/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <functional> #include <iostream> #include <string> #include <vector> #include <set> #include <map> #include <unordered_set> #include "art_method-inl.h" #include "base/unix_file/fd_file.h" #include "base/stringprintf.h" #include "gc/space/image_space.h" #include "gc/heap.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "image.h" #include "scoped_thread_state_change.h" #include "os.h" #include "cmdline.h" #include "backtrace/BacktraceMap.h" #include <sys/stat.h> #include <sys/types.h> #include <signal.h> namespace art { class ImgDiagDumper { public: explicit ImgDiagDumper(std::ostream* os, const ImageHeader& image_header, const std::string& image_location, pid_t image_diff_pid, pid_t zygote_diff_pid) : os_(os), image_header_(image_header), image_location_(image_location), image_diff_pid_(image_diff_pid), zygote_diff_pid_(zygote_diff_pid) {} bool Dump() SHARED_REQUIRES(Locks::mutator_lock_) { std::ostream& os = *os_; os << "IMAGE LOCATION: " << image_location_ << "\n\n"; os << "MAGIC: " << image_header_.GetMagic() << "\n\n"; os << "IMAGE BEGIN: " << reinterpret_cast<void*>(image_header_.GetImageBegin()) << "\n\n"; bool ret = true; if (image_diff_pid_ >= 0) { os << "IMAGE DIFF PID (" << image_diff_pid_ << "): "; ret = DumpImageDiff(image_diff_pid_, zygote_diff_pid_); os << "\n\n"; } else { os << "IMAGE DIFF PID: disabled\n\n"; } os << std::flush; return ret; } private: static bool EndsWith(const std::string& str, const std::string& suffix) { return str.size() >= suffix.size() && str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0; } // Return suffix of the file path after the last /. (e.g. /foo/bar -> bar, bar -> bar) static std::string BaseName(const std::string& str) { size_t idx = str.rfind("/"); if (idx == std::string::npos) { return str; } return str.substr(idx + 1); } bool DumpImageDiff(pid_t image_diff_pid, pid_t zygote_diff_pid) SHARED_REQUIRES(Locks::mutator_lock_) { std::ostream& os = *os_; { struct stat sts; std::string proc_pid_str = StringPrintf("/proc/%ld", static_cast<long>(image_diff_pid)); // NOLINT [runtime/int] if (stat(proc_pid_str.c_str(), &sts) == -1) { os << "Process does not exist"; return false; } } // Open /proc/$pid/maps to view memory maps auto proc_maps = std::unique_ptr<BacktraceMap>(BacktraceMap::Create(image_diff_pid)); if (proc_maps == nullptr) { os << "Could not read backtrace maps"; return false; } bool found_boot_map = false; backtrace_map_t boot_map = backtrace_map_t(); // Find the memory map only for boot.art for (const backtrace_map_t& map : *proc_maps) { if (EndsWith(map.name, GetImageLocationBaseName())) { if ((map.flags & PROT_WRITE) != 0) { boot_map = map; found_boot_map = true; break; } // In actuality there's more than 1 map, but the second one is read-only. // The one we care about is the write-able map. // The readonly maps are guaranteed to be identical, so its not interesting to compare // them. } } if (!found_boot_map) { os << "Could not find map for " << GetImageLocationBaseName(); return false; } // Future idea: diff against zygote so we can ignore the shared dirty pages. return DumpImageDiffMap(image_diff_pid, zygote_diff_pid, boot_map); } static std::string PrettyFieldValue(ArtField* field, mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_) { std::ostringstream oss; switch (field->GetTypeAsPrimitiveType()) { case Primitive::kPrimNot: { oss << obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( field->GetOffset()); break; } case Primitive::kPrimBoolean: { oss << static_cast<bool>(obj->GetFieldBoolean<kVerifyNone>(field->GetOffset())); break; } case Primitive::kPrimByte: { oss << static_cast<int32_t>(obj->GetFieldByte<kVerifyNone>(field->GetOffset())); break; } case Primitive::kPrimChar: { oss << obj->GetFieldChar<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimShort: { oss << obj->GetFieldShort<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimInt: { oss << obj->GetField32<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimLong: { oss << obj->GetField64<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimFloat: { oss << obj->GetField32<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimDouble: { oss << obj->GetField64<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimVoid: { oss << "void"; break; } } return oss.str(); } // Aggregate and detail class data from an image diff. struct ClassData { int dirty_object_count = 0; // Track only the byte-per-byte dirtiness (in bytes) int dirty_object_byte_count = 0; // Track the object-by-object dirtiness (in bytes) int dirty_object_size_in_bytes = 0; int clean_object_count = 0; std::string descriptor; int false_dirty_byte_count = 0; int false_dirty_object_count = 0; std::vector<mirror::Object*> false_dirty_objects; // Remote pointers to dirty objects std::vector<mirror::Object*> dirty_objects; }; void DiffObjectContents(mirror::Object* obj, uint8_t* remote_bytes, std::ostream& os) SHARED_REQUIRES(Locks::mutator_lock_) { const char* tabs = " "; // Attempt to find fields for all dirty bytes. mirror::Class* klass = obj->GetClass(); if (obj->IsClass()) { os << tabs << "Class " << PrettyClass(obj->AsClass()) << " " << obj << "\n"; } else { os << tabs << "Instance of " << PrettyClass(klass) << " " << obj << "\n"; } std::unordered_set<ArtField*> dirty_instance_fields; std::unordered_set<ArtField*> dirty_static_fields; const uint8_t* obj_bytes = reinterpret_cast<const uint8_t*>(obj); mirror::Object* remote_obj = reinterpret_cast<mirror::Object*>(remote_bytes); for (size_t i = 0, count = obj->SizeOf(); i < count; ++i) { if (obj_bytes[i] != remote_bytes[i]) { ArtField* field = ArtField::FindInstanceFieldWithOffset</*exact*/false>(klass, i); if (field != nullptr) { dirty_instance_fields.insert(field); } else if (obj->IsClass()) { field = ArtField::FindStaticFieldWithOffset</*exact*/false>(obj->AsClass(), i); if (field != nullptr) { dirty_static_fields.insert(field); } } if (field == nullptr) { if (klass->IsArrayClass()) { mirror::Class* component_type = klass->GetComponentType(); Primitive::Type primitive_type = component_type->GetPrimitiveType(); size_t component_size = Primitive::ComponentSize(primitive_type); size_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); if (i >= data_offset) { os << tabs << "Dirty array element " << (i - data_offset) / component_size << "\n"; // Skip to next element to prevent spam. i += component_size - 1; continue; } } os << tabs << "No field for byte offset " << i << "\n"; } } } // Dump different fields. TODO: Dump field contents. if (!dirty_instance_fields.empty()) { os << tabs << "Dirty instance fields " << dirty_instance_fields.size() << "\n"; for (ArtField* field : dirty_instance_fields) { os << tabs << PrettyField(field) << " original=" << PrettyFieldValue(field, obj) << " remote=" << PrettyFieldValue(field, remote_obj) << "\n"; } } if (!dirty_static_fields.empty()) { os << tabs << "Dirty static fields " << dirty_static_fields.size() << "\n"; for (ArtField* field : dirty_static_fields) { os << tabs << PrettyField(field) << " original=" << PrettyFieldValue(field, obj) << " remote=" << PrettyFieldValue(field, remote_obj) << "\n"; } } os << "\n"; } // Look at /proc/$pid/mem and only diff the things from there bool DumpImageDiffMap(pid_t image_diff_pid, pid_t zygote_diff_pid, const backtrace_map_t& boot_map) SHARED_REQUIRES(Locks::mutator_lock_) { std::ostream& os = *os_; const size_t pointer_size = InstructionSetPointerSize( Runtime::Current()->GetInstructionSet()); std::string file_name = StringPrintf("/proc/%ld/mem", static_cast<long>(image_diff_pid)); // NOLINT [runtime/int] size_t boot_map_size = boot_map.end - boot_map.start; // Open /proc/$pid/mem as a file auto map_file = std::unique_ptr<File>(OS::OpenFileForReading(file_name.c_str())); if (map_file == nullptr) { os << "Failed to open " << file_name << " for reading"; return false; } // Memory-map /proc/$pid/mem subset from the boot map CHECK(boot_map.end >= boot_map.start); std::string error_msg; // Walk the bytes and diff against our boot image const ImageHeader& boot_image_header = image_header_; os << "\nObserving boot image header at address " << reinterpret_cast<const void*>(&boot_image_header) << "\n\n"; const uint8_t* image_begin_unaligned = boot_image_header.GetImageBegin(); const uint8_t* image_mirror_end_unaligned = image_begin_unaligned + boot_image_header.GetImageSection(ImageHeader::kSectionObjects).Size(); const uint8_t* image_end_unaligned = image_begin_unaligned + boot_image_header.GetImageSize(); // Adjust range to nearest page const uint8_t* image_begin = AlignDown(image_begin_unaligned, kPageSize); const uint8_t* image_end = AlignUp(image_end_unaligned, kPageSize); ptrdiff_t page_off_begin = boot_image_header.GetImageBegin() - image_begin; if (reinterpret_cast<uintptr_t>(image_begin) > boot_map.start || reinterpret_cast<uintptr_t>(image_end) < boot_map.end) { // Sanity check that we aren't trying to read a completely different boot image os << "Remote boot map is out of range of local boot map: " << "local begin " << reinterpret_cast<const void*>(image_begin) << ", local end " << reinterpret_cast<const void*>(image_end) << ", remote begin " << reinterpret_cast<const void*>(boot_map.start) << ", remote end " << reinterpret_cast<const void*>(boot_map.end); return false; // If we wanted even more validation we could map the ImageHeader from the file } std::vector<uint8_t> remote_contents(boot_map_size); if (!map_file->PreadFully(&remote_contents[0], boot_map_size, boot_map.start)) { os << "Could not fully read file " << file_name; return false; } std::vector<uint8_t> zygote_contents; std::unique_ptr<File> zygote_map_file; if (zygote_diff_pid != -1) { std::string zygote_file_name = StringPrintf("/proc/%ld/mem", static_cast<long>(zygote_diff_pid)); // NOLINT [runtime/int] zygote_map_file.reset(OS::OpenFileForReading(zygote_file_name.c_str())); // The boot map should be at the same address. zygote_contents.resize(boot_map_size); if (!zygote_map_file->PreadFully(&zygote_contents[0], boot_map_size, boot_map.start)) { LOG(WARNING) << "Could not fully read zygote file " << zygote_file_name; zygote_contents.clear(); } } std::string page_map_file_name = StringPrintf( "/proc/%ld/pagemap", static_cast<long>(image_diff_pid)); // NOLINT [runtime/int] auto page_map_file = std::unique_ptr<File>(OS::OpenFileForReading(page_map_file_name.c_str())); if (page_map_file == nullptr) { os << "Failed to open " << page_map_file_name << " for reading: " << strerror(errno); return false; } // Not truly clean, mmap-ing boot.art again would be more pristine, but close enough const char* clean_page_map_file_name = "/proc/self/pagemap"; auto clean_page_map_file = std::unique_ptr<File>( OS::OpenFileForReading(clean_page_map_file_name)); if (clean_page_map_file == nullptr) { os << "Failed to open " << clean_page_map_file_name << " for reading: " << strerror(errno); return false; } auto kpage_flags_file = std::unique_ptr<File>(OS::OpenFileForReading("/proc/kpageflags")); if (kpage_flags_file == nullptr) { os << "Failed to open /proc/kpageflags for reading: " << strerror(errno); return false; } auto kpage_count_file = std::unique_ptr<File>(OS::OpenFileForReading("/proc/kpagecount")); if (kpage_count_file == nullptr) { os << "Failed to open /proc/kpagecount for reading:" << strerror(errno); return false; } // Set of the remote virtual page indices that are dirty std::set<size_t> dirty_page_set_remote; // Set of the local virtual page indices that are dirty std::set<size_t> dirty_page_set_local; size_t different_int32s = 0; size_t different_bytes = 0; size_t different_pages = 0; size_t virtual_page_idx = 0; // Virtual page number (for an absolute memory address) size_t page_idx = 0; // Page index relative to 0 size_t previous_page_idx = 0; // Previous page index relative to 0 size_t dirty_pages = 0; size_t private_pages = 0; size_t private_dirty_pages = 0; // Iterate through one page at a time. Boot map begin/end already implicitly aligned. for (uintptr_t begin = boot_map.start; begin != boot_map.end; begin += kPageSize) { ptrdiff_t offset = begin - boot_map.start; // We treat the image header as part of the memory map for now // If we wanted to change this, we could pass base=start+sizeof(ImageHeader) // But it might still be interesting to see if any of the ImageHeader data mutated const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&boot_image_header) + offset; uint8_t* remote_ptr = &remote_contents[offset]; if (memcmp(local_ptr, remote_ptr, kPageSize) != 0) { different_pages++; // Count the number of 32-bit integers that are different. for (size_t i = 0; i < kPageSize / sizeof(uint32_t); ++i) { uint32_t* remote_ptr_int32 = reinterpret_cast<uint32_t*>(remote_ptr); const uint32_t* local_ptr_int32 = reinterpret_cast<const uint32_t*>(local_ptr); if (remote_ptr_int32[i] != local_ptr_int32[i]) { different_int32s++; } } } } // Iterate through one byte at a time. for (uintptr_t begin = boot_map.start; begin != boot_map.end; ++begin) { previous_page_idx = page_idx; ptrdiff_t offset = begin - boot_map.start; // We treat the image header as part of the memory map for now // If we wanted to change this, we could pass base=start+sizeof(ImageHeader) // But it might still be interesting to see if any of the ImageHeader data mutated const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&boot_image_header) + offset; uint8_t* remote_ptr = &remote_contents[offset]; virtual_page_idx = reinterpret_cast<uintptr_t>(local_ptr) / kPageSize; // Calculate the page index, relative to the 0th page where the image begins page_idx = (offset + page_off_begin) / kPageSize; if (*local_ptr != *remote_ptr) { // Track number of bytes that are different different_bytes++; } // Independently count the # of dirty pages on the remote side size_t remote_virtual_page_idx = begin / kPageSize; if (previous_page_idx != page_idx) { uint64_t page_count = 0xC0FFEE; // TODO: virtual_page_idx needs to be from the same process int dirtiness = (IsPageDirty(page_map_file.get(), // Image-diff-pid procmap clean_page_map_file.get(), // Self procmap kpage_flags_file.get(), kpage_count_file.get(), remote_virtual_page_idx, // potentially "dirty" page virtual_page_idx, // true "clean" page &page_count, &error_msg)); if (dirtiness < 0) { os << error_msg; return false; } else if (dirtiness > 0) { dirty_pages++; dirty_page_set_remote.insert(dirty_page_set_remote.end(), remote_virtual_page_idx); dirty_page_set_local.insert(dirty_page_set_local.end(), virtual_page_idx); } bool is_dirty = dirtiness > 0; bool is_private = page_count == 1; if (page_count == 1) { private_pages++; } if (is_dirty && is_private) { private_dirty_pages++; } } } std::map<mirror::Class*, ClassData> class_data; // Walk each object in the remote image space and compare it against ours size_t different_objects = 0; std::map<off_t /* field offset */, int /* count */> art_method_field_dirty_count; std::vector<ArtMethod*> art_method_dirty_objects; std::map<off_t /* field offset */, int /* count */> class_field_dirty_count; std::vector<mirror::Class*> class_dirty_objects; // List of local objects that are clean, but located on dirty pages. std::vector<mirror::Object*> false_dirty_objects; size_t false_dirty_object_bytes = 0; // Look up remote classes by their descriptor std::map<std::string, mirror::Class*> remote_class_map; // Look up local classes by their descriptor std::map<std::string, mirror::Class*> local_class_map; // Objects that are dirty against the image (possibly shared or private dirty). std::set<mirror::Object*> image_dirty_objects; // Objects that are dirty against the zygote (probably private dirty). std::set<mirror::Object*> zygote_dirty_objects; size_t dirty_object_bytes = 0; const uint8_t* begin_image_ptr = image_begin_unaligned; const uint8_t* end_image_ptr = image_mirror_end_unaligned; const uint8_t* current = begin_image_ptr + RoundUp(sizeof(ImageHeader), kObjectAlignment); while (reinterpret_cast<uintptr_t>(current) < reinterpret_cast<uintptr_t>(end_image_ptr)) { CHECK_ALIGNED(current, kObjectAlignment); mirror::Object* obj = reinterpret_cast<mirror::Object*>(const_cast<uint8_t*>(current)); // Sanity check that we are reading a real object CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; if (kUseBakerOrBrooksReadBarrier) { obj->AssertReadBarrierPointer(); } // Iterate every page this object belongs to bool on_dirty_page = false; size_t page_off = 0; size_t current_page_idx; uintptr_t object_address; do { object_address = reinterpret_cast<uintptr_t>(current); current_page_idx = object_address / kPageSize + page_off; if (dirty_page_set_local.find(current_page_idx) != dirty_page_set_local.end()) { // This object is on a dirty page on_dirty_page = true; } page_off++; } while ((current_page_idx * kPageSize) < RoundUp(object_address + obj->SizeOf(), kObjectAlignment)); mirror::Class* klass = obj->GetClass(); // Check against the other object and see if they are different ptrdiff_t offset = current - begin_image_ptr; const uint8_t* current_remote = &remote_contents[offset]; mirror::Object* remote_obj = reinterpret_cast<mirror::Object*>( const_cast<uint8_t*>(current_remote)); bool different_image_object = memcmp(current, current_remote, obj->SizeOf()) != 0; if (different_image_object) { bool different_zygote_object = false; if (!zygote_contents.empty()) { const uint8_t* zygote_ptr = &zygote_contents[offset]; different_zygote_object = memcmp(current, zygote_ptr, obj->SizeOf()) != 0; } if (different_zygote_object) { // Different from zygote. zygote_dirty_objects.insert(obj); } else { // Just different from iamge. image_dirty_objects.insert(obj); } different_objects++; dirty_object_bytes += obj->SizeOf(); ++class_data[klass].dirty_object_count; // Go byte-by-byte and figure out what exactly got dirtied size_t dirty_byte_count_per_object = 0; for (size_t i = 0; i < obj->SizeOf(); ++i) { if (current[i] != current_remote[i]) { dirty_byte_count_per_object++; } } class_data[klass].dirty_object_byte_count += dirty_byte_count_per_object; class_data[klass].dirty_object_size_in_bytes += obj->SizeOf(); class_data[klass].dirty_objects.push_back(remote_obj); } else { ++class_data[klass].clean_object_count; } std::string descriptor = GetClassDescriptor(klass); if (different_image_object) { if (klass->IsClassClass()) { // this is a "Class" mirror::Class* obj_as_class = reinterpret_cast<mirror::Class*>(remote_obj); // print the fields that are dirty for (size_t i = 0; i < obj->SizeOf(); ++i) { if (current[i] != current_remote[i]) { class_field_dirty_count[i]++; } } class_dirty_objects.push_back(obj_as_class); } else if (strcmp(descriptor.c_str(), "Ljava/lang/reflect/ArtMethod;") == 0) { // this is an ArtMethod ArtMethod* art_method = reinterpret_cast<ArtMethod*>(remote_obj); // print the fields that are dirty for (size_t i = 0; i < obj->SizeOf(); ++i) { if (current[i] != current_remote[i]) { art_method_field_dirty_count[i]++; } } art_method_dirty_objects.push_back(art_method); } } else if (on_dirty_page) { // This object was either never mutated or got mutated back to the same value. // TODO: Do I want to distinguish a "different" vs a "dirty" page here? false_dirty_objects.push_back(obj); class_data[klass].false_dirty_objects.push_back(obj); false_dirty_object_bytes += obj->SizeOf(); class_data[obj->GetClass()].false_dirty_byte_count += obj->SizeOf(); class_data[obj->GetClass()].false_dirty_object_count += 1; } if (strcmp(descriptor.c_str(), "Ljava/lang/Class;") == 0) { local_class_map[descriptor] = reinterpret_cast<mirror::Class*>(obj); remote_class_map[descriptor] = reinterpret_cast<mirror::Class*>(remote_obj); } // Unconditionally store the class descriptor in case we need it later class_data[klass].descriptor = descriptor; current += RoundUp(obj->SizeOf(), kObjectAlignment); } // Looking at only dirty pages, figure out how many of those bytes belong to dirty objects. float true_dirtied_percent = dirty_object_bytes * 1.0f / (dirty_pages * kPageSize); size_t false_dirty_pages = dirty_pages - different_pages; os << "Mapping at [" << reinterpret_cast<void*>(boot_map.start) << ", " << reinterpret_cast<void*>(boot_map.end) << ") had: \n " << different_bytes << " differing bytes, \n " << different_int32s << " differing int32s, \n " << different_objects << " different objects, \n " << dirty_object_bytes << " different object [bytes], \n " << false_dirty_objects.size() << " false dirty objects,\n " << false_dirty_object_bytes << " false dirty object [bytes], \n " << true_dirtied_percent << " different objects-vs-total in a dirty page;\n " << different_pages << " different pages; \n " << dirty_pages << " pages are dirty; \n " << false_dirty_pages << " pages are false dirty; \n " << private_pages << " pages are private; \n " << private_dirty_pages << " pages are Private_Dirty\n " << ""; // vector of pairs (int count, Class*) auto dirty_object_class_values = SortByValueDesc<mirror::Class*, int, ClassData>( class_data, [](const ClassData& d) { return d.dirty_object_count; }); auto clean_object_class_values = SortByValueDesc<mirror::Class*, int, ClassData>( class_data, [](const ClassData& d) { return d.clean_object_count; }); if (!zygote_dirty_objects.empty()) { os << "\n" << " Dirty objects compared to zygote (probably private dirty): " << zygote_dirty_objects.size() << "\n"; for (mirror::Object* obj : zygote_dirty_objects) { const uint8_t* obj_bytes = reinterpret_cast<const uint8_t*>(obj); ptrdiff_t offset = obj_bytes - begin_image_ptr; uint8_t* remote_bytes = &zygote_contents[offset]; DiffObjectContents(obj, remote_bytes, os); } } os << "\n" << " Dirty objects compared to image (private or shared dirty): " << image_dirty_objects.size() << "\n"; for (mirror::Object* obj : image_dirty_objects) { const uint8_t* obj_bytes = reinterpret_cast<const uint8_t*>(obj); ptrdiff_t offset = obj_bytes - begin_image_ptr; uint8_t* remote_bytes = &remote_contents[offset]; DiffObjectContents(obj, remote_bytes, os); } os << "\n" << " Dirty object count by class:\n"; for (const auto& vk_pair : dirty_object_class_values) { int dirty_object_count = vk_pair.first; mirror::Class* klass = vk_pair.second; int object_sizes = class_data[klass].dirty_object_size_in_bytes; float avg_dirty_bytes_per_class = class_data[klass].dirty_object_byte_count * 1.0f / object_sizes; float avg_object_size = object_sizes * 1.0f / dirty_object_count; const std::string& descriptor = class_data[klass].descriptor; os << " " << PrettyClass(klass) << " (" << "objects: " << dirty_object_count << ", " << "avg dirty bytes: " << avg_dirty_bytes_per_class << ", " << "avg object size: " << avg_object_size << ", " << "class descriptor: '" << descriptor << "'" << ")\n"; constexpr size_t kMaxAddressPrint = 5; if (strcmp(descriptor.c_str(), "Ljava/lang/reflect/ArtMethod;") == 0) { os << " sample object addresses: "; for (size_t i = 0; i < art_method_dirty_objects.size() && i < kMaxAddressPrint; ++i) { auto art_method = art_method_dirty_objects[i]; os << reinterpret_cast<void*>(art_method) << ", "; } os << "\n"; os << " dirty byte +offset:count list = "; auto art_method_field_dirty_count_sorted = SortByValueDesc<off_t, int, int>(art_method_field_dirty_count); for (auto pair : art_method_field_dirty_count_sorted) { off_t offset = pair.second; int count = pair.first; os << "+" << offset << ":" << count << ", "; } os << "\n"; os << " field contents:\n"; const auto& dirty_objects_list = class_data[klass].dirty_objects; for (mirror::Object* obj : dirty_objects_list) { // remote method auto art_method = reinterpret_cast<ArtMethod*>(obj); // remote class mirror::Class* remote_declaring_class = FixUpRemotePointer(art_method->GetDeclaringClass(), remote_contents, boot_map); // local class mirror::Class* declaring_class = RemoteContentsPointerToLocal(remote_declaring_class, remote_contents, boot_image_header); os << " " << reinterpret_cast<void*>(obj) << " "; os << " entryPointFromJni: " << reinterpret_cast<const void*>( art_method->GetEntryPointFromJniPtrSize(pointer_size)) << ", "; os << " entryPointFromQuickCompiledCode: " << reinterpret_cast<const void*>( art_method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)) << ", "; os << " isNative? " << (art_method->IsNative() ? "yes" : "no") << ", "; os << " class_status (local): " << declaring_class->GetStatus(); os << " class_status (remote): " << remote_declaring_class->GetStatus(); os << "\n"; } } if (strcmp(descriptor.c_str(), "Ljava/lang/Class;") == 0) { os << " sample object addresses: "; for (size_t i = 0; i < class_dirty_objects.size() && i < kMaxAddressPrint; ++i) { auto class_ptr = class_dirty_objects[i]; os << reinterpret_cast<void*>(class_ptr) << ", "; } os << "\n"; os << " dirty byte +offset:count list = "; auto class_field_dirty_count_sorted = SortByValueDesc<off_t, int, int>(class_field_dirty_count); for (auto pair : class_field_dirty_count_sorted) { off_t offset = pair.second; int count = pair.first; os << "+" << offset << ":" << count << ", "; } os << "\n"; os << " field contents:\n"; const auto& dirty_objects_list = class_data[klass].dirty_objects; for (mirror::Object* obj : dirty_objects_list) { // remote class object auto remote_klass = reinterpret_cast<mirror::Class*>(obj); // local class object auto local_klass = RemoteContentsPointerToLocal(remote_klass, remote_contents, boot_image_header); os << " " << reinterpret_cast<void*>(obj) << " "; os << " class_status (remote): " << remote_klass->GetStatus() << ", "; os << " class_status (local): " << local_klass->GetStatus(); os << "\n"; } } } auto false_dirty_object_class_values = SortByValueDesc<mirror::Class*, int, ClassData>( class_data, [](const ClassData& d) { return d.false_dirty_object_count; }); os << "\n" << " False-dirty object count by class:\n"; for (const auto& vk_pair : false_dirty_object_class_values) { int object_count = vk_pair.first; mirror::Class* klass = vk_pair.second; int object_sizes = class_data[klass].false_dirty_byte_count; float avg_object_size = object_sizes * 1.0f / object_count; const std::string& descriptor = class_data[klass].descriptor; os << " " << PrettyClass(klass) << " (" << "objects: " << object_count << ", " << "avg object size: " << avg_object_size << ", " << "total bytes: " << object_sizes << ", " << "class descriptor: '" << descriptor << "'" << ")\n"; if (strcmp(descriptor.c_str(), "Ljava/lang/reflect/ArtMethod;") == 0) { auto& art_method_false_dirty_objects = class_data[klass].false_dirty_objects; os << " field contents:\n"; for (mirror::Object* obj : art_method_false_dirty_objects) { // local method auto art_method = reinterpret_cast<ArtMethod*>(obj); // local class mirror::Class* declaring_class = art_method->GetDeclaringClass(); os << " " << reinterpret_cast<void*>(obj) << " "; os << " entryPointFromJni: " << reinterpret_cast<const void*>( art_method->GetEntryPointFromJniPtrSize(pointer_size)) << ", "; os << " entryPointFromQuickCompiledCode: " << reinterpret_cast<const void*>( art_method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)) << ", "; os << " isNative? " << (art_method->IsNative() ? "yes" : "no") << ", "; os << " class_status (local): " << declaring_class->GetStatus(); os << "\n"; } } } os << "\n" << " Clean object count by class:\n"; for (const auto& vk_pair : clean_object_class_values) { os << " " << PrettyClass(vk_pair.second) << " (" << vk_pair.first << ")\n"; } return true; } // Fixup a remote pointer that we read from a foreign boot.art to point to our own memory. // Returned pointer will point to inside of remote_contents. template <typename T> static T* FixUpRemotePointer(T* remote_ptr, std::vector<uint8_t>& remote_contents, const backtrace_map_t& boot_map) { if (remote_ptr == nullptr) { return nullptr; } uintptr_t remote = reinterpret_cast<uintptr_t>(remote_ptr); CHECK_LE(boot_map.start, remote); CHECK_GT(boot_map.end, remote); off_t boot_offset = remote - boot_map.start; return reinterpret_cast<T*>(&remote_contents[boot_offset]); } template <typename T> static T* RemoteContentsPointerToLocal(T* remote_ptr, std::vector<uint8_t>& remote_contents, const ImageHeader& image_header) { if (remote_ptr == nullptr) { return nullptr; } uint8_t* remote = reinterpret_cast<uint8_t*>(remote_ptr); ptrdiff_t boot_offset = remote - &remote_contents[0]; const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&image_header) + boot_offset; return reinterpret_cast<T*>(const_cast<uint8_t*>(local_ptr)); } static std::string GetClassDescriptor(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) { CHECK(klass != nullptr); std::string descriptor; const char* descriptor_str = klass->GetDescriptor(&descriptor); return std::string(descriptor_str); } template <typename K, typename V, typename D> static std::vector<std::pair<V, K>> SortByValueDesc( const std::map<K, D> map, std::function<V(const D&)> value_mapper = [](const D& d) { return static_cast<V>(d); }) { // Store value->key so that we can use the default sort from pair which // sorts by value first and then key std::vector<std::pair<V, K>> value_key_vector; for (const auto& kv_pair : map) { value_key_vector.push_back(std::make_pair(value_mapper(kv_pair.second), kv_pair.first)); } // Sort in reverse (descending order) std::sort(value_key_vector.rbegin(), value_key_vector.rend()); return value_key_vector; } static bool GetPageFrameNumber(File* page_map_file, size_t virtual_page_index, uint64_t* page_frame_number, std::string* error_msg) { CHECK(page_map_file != nullptr); CHECK(page_frame_number != nullptr); CHECK(error_msg != nullptr); constexpr size_t kPageMapEntrySize = sizeof(uint64_t); constexpr uint64_t kPageFrameNumberMask = (1ULL << 55) - 1; // bits 0-54 [in /proc/$pid/pagemap] constexpr uint64_t kPageSoftDirtyMask = (1ULL << 55); // bit 55 [in /proc/$pid/pagemap] uint64_t page_map_entry = 0; // Read 64-bit entry from /proc/$pid/pagemap to get the physical page frame number if (!page_map_file->PreadFully(&page_map_entry, kPageMapEntrySize, virtual_page_index * kPageMapEntrySize)) { *error_msg = StringPrintf("Failed to read the virtual page index entry from %s", page_map_file->GetPath().c_str()); return false; } // TODO: seems useless, remove this. bool soft_dirty = (page_map_entry & kPageSoftDirtyMask) != 0; if ((false)) { LOG(VERBOSE) << soft_dirty; // Suppress unused warning UNREACHABLE(); } *page_frame_number = page_map_entry & kPageFrameNumberMask; return true; } static int IsPageDirty(File* page_map_file, File* clean_page_map_file, File* kpage_flags_file, File* kpage_count_file, size_t virtual_page_idx, size_t clean_virtual_page_idx, // Out parameters: uint64_t* page_count, std::string* error_msg) { CHECK(page_map_file != nullptr); CHECK(clean_page_map_file != nullptr); CHECK_NE(page_map_file, clean_page_map_file); CHECK(kpage_flags_file != nullptr); CHECK(kpage_count_file != nullptr); CHECK(page_count != nullptr); CHECK(error_msg != nullptr); // Constants are from https://www.kernel.org/doc/Documentation/vm/pagemap.txt constexpr size_t kPageFlagsEntrySize = sizeof(uint64_t); constexpr size_t kPageCountEntrySize = sizeof(uint64_t); constexpr uint64_t kPageFlagsDirtyMask = (1ULL << 4); // in /proc/kpageflags constexpr uint64_t kPageFlagsNoPageMask = (1ULL << 20); // in /proc/kpageflags constexpr uint64_t kPageFlagsMmapMask = (1ULL << 11); // in /proc/kpageflags uint64_t page_frame_number = 0; if (!GetPageFrameNumber(page_map_file, virtual_page_idx, &page_frame_number, error_msg)) { return -1; } uint64_t page_frame_number_clean = 0; if (!GetPageFrameNumber(clean_page_map_file, clean_virtual_page_idx, &page_frame_number_clean, error_msg)) { return -1; } // Read 64-bit entry from /proc/kpageflags to get the dirty bit for a page uint64_t kpage_flags_entry = 0; if (!kpage_flags_file->PreadFully(&kpage_flags_entry, kPageFlagsEntrySize, page_frame_number * kPageFlagsEntrySize)) { *error_msg = StringPrintf("Failed to read the page flags from %s", kpage_flags_file->GetPath().c_str()); return -1; } // Read 64-bit entyry from /proc/kpagecount to get mapping counts for a page if (!kpage_count_file->PreadFully(page_count /*out*/, kPageCountEntrySize, page_frame_number * kPageCountEntrySize)) { *error_msg = StringPrintf("Failed to read the page count from %s", kpage_count_file->GetPath().c_str()); return -1; } // There must be a page frame at the requested address. CHECK_EQ(kpage_flags_entry & kPageFlagsNoPageMask, 0u); // The page frame must be memory mapped CHECK_NE(kpage_flags_entry & kPageFlagsMmapMask, 0u); // Page is dirty, i.e. has diverged from file, if the 4th bit is set to 1 bool flags_dirty = (kpage_flags_entry & kPageFlagsDirtyMask) != 0; // page_frame_number_clean must come from the *same* process // but a *different* mmap than page_frame_number if (flags_dirty) { CHECK_NE(page_frame_number, page_frame_number_clean); } return page_frame_number != page_frame_number_clean; } private: // Return the image location, stripped of any directories, e.g. "boot.art" or "core.art" std::string GetImageLocationBaseName() const { return BaseName(std::string(image_location_)); } std::ostream* os_; const ImageHeader& image_header_; const std::string image_location_; pid_t image_diff_pid_; // Dump image diff against boot.art if pid is non-negative pid_t zygote_diff_pid_; // Dump image diff against zygote boot.art if pid is non-negative DISALLOW_COPY_AND_ASSIGN(ImgDiagDumper); }; static int DumpImage(Runtime* runtime, std::ostream* os, pid_t image_diff_pid, pid_t zygote_diff_pid) { ScopedObjectAccess soa(Thread::Current()); gc::Heap* heap = runtime->GetHeap(); std::vector<gc::space::ImageSpace*> image_spaces = heap->GetBootImageSpaces(); CHECK(!image_spaces.empty()); for (gc::space::ImageSpace* image_space : image_spaces) { const ImageHeader& image_header = image_space->GetImageHeader(); if (!image_header.IsValid()) { fprintf(stderr, "Invalid image header %s\n", image_space->GetImageLocation().c_str()); return EXIT_FAILURE; } ImgDiagDumper img_diag_dumper(os, image_header, image_space->GetImageLocation(), image_diff_pid, zygote_diff_pid); if (!img_diag_dumper.Dump()) { return EXIT_FAILURE; } } return EXIT_SUCCESS; } struct ImgDiagArgs : public CmdlineArgs { protected: using Base = CmdlineArgs; virtual ParseStatus ParseCustom(const StringPiece& option, std::string* error_msg) OVERRIDE { { ParseStatus base_parse = Base::ParseCustom(option, error_msg); if (base_parse != kParseUnknownArgument) { return base_parse; } } if (option.starts_with("--image-diff-pid=")) { const char* image_diff_pid = option.substr(strlen("--image-diff-pid=")).data(); if (!ParseInt(image_diff_pid, &image_diff_pid_)) { *error_msg = "Image diff pid out of range"; return kParseError; } } else if (option.starts_with("--zygote-diff-pid=")) { const char* zygote_diff_pid = option.substr(strlen("--zygote-diff-pid=")).data(); if (!ParseInt(zygote_diff_pid, &zygote_diff_pid_)) { *error_msg = "Zygote diff pid out of range"; return kParseError; } } else { return kParseUnknownArgument; } return kParseOk; } virtual ParseStatus ParseChecks(std::string* error_msg) OVERRIDE { // Perform the parent checks. ParseStatus parent_checks = Base::ParseChecks(error_msg); if (parent_checks != kParseOk) { return parent_checks; } // Perform our own checks. if (kill(image_diff_pid_, /*sig*/0) != 0) { // No signal is sent, perform error-checking only. // Check if the pid exists before proceeding. if (errno == ESRCH) { *error_msg = "Process specified does not exist"; } else { *error_msg = StringPrintf("Failed to check process status: %s", strerror(errno)); } return kParseError; } else if (instruction_set_ != kRuntimeISA) { // Don't allow different ISAs since the images are ISA-specific. // Right now the code assumes both the runtime ISA and the remote ISA are identical. *error_msg = "Must use the default runtime ISA; changing ISA is not supported."; return kParseError; } return kParseOk; } virtual std::string GetUsage() const { std::string usage; usage += "Usage: imgdiag [options] ...\n" " Example: imgdiag --image-diff-pid=$(pidof dex2oat)\n" " Example: adb shell imgdiag --image-diff-pid=$(pid zygote)\n" "\n"; usage += Base::GetUsage(); usage += // Optional. " --image-diff-pid=<pid>: provide the PID of a process whose boot.art you want to diff.\n" " Example: --image-diff-pid=$(pid zygote)\n" " --zygote-diff-pid=<pid>: provide the PID of the zygote whose boot.art you want to diff " "against.\n" " Example: --zygote-diff-pid=$(pid zygote)\n" "\n"; return usage; } public: pid_t image_diff_pid_ = -1; pid_t zygote_diff_pid_ = -1; }; struct ImgDiagMain : public CmdlineMain<ImgDiagArgs> { virtual bool ExecuteWithRuntime(Runtime* runtime) { CHECK(args_ != nullptr); return DumpImage(runtime, args_->os_, args_->image_diff_pid_, args_->zygote_diff_pid_) == EXIT_SUCCESS; } }; } // namespace art int main(int argc, char** argv) { art::ImgDiagMain main; return main.Main(argc, argv); }