/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_mips64.h" #include "base/bit_utils.h" #include "base/casts.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "memory_region.h" #include "thread.h" namespace art { namespace mips64 { void Mips64Assembler::FinalizeCode() { for (auto& exception_block : exception_blocks_) { EmitExceptionPoll(&exception_block); } PromoteBranches(); } void Mips64Assembler::FinalizeInstructions(const MemoryRegion& region) { EmitBranches(); Assembler::FinalizeInstructions(region); PatchCFI(); } void Mips64Assembler::PatchCFI() { if (cfi().NumberOfDelayedAdvancePCs() == 0u) { return; } typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC; const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC(); const std::vector<uint8_t>& old_stream = data.first; const std::vector<DelayedAdvancePC>& advances = data.second; // Refill our data buffer with patched opcodes. cfi().ReserveCFIStream(old_stream.size() + advances.size() + 16); size_t stream_pos = 0; for (const DelayedAdvancePC& advance : advances) { DCHECK_GE(advance.stream_pos, stream_pos); // Copy old data up to the point where advance was issued. cfi().AppendRawData(old_stream, stream_pos, advance.stream_pos); stream_pos = advance.stream_pos; // Insert the advance command with its final offset. size_t final_pc = GetAdjustedPosition(advance.pc); cfi().AdvancePC(final_pc); } // Copy the final segment if any. cfi().AppendRawData(old_stream, stream_pos, old_stream.size()); } void Mips64Assembler::EmitBranches() { CHECK(!overwriting_); // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (branch placeholders) in the buffer. overwriting_ = true; for (auto& branch : branches_) { EmitBranch(&branch); } overwriting_ = false; } void Mips64Assembler::Emit(uint32_t value) { if (overwriting_) { // Branches to labels are emitted into their placeholders here. buffer_.Store<uint32_t>(overwrite_location_, value); overwrite_location_ += sizeof(uint32_t); } else { // Other instructions are simply appended at the end here. AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit<uint32_t>(value); } } void Mips64Assembler::EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rt, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(ZERO) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct) { CHECK_NE(rt, kNoGpuRegister); CHECK_NE(rd, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(ZERO) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void Mips64Assembler::EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm) { CHECK_NE(rs, kNoGpuRegister); CHECK_NE(rt, kNoGpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | imm; Emit(encoding); } void Mips64Assembler::EmitI21(int opcode, GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, kNoGpuRegister); CHECK(IsUint<21>(imm21)) << imm21; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | imm21; Emit(encoding); } void Mips64Assembler::EmitI26(int opcode, uint32_t imm26) { CHECK(IsUint<26>(imm26)) << imm26; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26; Emit(encoding); } void Mips64Assembler::EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct) { CHECK_NE(ft, kNoFpuRegister); CHECK_NE(fs, kNoFpuRegister); CHECK_NE(fd, kNoFpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | static_cast<uint32_t>(fs) << kFsShift | static_cast<uint32_t>(fd) << kFdShift | funct; Emit(encoding); } void Mips64Assembler::EmitFI(int opcode, int fmt, FpuRegister ft, uint16_t imm) { CHECK_NE(ft, kNoFpuRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | imm; Emit(encoding); } void Mips64Assembler::Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x21); } void Mips64Assembler::Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x9, rs, rt, imm16); } void Mips64Assembler::Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2d); } void Mips64Assembler::Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x19, rs, rt, imm16); } void Mips64Assembler::Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x23); } void Mips64Assembler::Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2f); } void Mips64Assembler::MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x18); } void Mips64Assembler::MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x18); } void Mips64Assembler::DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1a); } void Mips64Assembler::ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1a); } void Mips64Assembler::DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1b); } void Mips64Assembler::ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1b); } void Mips64Assembler::Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1c); } void Mips64Assembler::Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1c); } void Mips64Assembler::Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1e); } void Mips64Assembler::Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1e); } void Mips64Assembler::Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 2, 0x1f); } void Mips64Assembler::Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 3, 0x1f); } void Mips64Assembler::And(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x24); } void Mips64Assembler::Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xc, rs, rt, imm16); } void Mips64Assembler::Or(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x25); } void Mips64Assembler::Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xd, rs, rt, imm16); } void Mips64Assembler::Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x26); } void Mips64Assembler::Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xe, rs, rt, imm16); } void Mips64Assembler::Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x27); } void Mips64Assembler::Bitswap(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x0, 0x20); } void Mips64Assembler::Dbitswap(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x0, 0x24); } void Mips64Assembler::Seb(GpuRegister rd, GpuRegister rt) { EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x10, 0x20); } void Mips64Assembler::Seh(GpuRegister rd, GpuRegister rt) { EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x18, 0x20); } void Mips64Assembler::Dsbh(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x2, 0x24); } void Mips64Assembler::Dshd(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 0x5, 0x24); } void Mips64Assembler::Dext(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(IsUint<5>(size - 1)) << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(size - 1), pos, 0x3); } void Mips64Assembler::Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size) { CHECK(IsUint<5>(pos - 32)) << pos; CHECK(IsUint<5>(size - 1)) << size; CHECK(IsUint<5>(pos + size - 33)) << pos << " + " << size; EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 33), pos - 32, 0x6); } void Mips64Assembler::Wsbh(GpuRegister rd, GpuRegister rt) { EmitRtd(0x1f, rt, rd, 2, 0x20); } void Mips64Assembler::Sc(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x26); } void Mips64Assembler::Scd(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x27); } void Mips64Assembler::Ll(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x36); } void Mips64Assembler::Lld(GpuRegister rt, GpuRegister base, int16_t imm9) { CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x37); } void Mips64Assembler::Sll(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x00); } void Mips64Assembler::Srl(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x02); } void Mips64Assembler::Rotr(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x02); } void Mips64Assembler::Sra(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x03); } void Mips64Assembler::Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x04); } void Mips64Assembler::Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 1, 0x06); } void Mips64Assembler::Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x06); } void Mips64Assembler::Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x07); } void Mips64Assembler::Dsll(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x38); } void Mips64Assembler::Dsrl(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3a); } void Mips64Assembler::Drotr(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3a); } void Mips64Assembler::Dsra(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3b); } void Mips64Assembler::Dsll32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3c); } void Mips64Assembler::Dsrl32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3e); } void Mips64Assembler::Drotr32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3e); } void Mips64Assembler::Dsra32(GpuRegister rd, GpuRegister rt, int shamt) { EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3f); } void Mips64Assembler::Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x14); } void Mips64Assembler::Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x16); } void Mips64Assembler::Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 1, 0x16); } void Mips64Assembler::Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs) { EmitR(0, rs, rt, rd, 0, 0x17); } void Mips64Assembler::Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x20, rs, rt, imm16); } void Mips64Assembler::Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x21, rs, rt, imm16); } void Mips64Assembler::Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x23, rs, rt, imm16); } void Mips64Assembler::Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x37, rs, rt, imm16); } void Mips64Assembler::Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x24, rs, rt, imm16); } void Mips64Assembler::Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x25, rs, rt, imm16); } void Mips64Assembler::Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x27, rs, rt, imm16); } void Mips64Assembler::Lui(GpuRegister rt, uint16_t imm16) { EmitI(0xf, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Dahi(GpuRegister rs, uint16_t imm16) { EmitI(1, rs, static_cast<GpuRegister>(6), imm16); } void Mips64Assembler::Dati(GpuRegister rs, uint16_t imm16) { EmitI(1, rs, static_cast<GpuRegister>(0x1e), imm16); } void Mips64Assembler::Sync(uint32_t stype) { EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), stype & 0x1f, 0xf); } void Mips64Assembler::Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x28, rs, rt, imm16); } void Mips64Assembler::Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x29, rs, rt, imm16); } void Mips64Assembler::Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x2b, rs, rt, imm16); } void Mips64Assembler::Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0x3f, rs, rt, imm16); } void Mips64Assembler::Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2a); } void Mips64Assembler::Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x2b); } void Mips64Assembler::Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xa, rs, rt, imm16); } void Mips64Assembler::Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) { EmitI(0xb, rs, rt, imm16); } void Mips64Assembler::Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x35); } void Mips64Assembler::Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt) { EmitR(0, rs, rt, rd, 0, 0x37); } void Mips64Assembler::Clz(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x10); } void Mips64Assembler::Clo(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x11); } void Mips64Assembler::Dclz(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x12); } void Mips64Assembler::Dclo(GpuRegister rd, GpuRegister rs) { EmitRsd(0, rs, rd, 0x01, 0x13); } void Mips64Assembler::Jalr(GpuRegister rd, GpuRegister rs) { EmitR(0, rs, static_cast<GpuRegister>(0), rd, 0, 0x09); } void Mips64Assembler::Jalr(GpuRegister rs) { Jalr(RA, rs); } void Mips64Assembler::Jr(GpuRegister rs) { Jalr(ZERO, rs); } void Mips64Assembler::Auipc(GpuRegister rs, uint16_t imm16) { EmitI(0x3B, rs, static_cast<GpuRegister>(0x1E), imm16); } void Mips64Assembler::Addiupc(GpuRegister rs, uint32_t imm19) { CHECK(IsUint<19>(imm19)) << imm19; EmitI21(0x3B, rs, imm19); } void Mips64Assembler::Bc(uint32_t imm26) { EmitI26(0x32, imm26); } void Mips64Assembler::Jic(GpuRegister rt, uint16_t imm16) { EmitI(0x36, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Jialc(GpuRegister rt, uint16_t imm16) { EmitI(0x3E, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x17, rs, rt, imm16); } void Mips64Assembler::Bltzc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x17, rt, rt, imm16); } void Mips64Assembler::Bgtzc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x17, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x16, rs, rt, imm16); } void Mips64Assembler::Bgezc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x16, rt, rt, imm16); } void Mips64Assembler::Blezc(GpuRegister rt, uint16_t imm16) { CHECK_NE(rt, ZERO); EmitI(0x16, static_cast<GpuRegister>(0), rt, imm16); } void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x7, rs, rt, imm16); } void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x6, rs, rt, imm16); } void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16); } void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16) { CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16); } void Mips64Assembler::Beqzc(GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, ZERO); EmitI21(0x36, rs, imm21); } void Mips64Assembler::Bnezc(GpuRegister rs, uint32_t imm21) { CHECK_NE(rs, ZERO); EmitI21(0x3E, rs, imm21); } void Mips64Assembler::Bc1eqz(FpuRegister ft, uint16_t imm16) { EmitFI(0x11, 0x9, ft, imm16); } void Mips64Assembler::Bc1nez(FpuRegister ft, uint16_t imm16) { EmitFI(0x11, 0xD, ft, imm16); } void Mips64Assembler::EmitBcondc(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21) { switch (cond) { case kCondLT: Bltc(rs, rt, imm16_21); break; case kCondGE: Bgec(rs, rt, imm16_21); break; case kCondLE: Bgec(rt, rs, imm16_21); break; case kCondGT: Bltc(rt, rs, imm16_21); break; case kCondLTZ: CHECK_EQ(rt, ZERO); Bltzc(rs, imm16_21); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgezc(rs, imm16_21); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blezc(rs, imm16_21); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtzc(rs, imm16_21); break; case kCondEQ: Beqc(rs, rt, imm16_21); break; case kCondNE: Bnec(rs, rt, imm16_21); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqzc(rs, imm16_21); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnezc(rs, imm16_21); break; case kCondLTU: Bltuc(rs, rt, imm16_21); break; case kCondGEU: Bgeuc(rs, rt, imm16_21); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1eqz(static_cast<FpuRegister>(rs), imm16_21); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1nez(static_cast<FpuRegister>(rs), imm16_21); break; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void Mips64Assembler::AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x0); } void Mips64Assembler::SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1); } void Mips64Assembler::MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x2); } void Mips64Assembler::DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x3); } void Mips64Assembler::AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x0); } void Mips64Assembler::SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1); } void Mips64Assembler::MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x2); } void Mips64Assembler::DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x3); } void Mips64Assembler::SqrtS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x4); } void Mips64Assembler::SqrtD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x4); } void Mips64Assembler::AbsS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x5); } void Mips64Assembler::AbsD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x5); } void Mips64Assembler::MovS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x6); } void Mips64Assembler::MovD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x6); } void Mips64Assembler::NegS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x7); } void Mips64Assembler::NegD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x7); } void Mips64Assembler::RoundLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x8); } void Mips64Assembler::RoundLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x8); } void Mips64Assembler::RoundWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xc); } void Mips64Assembler::RoundWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xc); } void Mips64Assembler::TruncLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x9); } void Mips64Assembler::TruncLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x9); } void Mips64Assembler::TruncWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xd); } void Mips64Assembler::TruncWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xd); } void Mips64Assembler::CeilLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xa); } void Mips64Assembler::CeilLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xa); } void Mips64Assembler::CeilWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xe); } void Mips64Assembler::CeilWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xe); } void Mips64Assembler::FloorLS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xb); } void Mips64Assembler::FloorLD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xb); } void Mips64Assembler::FloorWS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xf); } void Mips64Assembler::FloorWD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xf); } void Mips64Assembler::SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x10); } void Mips64Assembler::SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x10); } void Mips64Assembler::RintS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1a); } void Mips64Assembler::RintD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1a); } void Mips64Assembler::ClassS(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1b); } void Mips64Assembler::ClassD(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1b); } void Mips64Assembler::MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1c); } void Mips64Assembler::MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1c); } void Mips64Assembler::MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1e); } void Mips64Assembler::MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1e); } void Mips64Assembler::CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x01); } void Mips64Assembler::CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x02); } void Mips64Assembler::CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x03); } void Mips64Assembler::CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x04); } void Mips64Assembler::CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x05); } void Mips64Assembler::CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x06); } void Mips64Assembler::CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x07); } void Mips64Assembler::CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x11); } void Mips64Assembler::CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x12); } void Mips64Assembler::CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x14, ft, fs, fd, 0x13); } void Mips64Assembler::CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x01); } void Mips64Assembler::CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x02); } void Mips64Assembler::CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x03); } void Mips64Assembler::CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x04); } void Mips64Assembler::CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x05); } void Mips64Assembler::CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x06); } void Mips64Assembler::CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x07); } void Mips64Assembler::CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x11); } void Mips64Assembler::CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x12); } void Mips64Assembler::CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) { EmitFR(0x11, 0x15, ft, fs, fd, 0x13); } void Mips64Assembler::Cvtsw(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtdw(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Cvtsd(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtds(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Cvtsl(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x20); } void Mips64Assembler::Cvtdl(FpuRegister fd, FpuRegister fs) { EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x21); } void Mips64Assembler::Mfc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x00, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mfhc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x03, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mtc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x04, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Mthc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x07, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Dmfc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x01, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Dmtc1(GpuRegister rt, FpuRegister fs) { EmitFR(0x11, 0x05, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0); } void Mips64Assembler::Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x31, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x35, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x39, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) { EmitI(0x3d, rs, static_cast<GpuRegister>(ft), imm16); } void Mips64Assembler::Break() { EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), 0, 0xD); } void Mips64Assembler::Nop() { EmitR(0x0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), static_cast<GpuRegister>(0), 0, 0x0); } void Mips64Assembler::Move(GpuRegister rd, GpuRegister rs) { Or(rd, rs, ZERO); } void Mips64Assembler::Clear(GpuRegister rd) { Move(rd, ZERO); } void Mips64Assembler::Not(GpuRegister rd, GpuRegister rs) { Nor(rd, rs, ZERO); } void Mips64Assembler::LoadConst32(GpuRegister rd, int32_t value) { if (IsUint<16>(value)) { // Use OR with (unsigned) immediate to encode 16b unsigned int. Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { // Use ADD with (signed) immediate to encode 16b signed int. Addiu(rd, ZERO, value); } else { Lui(rd, value >> 16); if (value & 0xFFFF) Ori(rd, rd, value); } } void Mips64Assembler::LoadConst64(GpuRegister rd, int64_t value) { int bit31 = (value & UINT64_C(0x80000000)) != 0; // Loads with 1 instruction. if (IsUint<16>(value)) { Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { Daddiu(rd, ZERO, value); } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) { Lui(rd, value >> 16); } else if (IsInt<32>(value)) { // Loads with 2 instructions. Lui(rd, value >> 16); Ori(rd, rd, value); } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) { Ori(rd, ZERO, value); Dahi(rd, value >> 32); } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) { Ori(rd, ZERO, value); Dati(rd, value >> 48); } else if ((value & 0xFFFF) == 0 && (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) { Lui(rd, value >> 16); Dahi(rd, (value >> 32) + bit31); } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { Lui(rd, value >> 16); Dati(rd, (value >> 48) + bit31); } else if (IsPowerOfTwo(value + UINT64_C(1))) { int shift_cnt = 64 - CTZ(value + UINT64_C(1)); Daddiu(rd, ZERO, -1); if (shift_cnt < 32) { Dsrl(rd, rd, shift_cnt); } else { Dsrl32(rd, rd, shift_cnt & 31); } } else { int shift_cnt = CTZ(value); int64_t tmp = value >> shift_cnt; if (IsUint<16>(tmp)) { Ori(rd, ZERO, tmp); if (shift_cnt < 32) { Dsll(rd, rd, shift_cnt); } else { Dsll32(rd, rd, shift_cnt & 31); } } else if (IsInt<16>(tmp)) { Daddiu(rd, ZERO, tmp); if (shift_cnt < 32) { Dsll(rd, rd, shift_cnt); } else { Dsll32(rd, rd, shift_cnt & 31); } } else if (IsInt<32>(tmp)) { // Loads with 3 instructions. Lui(rd, tmp >> 16); Ori(rd, rd, tmp); if (shift_cnt < 32) { Dsll(rd, rd, shift_cnt); } else { Dsll32(rd, rd, shift_cnt & 31); } } else { shift_cnt = 16 + CTZ(value >> 16); tmp = value >> shift_cnt; if (IsUint<16>(tmp)) { Ori(rd, ZERO, tmp); if (shift_cnt < 32) { Dsll(rd, rd, shift_cnt); } else { Dsll32(rd, rd, shift_cnt & 31); } Ori(rd, rd, value); } else if (IsInt<16>(tmp)) { Daddiu(rd, ZERO, tmp); if (shift_cnt < 32) { Dsll(rd, rd, shift_cnt); } else { Dsll32(rd, rd, shift_cnt & 31); } Ori(rd, rd, value); } else { // Loads with 3-4 instructions. uint64_t tmp2 = value; bool used_lui = false; if (((tmp2 >> 16) & 0xFFFF) != 0 || (tmp2 & 0xFFFFFFFF) == 0) { Lui(rd, tmp2 >> 16); used_lui = true; } if ((tmp2 & 0xFFFF) != 0) { if (used_lui) { Ori(rd, rd, tmp2); } else { Ori(rd, ZERO, tmp2); } } if (bit31) { tmp2 += UINT64_C(0x100000000); } if (((tmp2 >> 32) & 0xFFFF) != 0) { Dahi(rd, tmp2 >> 32); } if (tmp2 & UINT64_C(0x800000000000)) { tmp2 += UINT64_C(0x1000000000000); } if ((tmp2 >> 48) != 0) { Dati(rd, tmp2 >> 48); } } } } } void Mips64Assembler::Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp) { if (IsInt<16>(value)) { Daddiu(rt, rs, value); } else { LoadConst64(rtmp, value); Daddu(rt, rs, rtmp); } } void Mips64Assembler::Branch::InitShortOrLong(Mips64Assembler::Branch::OffsetBits offset_size, Mips64Assembler::Branch::Type short_type, Mips64Assembler::Branch::Type long_type) { type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type; } void Mips64Assembler::Branch::InitializeType(bool is_call) { OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_); if (is_call) { InitShortOrLong(offset_size, kCall, kLongCall); } else if (condition_ == kUncond) { InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch); } else { if (condition_ == kCondEQZ || condition_ == kCondNEZ) { // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions. type_ = (offset_size <= kOffset23) ? kCondBranch : kLongCondBranch; } else { InitShortOrLong(offset_size, kCondBranch, kLongCondBranch); } } old_type_ = type_; } bool Mips64Assembler::Branch::IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { switch (condition) { case kCondLT: case kCondGT: case kCondNE: case kCondLTU: return lhs == rhs; default: return false; } } bool Mips64Assembler::Branch::IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { switch (condition) { case kUncond: return true; case kCondGE: case kCondLE: case kCondEQ: case kCondGEU: return lhs == rhs; default: return false; } } Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target) : old_location_(location), location_(location), target_(target), lhs_reg_(ZERO), rhs_reg_(ZERO), condition_(kUncond) { InitializeType(false); } Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target, Mips64Assembler::BranchCondition condition, GpuRegister lhs_reg, GpuRegister rhs_reg) : old_location_(location), location_(location), target_(target), lhs_reg_(lhs_reg), rhs_reg_(rhs_reg), condition_(condition) { CHECK_NE(condition, kUncond); switch (condition) { case kCondEQ: case kCondNE: case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: CHECK_NE(lhs_reg, ZERO); CHECK_NE(rhs_reg, ZERO); break; case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQZ: case kCondNEZ: CHECK_NE(lhs_reg, ZERO); CHECK_EQ(rhs_reg, ZERO); break; case kCondF: case kCondT: CHECK_EQ(rhs_reg, ZERO); break; case kUncond: UNREACHABLE(); } CHECK(!IsNop(condition, lhs_reg, rhs_reg)); if (IsUncond(condition, lhs_reg, rhs_reg)) { // Branch condition is always true, make the branch unconditional. condition_ = kUncond; } InitializeType(false); } Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target, GpuRegister indirect_reg) : old_location_(location), location_(location), target_(target), lhs_reg_(indirect_reg), rhs_reg_(ZERO), condition_(kUncond) { CHECK_NE(indirect_reg, ZERO); CHECK_NE(indirect_reg, AT); InitializeType(true); } Mips64Assembler::BranchCondition Mips64Assembler::Branch::OppositeCondition( Mips64Assembler::BranchCondition cond) { switch (cond) { case kCondLT: return kCondGE; case kCondGE: return kCondLT; case kCondLE: return kCondGT; case kCondGT: return kCondLE; case kCondLTZ: return kCondGEZ; case kCondGEZ: return kCondLTZ; case kCondLEZ: return kCondGTZ; case kCondGTZ: return kCondLEZ; case kCondEQ: return kCondNE; case kCondNE: return kCondEQ; case kCondEQZ: return kCondNEZ; case kCondNEZ: return kCondEQZ; case kCondLTU: return kCondGEU; case kCondGEU: return kCondLTU; case kCondF: return kCondT; case kCondT: return kCondF; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; } UNREACHABLE(); } Mips64Assembler::Branch::Type Mips64Assembler::Branch::GetType() const { return type_; } Mips64Assembler::BranchCondition Mips64Assembler::Branch::GetCondition() const { return condition_; } GpuRegister Mips64Assembler::Branch::GetLeftRegister() const { return lhs_reg_; } GpuRegister Mips64Assembler::Branch::GetRightRegister() const { return rhs_reg_; } uint32_t Mips64Assembler::Branch::GetTarget() const { return target_; } uint32_t Mips64Assembler::Branch::GetLocation() const { return location_; } uint32_t Mips64Assembler::Branch::GetOldLocation() const { return old_location_; } uint32_t Mips64Assembler::Branch::GetLength() const { return branch_info_[type_].length; } uint32_t Mips64Assembler::Branch::GetOldLength() const { return branch_info_[old_type_].length; } uint32_t Mips64Assembler::Branch::GetSize() const { return GetLength() * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetOldSize() const { return GetOldLength() * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetEndLocation() const { return GetLocation() + GetSize(); } uint32_t Mips64Assembler::Branch::GetOldEndLocation() const { return GetOldLocation() + GetOldSize(); } bool Mips64Assembler::Branch::IsLong() const { switch (type_) { // Short branches. case kUncondBranch: case kCondBranch: case kCall: return false; // Long branches. case kLongUncondBranch: case kLongCondBranch: case kLongCall: return true; } UNREACHABLE(); } bool Mips64Assembler::Branch::IsResolved() const { return target_ != kUnresolved; } Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSize() const { OffsetBits offset_size = (type_ == kCondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ)) ? kOffset23 : branch_info_[type_].offset_size; return offset_size; } Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSizeNeeded(uint32_t location, uint32_t target) { // For unresolved targets assume the shortest encoding // (later it will be made longer if needed). if (target == kUnresolved) return kOffset16; int64_t distance = static_cast<int64_t>(target) - location; // To simplify calculations in composite branches consisting of multiple instructions // bump up the distance by a value larger than the max byte size of a composite branch. distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize; if (IsInt<kOffset16>(distance)) return kOffset16; else if (IsInt<kOffset18>(distance)) return kOffset18; else if (IsInt<kOffset21>(distance)) return kOffset21; else if (IsInt<kOffset23>(distance)) return kOffset23; else if (IsInt<kOffset28>(distance)) return kOffset28; return kOffset32; } void Mips64Assembler::Branch::Resolve(uint32_t target) { target_ = target; } void Mips64Assembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) { if (location_ > expand_location) { location_ += delta; } if (!IsResolved()) { return; // Don't know the target yet. } if (target_ > expand_location) { target_ += delta; } } void Mips64Assembler::Branch::PromoteToLong() { switch (type_) { // Short branches. case kUncondBranch: type_ = kLongUncondBranch; break; case kCondBranch: type_ = kLongCondBranch; break; case kCall: type_ = kLongCall; break; default: // Note: 'type_' is already long. break; } CHECK(IsLong()); } uint32_t Mips64Assembler::Branch::PromoteIfNeeded(uint32_t max_short_distance) { // If the branch is still unresolved or already long, nothing to do. if (IsLong() || !IsResolved()) { return 0; } // Promote the short branch to long if the offset size is too small // to hold the distance between location_ and target_. if (GetOffsetSizeNeeded(location_, target_) > GetOffsetSize()) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } // The following logic is for debugging/testing purposes. // Promote some short branches to long when it's not really required. if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max())) { int64_t distance = static_cast<int64_t>(target_) - location_; distance = (distance >= 0) ? distance : -distance; if (distance >= max_short_distance) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } } return 0; } uint32_t Mips64Assembler::Branch::GetOffsetLocation() const { return location_ + branch_info_[type_].instr_offset * sizeof(uint32_t); } uint32_t Mips64Assembler::Branch::GetOffset() const { CHECK(IsResolved()); uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize()); // Calculate the byte distance between instructions and also account for // different PC-relative origins. uint32_t offset = target_ - GetOffsetLocation() - branch_info_[type_].pc_org * sizeof(uint32_t); // Prepare the offset for encoding into the instruction(s). offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift; return offset; } Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } const Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) const { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } void Mips64Assembler::Bind(Mips64Label* label) { CHECK(!label->IsBound()); uint32_t bound_pc = buffer_.Size(); // Walk the list of branches referring to and preceding this label. // Store the previously unknown target addresses in them. while (label->IsLinked()) { uint32_t branch_id = label->Position(); Branch* branch = GetBranch(branch_id); branch->Resolve(bound_pc); uint32_t branch_location = branch->GetLocation(); // Extract the location of the previous branch in the list (walking the list backwards; // the previous branch ID was stored in the space reserved for this branch). uint32_t prev = buffer_.Load<uint32_t>(branch_location); // On to the previous branch in the list... label->position_ = prev; } // Now make the label object contain its own location (relative to the end of the preceding // branch, if any; it will be used by the branches referring to and following this label). label->prev_branch_id_plus_one_ = branches_.size(); if (label->prev_branch_id_plus_one_) { uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); bound_pc -= branch->GetEndLocation(); } label->BindTo(bound_pc); } uint32_t Mips64Assembler::GetLabelLocation(Mips64Label* label) const { CHECK(label->IsBound()); uint32_t target = label->Position(); if (label->prev_branch_id_plus_one_) { // Get label location based on the branch preceding it. uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); target += branch->GetEndLocation(); } return target; } uint32_t Mips64Assembler::GetAdjustedPosition(uint32_t old_position) { // We can reconstruct the adjustment by going through all the branches from the beginning // up to the old_position. Since we expect AdjustedPosition() to be called in a loop // with increasing old_position, we can use the data from last AdjustedPosition() to // continue where we left off and the whole loop should be O(m+n) where m is the number // of positions to adjust and n is the number of branches. if (old_position < last_old_position_) { last_position_adjustment_ = 0; last_old_position_ = 0; last_branch_id_ = 0; } while (last_branch_id_ != branches_.size()) { const Branch* branch = GetBranch(last_branch_id_); if (branch->GetLocation() >= old_position + last_position_adjustment_) { break; } last_position_adjustment_ += branch->GetSize() - branch->GetOldSize(); ++last_branch_id_; } last_old_position_ = old_position; return old_position + last_position_adjustment_; } void Mips64Assembler::FinalizeLabeledBranch(Mips64Label* label) { uint32_t length = branches_.back().GetLength(); if (!label->IsBound()) { // Branch forward (to a following label), distance is unknown. // The first branch forward will contain 0, serving as the terminator of // the list of forward-reaching branches. Emit(label->position_); length--; // Now make the label object point to this branch // (this forms a linked list of branches preceding this label). uint32_t branch_id = branches_.size() - 1; label->LinkTo(branch_id); } // Reserve space for the branch. while (length--) { Nop(); } } void Mips64Assembler::Buncond(Mips64Label* label) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(buffer_.Size(), target); FinalizeLabeledBranch(label); } void Mips64Assembler::Bcond(Mips64Label* label, BranchCondition condition, GpuRegister lhs, GpuRegister rhs) { // If lhs = rhs, this can be a NOP. if (Branch::IsNop(condition, lhs, rhs)) { return; } uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(buffer_.Size(), target, condition, lhs, rhs); FinalizeLabeledBranch(label); } void Mips64Assembler::Call(Mips64Label* label, GpuRegister indirect_reg) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(buffer_.Size(), target, indirect_reg); FinalizeLabeledBranch(label); } void Mips64Assembler::PromoteBranches() { // Promote short branches to long as necessary. bool changed; do { changed = false; for (auto& branch : branches_) { CHECK(branch.IsResolved()); uint32_t delta = branch.PromoteIfNeeded(); // If this branch has been promoted and needs to expand in size, // relocate all branches by the expansion size. if (delta) { changed = true; uint32_t expand_location = branch.GetLocation(); for (auto& branch2 : branches_) { branch2.Relocate(expand_location, delta); } } } } while (changed); // Account for branch expansion by resizing the code buffer // and moving the code in it to its final location. size_t branch_count = branches_.size(); if (branch_count > 0) { // Resize. Branch& last_branch = branches_[branch_count - 1]; uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation(); uint32_t old_size = buffer_.Size(); buffer_.Resize(old_size + size_delta); // Move the code residing between branch placeholders. uint32_t end = old_size; for (size_t i = branch_count; i > 0; ) { Branch& branch = branches_[--i]; uint32_t size = end - branch.GetOldEndLocation(); buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size); end = branch.GetOldLocation(); } } } // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. const Mips64Assembler::Branch::BranchInfo Mips64Assembler::Branch::branch_info_[] = { // Short branches. { 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kUncondBranch { 2, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kCondBranch // Exception: kOffset23 for beqzc/bnezc { 2, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kCall // Long branches. { 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongUncondBranch { 3, 1, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCondBranch { 3, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCall }; // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. void Mips64Assembler::EmitBranch(Mips64Assembler::Branch* branch) { CHECK(overwriting_); overwrite_location_ = branch->GetLocation(); uint32_t offset = branch->GetOffset(); BranchCondition condition = branch->GetCondition(); GpuRegister lhs = branch->GetLeftRegister(); GpuRegister rhs = branch->GetRightRegister(); switch (branch->GetType()) { // Short branches. case Branch::kUncondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kCondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondc(condition, lhs, rhs, offset); Nop(); // TODO: improve by filling the forbidden/delay slot. break; case Branch::kCall: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiupc(lhs, offset); Jialc(lhs, 0); break; // Long branches. case Branch::kLongUncondBranch: offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kLongCondBranch: EmitBcondc(Branch::OppositeCondition(condition), lhs, rhs, 2); offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kLongCall: offset += (offset & 0x8000) << 1; // Account for sign extension in daddiu. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(lhs, High16Bits(offset)); Daddiu(lhs, lhs, Low16Bits(offset)); Jialc(lhs, 0); break; } CHECK_EQ(overwrite_location_, branch->GetEndLocation()); CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize)); } void Mips64Assembler::Bc(Mips64Label* label) { Buncond(label); } void Mips64Assembler::Jialc(Mips64Label* label, GpuRegister indirect_reg) { Call(label, indirect_reg); } void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondLT, rs, rt); } void Mips64Assembler::Bltzc(GpuRegister rt, Mips64Label* label) { Bcond(label, kCondLTZ, rt); } void Mips64Assembler::Bgtzc(GpuRegister rt, Mips64Label* label) { Bcond(label, kCondGTZ, rt); } void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondGE, rs, rt); } void Mips64Assembler::Bgezc(GpuRegister rt, Mips64Label* label) { Bcond(label, kCondGEZ, rt); } void Mips64Assembler::Blezc(GpuRegister rt, Mips64Label* label) { Bcond(label, kCondLEZ, rt); } void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondLTU, rs, rt); } void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondGEU, rs, rt); } void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondEQ, rs, rt); } void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label) { Bcond(label, kCondNE, rs, rt); } void Mips64Assembler::Beqzc(GpuRegister rs, Mips64Label* label) { Bcond(label, kCondEQZ, rs); } void Mips64Assembler::Bnezc(GpuRegister rs, Mips64Label* label) { Bcond(label, kCondNEZ, rs); } void Mips64Assembler::Bc1eqz(FpuRegister ft, Mips64Label* label) { Bcond(label, kCondF, static_cast<GpuRegister>(ft), ZERO); } void Mips64Assembler::Bc1nez(FpuRegister ft, Mips64Label* label) { Bcond(label, kCondT, static_cast<GpuRegister>(ft), ZERO); } void Mips64Assembler::LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset) { if (!IsInt<16>(offset) || (type == kLoadDoubleword && !IsAligned<kMips64DoublewordSize>(offset) && !IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) { LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1)); Daddu(AT, AT, base); base = AT; offset &= (kMips64DoublewordSize - 1); } switch (type) { case kLoadSignedByte: Lb(reg, base, offset); break; case kLoadUnsignedByte: Lbu(reg, base, offset); break; case kLoadSignedHalfword: Lh(reg, base, offset); break; case kLoadUnsignedHalfword: Lhu(reg, base, offset); break; case kLoadWord: CHECK_ALIGNED(offset, kMips64WordSize); Lw(reg, base, offset); break; case kLoadUnsignedWord: CHECK_ALIGNED(offset, kMips64WordSize); Lwu(reg, base, offset); break; case kLoadDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Lwu(reg, base, offset); Lwu(TMP2, base, offset + kMips64WordSize); Dinsu(reg, TMP2, 32, 32); } else { Ld(reg, base, offset); } break; } } void Mips64Assembler::LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset) { if (!IsInt<16>(offset) || (type == kLoadDoubleword && !IsAligned<kMips64DoublewordSize>(offset) && !IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) { LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1)); Daddu(AT, AT, base); base = AT; offset &= (kMips64DoublewordSize - 1); } switch (type) { case kLoadWord: CHECK_ALIGNED(offset, kMips64WordSize); Lwc1(reg, base, offset); break; case kLoadDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Lwc1(reg, base, offset); Lw(TMP2, base, offset + kMips64WordSize); Mthc1(TMP2, reg); } else { Ldc1(reg, base, offset); } break; default: LOG(FATAL) << "UNREACHABLE"; } } void Mips64Assembler::EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size) { Mips64ManagedRegister dst = m_dst.AsMips64(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsGpuRegister()) { if (size == 4) { LoadFromOffset(kLoadWord, dst.AsGpuRegister(), src_register, src_offset); } else if (size == 8) { CHECK_EQ(8u, size) << dst; LoadFromOffset(kLoadDoubleword, dst.AsGpuRegister(), src_register, src_offset); } else { UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8"; } } else if (dst.IsFpuRegister()) { if (size == 4) { CHECK_EQ(4u, size) << dst; LoadFpuFromOffset(kLoadWord, dst.AsFpuRegister(), src_register, src_offset); } else if (size == 8) { CHECK_EQ(8u, size) << dst; LoadFpuFromOffset(kLoadDoubleword, dst.AsFpuRegister(), src_register, src_offset); } else { UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8"; } } } void Mips64Assembler::StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset) { if (!IsInt<16>(offset) || (type == kStoreDoubleword && !IsAligned<kMips64DoublewordSize>(offset) && !IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) { LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1)); Daddu(AT, AT, base); base = AT; offset &= (kMips64DoublewordSize - 1); } switch (type) { case kStoreByte: Sb(reg, base, offset); break; case kStoreHalfword: Sh(reg, base, offset); break; case kStoreWord: CHECK_ALIGNED(offset, kMips64WordSize); Sw(reg, base, offset); break; case kStoreDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Sw(reg, base, offset); Dsrl32(TMP2, reg, 0); Sw(TMP2, base, offset + kMips64WordSize); } else { Sd(reg, base, offset); } break; default: LOG(FATAL) << "UNREACHABLE"; } } void Mips64Assembler::StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset) { if (!IsInt<16>(offset) || (type == kStoreDoubleword && !IsAligned<kMips64DoublewordSize>(offset) && !IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) { LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1)); Daddu(AT, AT, base); base = AT; offset &= (kMips64DoublewordSize - 1); } switch (type) { case kStoreWord: CHECK_ALIGNED(offset, kMips64WordSize); Swc1(reg, base, offset); break; case kStoreDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Mfhc1(TMP2, reg); Swc1(reg, base, offset); Sw(TMP2, base, offset + kMips64WordSize); } else { Sdc1(reg, base, offset); } break; default: LOG(FATAL) << "UNREACHABLE"; } } static dwarf::Reg DWARFReg(GpuRegister reg) { return dwarf::Reg::Mips64Core(static_cast<int>(reg)); } constexpr size_t kFramePointerSize = 8; void Mips64Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector<ManagedRegister>& callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); // Increase frame to required size. IncreaseFrameSize(frame_size); // Push callee saves and return address int stack_offset = frame_size - kFramePointerSize; StoreToOffset(kStoreDoubleword, RA, SP, stack_offset); cfi_.RelOffset(DWARFReg(RA), stack_offset); for (int i = callee_save_regs.size() - 1; i >= 0; --i) { stack_offset -= kFramePointerSize; GpuRegister reg = callee_save_regs.at(i).AsMips64().AsGpuRegister(); StoreToOffset(kStoreDoubleword, reg, SP, stack_offset); cfi_.RelOffset(DWARFReg(reg), stack_offset); } // Write out Method*. StoreToOffset(kStoreDoubleword, method_reg.AsMips64().AsGpuRegister(), SP, 0); // Write out entry spills. int32_t offset = frame_size + kFramePointerSize; for (size_t i = 0; i < entry_spills.size(); ++i) { Mips64ManagedRegister reg = entry_spills.at(i).AsMips64(); ManagedRegisterSpill spill = entry_spills.at(i); int32_t size = spill.getSize(); if (reg.IsNoRegister()) { // only increment stack offset. offset += size; } else if (reg.IsFpuRegister()) { StoreFpuToOffset((size == 4) ? kStoreWord : kStoreDoubleword, reg.AsFpuRegister(), SP, offset); offset += size; } else if (reg.IsGpuRegister()) { StoreToOffset((size == 4) ? kStoreWord : kStoreDoubleword, reg.AsGpuRegister(), SP, offset); offset += size; } } } void Mips64Assembler::RemoveFrame(size_t frame_size, const std::vector<ManagedRegister>& callee_save_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); cfi_.RememberState(); // Pop callee saves and return address int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; for (size_t i = 0; i < callee_save_regs.size(); ++i) { GpuRegister reg = callee_save_regs.at(i).AsMips64().AsGpuRegister(); LoadFromOffset(kLoadDoubleword, reg, SP, stack_offset); cfi_.Restore(DWARFReg(reg)); stack_offset += kFramePointerSize; } LoadFromOffset(kLoadDoubleword, RA, SP, stack_offset); cfi_.Restore(DWARFReg(RA)); // Decrease frame to required size. DecreaseFrameSize(frame_size); // Then jump to the return address. Jr(RA); Nop(); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void Mips64Assembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); DCHECK(!overwriting_); Daddiu64(SP, SP, static_cast<int32_t>(-adjust)); cfi_.AdjustCFAOffset(adjust); } void Mips64Assembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); DCHECK(!overwriting_); Daddiu64(SP, SP, static_cast<int32_t>(adjust)); cfi_.AdjustCFAOffset(-adjust); } void Mips64Assembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { Mips64ManagedRegister src = msrc.AsMips64(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsGpuRegister()) { CHECK(size == 4 || size == 8) << size; if (size == 8) { StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); } else if (size == 4) { StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8"; } } else if (src.IsFpuRegister()) { CHECK(size == 4 || size == 8) << size; if (size == 8) { StoreFpuToOffset(kStoreDoubleword, src.AsFpuRegister(), SP, dest.Int32Value()); } else if (size == 4) { StoreFpuToOffset(kStoreWord, src.AsFpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8"; } } } void Mips64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { Mips64ManagedRegister src = msrc.AsMips64(); CHECK(src.IsGpuRegister()); StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { Mips64ManagedRegister src = msrc.AsMips64(); CHECK(src.IsGpuRegister()); StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadConst32(scratch.AsGpuRegister(), imm); StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::StoreStackOffsetToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; Daddiu64(scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); } void Mips64Assembler::StoreStackPointerToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs) { StoreToOffset(kStoreDoubleword, SP, S1, thr_offs.Int32Value()); } void Mips64Assembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { Mips64ManagedRegister src = msrc.AsMips64(); Mips64ManagedRegister scratch = mscratch.AsMips64(); StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value() + 8); } void Mips64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { return EmitLoad(mdest, SP, src.Int32Value(), size); } void Mips64Assembler::LoadFromThread64(ManagedRegister mdest, ThreadOffset<kMips64DoublewordSize> src, size_t size) { return EmitLoad(mdest, S1, src.Int32Value(), size); } void Mips64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister()); LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), SP, src.Int32Value()); } void Mips64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister()); LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), base.AsMips64().AsGpuRegister(), offs.Int32Value()); if (kPoisonHeapReferences && unpoison_reference) { // TODO: review // Negate the 32-bit ref Dsubu(dest.AsGpuRegister(), ZERO, dest.AsGpuRegister()); // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64 Dext(dest.AsGpuRegister(), dest.AsGpuRegister(), 0, 32); } } void Mips64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister()); LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), base.AsMips64().AsGpuRegister(), offs.Int32Value()); } void Mips64Assembler::LoadRawPtrFromThread64(ManagedRegister mdest, ThreadOffset<kMips64DoublewordSize> offs) { Mips64ManagedRegister dest = mdest.AsMips64(); CHECK(dest.IsGpuRegister()); LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), S1, offs.Int32Value()); } void Mips64Assembler::SignExtend(ManagedRegister mreg ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No sign extension necessary for MIPS64"; } void Mips64Assembler::ZeroExtend(ManagedRegister mreg ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No zero extension necessary for MIPS64"; } void Mips64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { Mips64ManagedRegister dest = mdest.AsMips64(); Mips64ManagedRegister src = msrc.AsMips64(); if (!dest.Equals(src)) { if (dest.IsGpuRegister()) { CHECK(src.IsGpuRegister()) << src; Move(dest.AsGpuRegister(), src.AsGpuRegister()); } else if (dest.IsFpuRegister()) { CHECK(src.IsFpuRegister()) << src; if (size == 4) { MovS(dest.AsFpuRegister(), src.AsFpuRegister()); } else if (size == 8) { MovD(dest.AsFpuRegister(), src.AsFpuRegister()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } } } void Mips64Assembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value()); } void Mips64Assembler::CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<kMips64DoublewordSize> thr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); } void Mips64Assembler::CopyRawPtrToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value()); } void Mips64Assembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, src_base.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, src_base.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, SP, src.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, FrameOffset src_base ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { GpuRegister scratch = mscratch.AsMips64().AsGpuRegister(); CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadDoubleword, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value()); StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value()); } else { UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8"; } } void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, Offset dest_offset ATTRIBUTE_UNUSED, FrameOffset src ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::MemoryBarrier(ManagedRegister mreg ATTRIBUTE_UNUSED) { // TODO: sync? UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { Mips64ManagedRegister out_reg = mout_reg.AsMips64(); Mips64ManagedRegister in_reg = min_reg.AsMips64(); CHECK(in_reg.IsNoRegister() || in_reg.IsGpuRegister()) << in_reg; CHECK(out_reg.IsGpuRegister()) << out_reg; if (null_allowed) { Mips64Label null_arg; // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset) if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadUnsignedWord, out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsGpuRegister(), 0); } Beqzc(in_reg.AsGpuRegister(), &null_arg); Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); } } void Mips64Assembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; if (null_allowed) { Mips64Label null_arg; LoadFromOffset(kLoadUnsignedWord, scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset) Beqzc(scratch.AsGpuRegister(), &null_arg); Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value()); } StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, out_off.Int32Value()); } // Given a handle scope entry, load the associated reference. void Mips64Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { Mips64ManagedRegister out_reg = mout_reg.AsMips64(); Mips64ManagedRegister in_reg = min_reg.AsMips64(); CHECK(out_reg.IsGpuRegister()) << out_reg; CHECK(in_reg.IsGpuRegister()) << in_reg; Mips64Label null_arg; if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsGpuRegister(), 0); } Beqzc(in_reg.AsGpuRegister(), &null_arg); LoadFromOffset(kLoadDoubleword, out_reg.AsGpuRegister(), in_reg.AsGpuRegister(), 0); Bind(&null_arg); } void Mips64Assembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references } void Mips64Assembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references } void Mips64Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { Mips64ManagedRegister base = mbase.AsMips64(); Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(base.IsGpuRegister()) << base; CHECK(scratch.IsGpuRegister()) << scratch; LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), base.AsGpuRegister(), offset.Int32Value()); Jalr(scratch.AsGpuRegister()); Nop(); // TODO: place reference map on call } void Mips64Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { Mips64ManagedRegister scratch = mscratch.AsMips64(); CHECK(scratch.IsGpuRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), scratch.AsGpuRegister(), offset.Int32Value()); Jalr(scratch.AsGpuRegister()); Nop(); // TODO: place reference map on call } void Mips64Assembler::CallFromThread64(ThreadOffset<kMips64DoublewordSize> offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "No MIPS64 implementation"; } void Mips64Assembler::GetCurrentThread(ManagedRegister tr) { Move(tr.AsMips64().AsGpuRegister(), S1); } void Mips64Assembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch ATTRIBUTE_UNUSED) { StoreToOffset(kStoreDoubleword, S1, SP, offset.Int32Value()); } void Mips64Assembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { Mips64ManagedRegister scratch = mscratch.AsMips64(); exception_blocks_.emplace_back(scratch, stack_adjust); LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, Thread::ExceptionOffset<kMips64DoublewordSize>().Int32Value()); Bnezc(scratch.AsGpuRegister(), exception_blocks_.back().Entry()); } void Mips64Assembler::EmitExceptionPoll(Mips64ExceptionSlowPath* exception) { Bind(exception->Entry()); if (exception->stack_adjust_ != 0) { // Fix up the frame. DecreaseFrameSize(exception->stack_adjust_); } // Pass exception object as argument. // Don't care about preserving A0 as this call won't return. CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); Move(A0, exception->scratch_.AsGpuRegister()); // Set up call to Thread::Current()->pDeliverException LoadFromOffset(kLoadDoubleword, T9, S1, QUICK_ENTRYPOINT_OFFSET(kMips64DoublewordSize, pDeliverException).Int32Value()); Jr(T9); Nop(); // Call never returns Break(); } } // namespace mips64 } // namespace art