kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; // Cached information for the reference_type_info_ so that codegen // does not need to inspect the static type. static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; static constexpr size_t kNumberOfArraySetPackedBits = kFlagStaticTypeOfArrayIsObjectArray + 1; static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using ExpectedComponentTypeField = BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; DISALLOW_COPY_AND_ASSIGN(HArraySet); }; class HArrayLength : public HExpression<1> { public: HArrayLength(HInstruction* array, uint32_t dex_pc) : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) { // Note that arrays do not change length, so the instruction does not // depend on any write. SetRawInputAt(0, array); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { return obj == InputAt(0); } DECLARE_INSTRUCTION(ArrayLength); private: DISALLOW_COPY_AND_ASSIGN(HArrayLength); }; class HBoundsCheck : public HExpression<2> { public: // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` // constructor. HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc) : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) { DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType())); SetRawInputAt(0, index); SetRawInputAt(1, length); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } HInstruction* GetIndex() const { return InputAt(0); } DECLARE_INSTRUCTION(BoundsCheck); private: DISALLOW_COPY_AND_ASSIGN(HBoundsCheck); }; class HSuspendCheck : public HTemplateInstruction<0> { public: explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {} bool NeedsEnvironment() const OVERRIDE { return true; } void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } SlowPathCode* GetSlowPath() const { return slow_path_; } DECLARE_INSTRUCTION(SuspendCheck); private: // Only used for code generation, in order to share the same slow path between back edges // of a same loop. SlowPathCode* slow_path_; DISALLOW_COPY_AND_ASSIGN(HSuspendCheck); }; // Pseudo-instruction which provides the native debugger with mapping information. // It ensures that we can generate line number and local variables at this point. class HNativeDebugInfo : public HTemplateInstruction<0> { public: explicit HNativeDebugInfo(uint32_t dex_pc) : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {} bool NeedsEnvironment() const OVERRIDE { return true; } DECLARE_INSTRUCTION(NativeDebugInfo); private: DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo); }; /** * Instruction to load a Class object. */ class HLoadClass : public HExpression<1> { public: HLoadClass(HCurrentMethod* current_method, uint16_t type_index, const DexFile& dex_file, bool is_referrers_class, uint32_t dex_pc, bool needs_access_check, bool is_in_dex_cache) : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), type_index_(type_index), dex_file_(dex_file), loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) { // Referrers class should not need access check. We never inline unverified // methods so we can't possibly end up in this situation. DCHECK(!is_referrers_class || !needs_access_check); SetPackedFlag<kFlagIsReferrersClass>(is_referrers_class); SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache); SetPackedFlag<kFlagGenerateClInitCheck>(false); SetRawInputAt(0, current_method); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { // Note that we don't need to test for generate_clinit_check_. // Whether or not we need to generate the clinit check is processed in // prepare_for_register_allocator based on existing HInvokes and HClinitChecks. return other->AsLoadClass()->type_index_ == type_index_ && other->AsLoadClass()->GetPackedFields() == GetPackedFields(); } size_t ComputeHashCode() const OVERRIDE { return type_index_; } uint16_t GetTypeIndex() const { return type_index_; } bool CanBeNull() const OVERRIDE { return false; } bool NeedsEnvironment() const OVERRIDE { return CanCallRuntime(); } void SetMustGenerateClinitCheck(bool generate_clinit_check) { // The entrypoint the code generator is going to call does not do // clinit of the class. DCHECK(!NeedsAccessCheck()); SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); } bool CanCallRuntime() const { return MustGenerateClinitCheck() || (!IsReferrersClass() && !IsInDexCache()) || NeedsAccessCheck(); } bool CanThrow() const OVERRIDE { return CanCallRuntime(); } ReferenceTypeInfo GetLoadedClassRTI() { return loaded_class_rti_; } void SetLoadedClassRTI(ReferenceTypeInfo rti) { // Make sure we only set exact types (the loaded class should never be merged). DCHECK(rti.IsExact()); loaded_class_rti_ = rti; } const DexFile& GetDexFile() { return dex_file_; } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); } static SideEffects SideEffectsForArchRuntimeCalls() { return SideEffects::CanTriggerGC(); } bool IsReferrersClass() const { return GetPackedFlag<kFlagIsReferrersClass>(); } bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } DECLARE_INSTRUCTION(LoadClass); private: static constexpr size_t kFlagIsReferrersClass = kNumberOfExpressionPackedBits; static constexpr size_t kFlagNeedsAccessCheck = kFlagIsReferrersClass + 1; static constexpr size_t kFlagIsInDexCache = kFlagNeedsAccessCheck + 1; // Whether this instruction must generate the initialization check. // Used for code generation. static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInDexCache + 1; static constexpr size_t kNumberOfLoadClassPackedBits = kFlagGenerateClInitCheck + 1; static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); const uint16_t type_index_; const DexFile& dex_file_; ReferenceTypeInfo loaded_class_rti_; DISALLOW_COPY_AND_ASSIGN(HLoadClass); }; class HLoadString : public HExpression<1> { public: // Determines how to load the String. enum class LoadKind { // Use boot image String* address that will be known at link time. // Used for boot image strings referenced by boot image code in non-PIC mode. kBootImageLinkTimeAddress, // Use PC-relative boot image String* address that will be known at link time. // Used for boot image strings referenced by boot image code in PIC mode. kBootImageLinkTimePcRelative, // Use a known boot image String* address, embedded in the code by the codegen. // Used for boot image strings referenced by apps in AOT- and JIT-compiled code. // Note: codegen needs to emit a linker patch if indicated by compiler options' // GetIncludePatchInformation(). kBootImageAddress, // Load from the resolved strings array at an absolute address. // Used for strings outside the boot image referenced by JIT-compiled code. kDexCacheAddress, // Load from resolved strings array in the dex cache using a PC-relative load. // Used for strings outside boot image when we know that we can access // the dex cache arrays using a PC-relative load. kDexCachePcRelative, // Load from resolved strings array accessed through the class loaded from // the compiled method's own ArtMethod*. This is the default access type when // all other types are unavailable. kDexCacheViaMethod, kLast = kDexCacheViaMethod }; HLoadString(HCurrentMethod* current_method, uint32_t string_index, const DexFile& dex_file, uint32_t dex_pc) : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), string_index_(string_index) { SetPackedFlag<kFlagIsInDexCache>(false); SetPackedField<LoadKindField>(LoadKind::kDexCacheViaMethod); load_data_.ref.dex_file = &dex_file; SetRawInputAt(0, current_method); } void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) { DCHECK(HasAddress(load_kind)); load_data_.address = address; SetLoadKindInternal(load_kind); } void SetLoadKindWithStringReference(LoadKind load_kind, const DexFile& dex_file, uint32_t string_index) { DCHECK(HasStringReference(load_kind)); load_data_.ref.dex_file = &dex_file; string_index_ = string_index; SetLoadKindInternal(load_kind); } void SetLoadKindWithDexCacheReference(LoadKind load_kind, const DexFile& dex_file, uint32_t element_index) { DCHECK(HasDexCacheReference(load_kind)); load_data_.ref.dex_file = &dex_file; load_data_.ref.dex_cache_element_index = element_index; SetLoadKindInternal(load_kind); } LoadKind GetLoadKind() const { return GetPackedField<LoadKindField>(); } const DexFile& GetDexFile() const; uint32_t GetStringIndex() const { DCHECK(HasStringReference(GetLoadKind()) || /* For slow paths. */ !IsInDexCache()); return string_index_; } uint32_t GetDexCacheElementOffset() const; uint64_t GetAddress() const { DCHECK(HasAddress(GetLoadKind())); return load_data_.address; } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other) const OVERRIDE; size_t ComputeHashCode() const OVERRIDE { return string_index_; } // Will call the runtime if we need to load the string through // the dex cache and the string is not guaranteed to be there yet. bool NeedsEnvironment() const OVERRIDE { LoadKind load_kind = GetLoadKind(); if (load_kind == LoadKind::kBootImageLinkTimeAddress || load_kind == LoadKind::kBootImageLinkTimePcRelative || load_kind == LoadKind::kBootImageAddress) { return false; } return !IsInDexCache(); } bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return GetLoadKind() == LoadKind::kDexCacheViaMethod; } bool CanBeNull() const OVERRIDE { return false; } bool CanThrow() const OVERRIDE { return NeedsEnvironment(); } static SideEffects SideEffectsForArchRuntimeCalls() { return SideEffects::CanTriggerGC(); } bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } void MarkInDexCache() { SetPackedFlag<kFlagIsInDexCache>(true); DCHECK(!NeedsEnvironment()); RemoveEnvironment(); SetSideEffects(SideEffects::None()); } size_t InputCount() const OVERRIDE { return (InputAt(0) != nullptr) ? 1u : 0u; } void AddSpecialInput(HInstruction* special_input); DECLARE_INSTRUCTION(LoadString); private: static constexpr size_t kFlagIsInDexCache = kNumberOfExpressionPackedBits; static constexpr size_t kFieldLoadKind = kFlagIsInDexCache + 1; static constexpr size_t kFieldLoadKindSize = MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; static bool HasStringReference(LoadKind load_kind) { return load_kind == LoadKind::kBootImageLinkTimeAddress || load_kind == LoadKind::kBootImageLinkTimePcRelative || load_kind == LoadKind::kDexCacheViaMethod; } static bool HasAddress(LoadKind load_kind) { return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress; } static bool HasDexCacheReference(LoadKind load_kind) { return load_kind == LoadKind::kDexCachePcRelative; } void SetLoadKindInternal(LoadKind load_kind); // String index serves also as the hash code and it's also needed for slow-paths, // so it must not be overwritten with other load data. uint32_t string_index_; union { struct { const DexFile* dex_file; // For string reference and dex cache reference. uint32_t dex_cache_element_index; // Only for dex cache reference. } ref; uint64_t address; // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets. } load_data_; DISALLOW_COPY_AND_ASSIGN(HLoadString); }; std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); // Note: defined outside class to see operator<<(., HLoadString::LoadKind). inline const DexFile& HLoadString::GetDexFile() const { DCHECK(HasStringReference(GetLoadKind()) || HasDexCacheReference(GetLoadKind())) << GetLoadKind(); return *load_data_.ref.dex_file; } // Note: defined outside class to see operator<<(., HLoadString::LoadKind). inline uint32_t HLoadString::GetDexCacheElementOffset() const { DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind(); return load_data_.ref.dex_cache_element_index; } // Note: defined outside class to see operator<<(., HLoadString::LoadKind). inline void HLoadString::AddSpecialInput(HInstruction* special_input) { // The special input is used for PC-relative loads on some architectures. DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || GetLoadKind() == LoadKind::kDexCachePcRelative) << GetLoadKind(); DCHECK(InputAt(0) == nullptr); SetRawInputAt(0u, special_input); special_input->AddUseAt(this, 0); } /** * Performs an initialization check on its Class object input. */ class HClinitCheck : public HExpression<1> { public: HClinitCheck(HLoadClass* constant, uint32_t dex_pc) : HExpression( Primitive::kPrimNot, SideEffects::AllChanges(), // Assume write/read on all fields/arrays. dex_pc) { SetRawInputAt(0, constant); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { // May call runtime to initialize the class. return true; } bool CanThrow() const OVERRIDE { return true; } HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); } DECLARE_INSTRUCTION(ClinitCheck); private: DISALLOW_COPY_AND_ASSIGN(HClinitCheck); }; class HStaticFieldGet : public HExpression<1> { public: HStaticFieldGet(HInstruction* cls, Primitive::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, uint32_t dex_pc) : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), field_info_(field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file, dex_cache) { SetRawInputAt(0, cls); } bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } bool InstructionDataEquals(HInstruction* other) const OVERRIDE { HStaticFieldGet* other_get = other->AsStaticFieldGet(); return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); } size_t ComputeHashCode() const OVERRIDE { return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } DECLARE_INSTRUCTION(StaticFieldGet); private: const FieldInfo field_info_; DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet); }; class HStaticFieldSet : public HTemplateInstruction<2> { public: HStaticFieldSet(HInstruction* cls, HInstruction* value, Primitive::Type field_type, MemberOffset field_offset, bool is_volatile, uint32_t field_idx, uint16_t declaring_class_def_index, const DexFile& dex_file, Handle<mirror::DexCache> dex_cache, uint32_t dex_pc) : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), field_info_(field_offset, field_type, is_volatile, field_idx, declaring_class_def_index, dex_file, dex_cache) { SetPackedFlag<kFlagValueCanBeNull>(true); SetRawInputAt(0, cls); SetRawInputAt(1, value); } const FieldInfo& GetFieldInfo() const { return field_info_; } MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } bool IsVolatile() const { return field_info_.IsVolatile(); } HInstruction* GetValue() const { return InputAt(1); } bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } DECLARE_INSTRUCTION(StaticFieldSet); private: static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); const FieldInfo field_info_; DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet); }; class HUnresolvedInstanceFieldGet : public HExpression<1> { public: HUnresolvedInstanceFieldGet(HInstruction* obj, Primitive::Type field_type, uint32_t field_index, uint32_t dex_pc) : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetRawInputAt(0, obj); } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } Primitive::Type GetFieldType() const { return GetType(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); private: const uint32_t field_index_; DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet); }; class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> { public: HUnresolvedInstanceFieldSet(HInstruction* obj, HInstruction* value, Primitive::Type field_type, uint32_t field_index, uint32_t dex_pc) : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetPackedField<FieldTypeField>(field_type); DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType())); SetRawInputAt(0, obj); SetRawInputAt(1, value); } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); private: static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = kFieldFieldType + kFieldFieldTypeSize; static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; const uint32_t field_index_; DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet); }; class HUnresolvedStaticFieldGet : public HExpression<0> { public: HUnresolvedStaticFieldGet(Primitive::Type field_type, uint32_t field_index, uint32_t dex_pc) : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } Primitive::Type GetFieldType() const { return GetType(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); private: const uint32_t field_index_; DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet); }; class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> { public: HUnresolvedStaticFieldSet(HInstruction* value, Primitive::Type field_type, uint32_t field_index, uint32_t dex_pc) : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), field_index_(field_index) { SetPackedField<FieldTypeField>(field_type); DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType())); SetRawInputAt(0, value); } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } uint32_t GetFieldIndex() const { return field_index_; } DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); private: static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldFieldTypeSize = MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = kFieldFieldType + kFieldFieldTypeSize; static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; const uint32_t field_index_; DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet); }; // Implement the move-exception DEX instruction. class HLoadException : public HExpression<0> { public: explicit HLoadException(uint32_t dex_pc = kNoDexPc) : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {} bool CanBeNull() const OVERRIDE { return false; } DECLARE_INSTRUCTION(LoadException); private: DISALLOW_COPY_AND_ASSIGN(HLoadException); }; // Implicit part of move-exception which clears thread-local exception storage. // Must not be removed because the runtime expects the TLS to get cleared. class HClearException : public HTemplateInstruction<0> { public: explicit HClearException(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {} DECLARE_INSTRUCTION(ClearException); private: DISALLOW_COPY_AND_ASSIGN(HClearException); }; class HThrow : public HTemplateInstruction<1> { public: HThrow(HInstruction* exception, uint32_t dex_pc) : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { SetRawInputAt(0, exception); } bool IsControlFlow() const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { return true; } DECLARE_INSTRUCTION(Throw); private: DISALLOW_COPY_AND_ASSIGN(HThrow); }; /** * Implementation strategies for the code generator of a HInstanceOf * or `HCheckCast`. */ enum class TypeCheckKind { kUnresolvedCheck, // Check against an unresolved type. kExactCheck, // Can do a single class compare. kClassHierarchyCheck, // Can just walk the super class chain. kAbstractClassCheck, // Can just walk the super class chain, starting one up. kInterfaceCheck, // No optimization yet when checking against an interface. kArrayObjectCheck, // Can just check if the array is not primitive. kArrayCheck, // No optimization yet when checking against a generic array. kLast = kArrayCheck }; std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); class HInstanceOf : public HExpression<2> { public: HInstanceOf(HInstruction* object, HLoadClass* constant, TypeCheckKind check_kind, uint32_t dex_pc) : HExpression(Primitive::kPrimBoolean, SideEffectsForArchRuntimeCalls(check_kind), dex_pc) { SetPackedField<TypeCheckKindField>(check_kind); SetPackedFlag<kFlagMustDoNullCheck>(true); SetRawInputAt(0, object); SetRawInputAt(1, constant); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { return CanCallRuntime(GetTypeCheckKind()); } // Used only in code generation. bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } static bool CanCallRuntime(TypeCheckKind check_kind) { // Mips currently does runtime calls for any other checks. return check_kind != TypeCheckKind::kExactCheck; } static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); } DECLARE_INSTRUCTION(InstanceOf); private: static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits; static constexpr size_t kFieldTypeCheckKindSize = MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1; static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; DISALLOW_COPY_AND_ASSIGN(HInstanceOf); }; class HBoundType : public HExpression<1> { public: HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc), upper_bound_(ReferenceTypeInfo::CreateInvalid()) { SetPackedFlag<kFlagUpperCanBeNull>(true); SetPackedFlag<kFlagCanBeNull>(true); DCHECK_EQ(input->GetType(), Primitive::kPrimNot); SetRawInputAt(0, input); } // {Get,Set}Upper* should only be used in reference type propagation. const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); void SetCanBeNull(bool can_be_null) { DCHECK(GetUpperCanBeNull() || !can_be_null); SetPackedFlag<kFlagCanBeNull>(can_be_null); } bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } DECLARE_INSTRUCTION(BoundType); private: // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this // is false then CanBeNull() cannot be true). static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits; static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); // Encodes the most upper class that this instruction can have. In other words // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). // It is used to bound the type in cases like: // if (x instanceof ClassX) { // // uper_bound_ will be ClassX // } ReferenceTypeInfo upper_bound_; DISALLOW_COPY_AND_ASSIGN(HBoundType); }; class HCheckCast : public HTemplateInstruction<2> { public: HCheckCast(HInstruction* object, HLoadClass* constant, TypeCheckKind check_kind, uint32_t dex_pc) : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { SetPackedField<TypeCheckKindField>(check_kind); SetPackedFlag<kFlagMustDoNullCheck>(true); SetRawInputAt(0, object); SetRawInputAt(1, constant); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool NeedsEnvironment() const OVERRIDE { // Instruction may throw a CheckCastError. return true; } bool CanThrow() const OVERRIDE { return true; } bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } DECLARE_INSTRUCTION(CheckCast); private: static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; static constexpr size_t kFieldTypeCheckKindSize = MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1; static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; DISALLOW_COPY_AND_ASSIGN(HCheckCast); }; class HMemoryBarrier : public HTemplateInstruction<0> { public: explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction( SideEffects::AllWritesAndReads(), dex_pc) { // Assume write/read on all fields/arrays. SetPackedField<BarrierKindField>(barrier_kind); } MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } DECLARE_INSTRUCTION(MemoryBarrier); private: static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldBarrierKindSize = MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); static constexpr size_t kNumberOfMemoryBarrierPackedBits = kFieldBarrierKind + kFieldBarrierKindSize; static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier); }; class HMonitorOperation : public HTemplateInstruction<1> { public: enum class OperationKind { kEnter, kExit, kLast = kExit }; HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) : HTemplateInstruction( SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. dex_pc) { SetPackedField<OperationKindField>(kind); SetRawInputAt(0, object); } // Instruction may go into runtime, so we need an environment. bool NeedsEnvironment() const OVERRIDE { return true; } bool CanThrow() const OVERRIDE { // Verifier guarantees that monitor-exit cannot throw. // This is important because it allows the HGraphBuilder to remove // a dead throw-catch loop generated for `synchronized` blocks/methods. return IsEnter(); } OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } DECLARE_INSTRUCTION(MonitorOperation); private: static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; static constexpr size_t kFieldOperationKindSize = MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); static constexpr size_t kNumberOfMonitorOperationPackedBits = kFieldOperationKind + kFieldOperationKindSize; static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, "Too many packed fields."); using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; private: DISALLOW_COPY_AND_ASSIGN(HMonitorOperation); }; class HSelect : public HExpression<3> { public: HSelect(HInstruction* condition, HInstruction* true_value, HInstruction* false_value, uint32_t dex_pc) : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); // First input must be `true_value` or `false_value` to allow codegens to // use the SameAsFirstInput allocation policy. We make it `false_value`, so // that architectures which implement HSelect as a conditional move also // will not need to invert the condition. SetRawInputAt(0, false_value); SetRawInputAt(1, true_value); SetRawInputAt(2, condition); } HInstruction* GetFalseValue() const { return InputAt(0); } HInstruction* GetTrueValue() const { return InputAt(1); } HInstruction* GetCondition() const { return InputAt(2); } bool CanBeMoved() const OVERRIDE { return true; } bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } bool CanBeNull() const OVERRIDE { return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); } DECLARE_INSTRUCTION(Select); private: DISALLOW_COPY_AND_ASSIGN(HSelect); }; class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { public: MoveOperands(Location source, Location destination, Primitive::Type type, HInstruction* instruction) : source_(source), destination_(destination), type_(type), instruction_(instruction) {} Location GetSource() const { return source_; } Location GetDestination() const { return destination_; } void SetSource(Location value) { source_ = value; } void SetDestination(Location value) { destination_ = value; } // The parallel move resolver marks moves as "in-progress" by clearing the // destination (but not the source). Location MarkPending() { DCHECK(!IsPending()); Location dest = destination_; destination_ = Location::NoLocation(); return dest; } void ClearPending(Location dest) { DCHECK(IsPending()); destination_ = dest; } bool IsPending() const { DCHECK(source_.IsValid() || destination_.IsInvalid()); return destination_.IsInvalid() && source_.IsValid(); } // True if this blocks a move from the given location. bool Blocks(Location loc) const { return !IsEliminated() && source_.OverlapsWith(loc); } // A move is redundant if it's been eliminated, if its source and // destination are the same, or if its destination is unneeded. bool IsRedundant() const { return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); } // We clear both operands to indicate move that's been eliminated. void Eliminate() { source_ = destination_ = Location::NoLocation(); } bool IsEliminated() const { DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); return source_.IsInvalid(); } Primitive::Type GetType() const { return type_; } bool Is64BitMove() const { return Primitive::Is64BitType(type_); } HInstruction* GetInstruction() const { return instruction_; } private: Location source_; Location destination_; // The type this move is for. Primitive::Type type_; // The instruction this move is assocatied with. Null when this move is // for moving an input in the expected locations of user (including a phi user). // This is only used in debug mode, to ensure we do not connect interval siblings // in the same parallel move. HInstruction* instruction_; }; std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); static constexpr size_t kDefaultNumberOfMoves = 4; class HParallelMove : public HTemplateInstruction<0> { public: explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc), moves_(arena->Adapter(kArenaAllocMoveOperands)) { moves_.reserve(kDefaultNumberOfMoves); } void AddMove(Location source, Location destination, Primitive::Type type, HInstruction* instruction) { DCHECK(source.IsValid()); DCHECK(destination.IsValid()); if (kIsDebugBuild) { if (instruction != nullptr) { for (const MoveOperands& move : moves_) { if (move.GetInstruction() == instruction) { // Special case the situation where the move is for the spill slot // of the instruction. if ((GetPrevious() == instruction) || ((GetPrevious() == nullptr) && instruction->IsPhi() && instruction->GetBlock() == GetBlock())) { DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) << "Doing parallel moves for the same instruction."; } else { DCHECK(false) << "Doing parallel moves for the same instruction."; } } } } for (const MoveOperands& move : moves_) { DCHECK(!destination.OverlapsWith(move.GetDestination())) << "Overlapped destination for two moves in a parallel move: " << move.GetSource() << " ==> " << move.GetDestination() << " and " << source << " ==> " << destination; } } moves_.emplace_back(source, destination, type, instruction); } MoveOperands* MoveOperandsAt(size_t index) { return &moves_[index]; } size_t NumMoves() const { return moves_.size(); } DECLARE_INSTRUCTION(ParallelMove); private: ArenaVector<MoveOperands> moves_; DISALLOW_COPY_AND_ASSIGN(HParallelMove); }; } // namespace art #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) #include "nodes_shared.h" #endif #ifdef ART_ENABLE_CODEGEN_arm #include "nodes_arm.h" #endif #ifdef ART_ENABLE_CODEGEN_arm64 #include "nodes_arm64.h" #endif #ifdef ART_ENABLE_CODEGEN_x86 #include "nodes_x86.h" #endif namespace art { class HGraphVisitor : public ValueObject { public: explicit HGraphVisitor(HGraph* graph) : graph_(graph) {} virtual ~HGraphVisitor() {} virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} virtual void VisitBasicBlock(HBasicBlock* block); // Visit the graph following basic block insertion order. void VisitInsertionOrder(); // Visit the graph following dominator tree reverse post-order. void VisitReversePostOrder(); HGraph* GetGraph() const { return graph_; } // Visit functions for instruction classes. #define DECLARE_VISIT_INSTRUCTION(name, super) \ virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION private: HGraph* const graph_; DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); }; class HGraphDelegateVisitor : public HGraphVisitor { public: explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {} virtual ~HGraphDelegateVisitor() {} // Visit functions that delegate to to super class. #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); } FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION private: DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); }; class HInsertionOrderIterator : public ValueObject { public: explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {} bool Done() const { return index_ == graph_.GetBlocks().size(); } HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; } void Advance() { ++index_; } private: const HGraph& graph_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator); }; class HReversePostOrderIterator : public ValueObject { public: explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) { // Check that reverse post order of the graph has been built. DCHECK(!graph.GetReversePostOrder().empty()); } bool Done() const { return index_ == graph_.GetReversePostOrder().size(); } HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; } void Advance() { ++index_; } private: const HGraph& graph_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator); }; class HPostOrderIterator : public ValueObject { public: explicit HPostOrderIterator(const HGraph& graph) : graph_(graph), index_(graph_.GetReversePostOrder().size()) { // Check that reverse post order of the graph has been built. DCHECK(!graph.GetReversePostOrder().empty()); } bool Done() const { return index_ == 0; } HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; } void Advance() { --index_; } private: const HGraph& graph_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator); }; class HLinearPostOrderIterator : public ValueObject { public: explicit HLinearPostOrderIterator(const HGraph& graph) : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {} bool Done() const { return index_ == 0; } HBasicBlock* Current() const { return order_[index_ - 1u]; } void Advance() { --index_; DCHECK_GE(index_, 0U); } private: const ArenaVector<HBasicBlock*>& order_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator); }; class HLinearOrderIterator : public ValueObject { public: explicit HLinearOrderIterator(const HGraph& graph) : order_(graph.GetLinearOrder()), index_(0) {} bool Done() const { return index_ == order_.size(); } HBasicBlock* Current() const { return order_[index_]; } void Advance() { ++index_; } private: const ArenaVector<HBasicBlock*>& order_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator); }; // Iterator over the blocks that art part of the loop. Includes blocks part // of an inner loop. The order in which the blocks are iterated is on their // block id. class HBlocksInLoopIterator : public ValueObject { public: explicit HBlocksInLoopIterator(const HLoopInformation& info) : blocks_in_loop_(info.GetBlocks()), blocks_(info.GetHeader()->GetGraph()->GetBlocks()), index_(0) { if (!blocks_in_loop_.IsBitSet(index_)) { Advance(); } } bool Done() const { return index_ == blocks_.size(); } HBasicBlock* Current() const { return blocks_[index_]; } void Advance() { ++index_; for (size_t e = blocks_.size(); index_ < e; ++index_) { if (blocks_in_loop_.IsBitSet(index_)) { break; } } } private: const BitVector& blocks_in_loop_; const ArenaVector<HBasicBlock*>& blocks_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); }; // Iterator over the blocks that art part of the loop. Includes blocks part // of an inner loop. The order in which the blocks are iterated is reverse // post order. class HBlocksInLoopReversePostOrderIterator : public ValueObject { public: explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) : blocks_in_loop_(info.GetBlocks()), blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), index_(0) { if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { Advance(); } } bool Done() const { return index_ == blocks_.size(); } HBasicBlock* Current() const { return blocks_[index_]; } void Advance() { ++index_; for (size_t e = blocks_.size(); index_ < e; ++index_) { if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { break; } } } private: const BitVector& blocks_in_loop_; const ArenaVector<HBasicBlock*>& blocks_; size_t index_; DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); }; inline int64_t Int64FromConstant(HConstant* constant) { if (constant->IsIntConstant()) { return constant->AsIntConstant()->GetValue(); } else if (constant->IsLongConstant()) { return constant->AsLongConstant()->GetValue(); } else { DCHECK(constant->IsNullConstant()) << constant->DebugName(); return 0; } } inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { // For the purposes of the compiler, the dex files must actually be the same object // if we want to safely treat them as the same. This is especially important for JIT // as custom class loaders can open the same underlying file (or memory) multiple // times and provide different class resolution but no two class loaders should ever // use the same DexFile object - doing so is an unsupported hack that can lead to // all sorts of weird failures. return &lhs == &rhs; } #define INSTRUCTION_TYPE_CHECK(type, super) \ inline bool HInstruction::Is##type() const { return GetKind() == k##type; } \ inline const H##type* HInstruction::As##type() const { \ return Is##type() ? down_cast<const H##type*>(this) : nullptr; \ } \ inline H##type* HInstruction::As##type() { \ return Is##type() ? static_cast<H##type*>(this) : nullptr; \ } FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) #undef INSTRUCTION_TYPE_CHECK // Create space in `blocks` for adding `number_of_new_blocks` entries // starting at location `at`. Blocks after `at` are moved accordingly. inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, size_t number_of_new_blocks, size_t after) { DCHECK_LT(after, blocks->size()); size_t old_size = blocks->size(); size_t new_size = old_size + number_of_new_blocks; blocks->resize(new_size); std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); } } // namespace art #endif // ART_COMPILER_OPTIMIZING_NODES_H_