/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include <sys/ucontext.h> #include "art_method-inl.h" #include "base/macros.h" #include "globals.h" #include "base/logging.h" #include "base/hex_dump.h" #include "registers_arm64.h" #include "thread.h" #include "thread-inl.h" extern "C" void art_quick_throw_stack_overflow(); extern "C" void art_quick_throw_null_pointer_exception(); extern "C" void art_quick_implicit_suspend(); // // ARM64 specific fault handler functions. // namespace art { void FaultManager::HandleNestedSignal(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // To match the case used in ARM we return directly to the longjmp function // rather than through a trivial assembly language stub. struct ucontext *uc = reinterpret_cast<struct ucontext*>(context); struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext); Thread* self = Thread::Current(); CHECK(self != nullptr); // This will cause a SIGABRT if self is null. sc->regs[0] = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState()); sc->regs[1] = 1; sc->pc = reinterpret_cast<uintptr_t>(longjmp); } void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo ATTRIBUTE_UNUSED, void* context, ArtMethod** out_method, uintptr_t* out_return_pc, uintptr_t* out_sp) { struct ucontext *uc = reinterpret_cast<struct ucontext *>(context); struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext); *out_sp = static_cast<uintptr_t>(sc->sp); VLOG(signals) << "sp: " << *out_sp; if (*out_sp == 0) { return; } // In the case of a stack overflow, the stack is not valid and we can't // get the method from the top of the stack. However it's in x0. uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(sc->fault_address); uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>( reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kArm64)); if (overflow_addr == fault_addr) { *out_method = reinterpret_cast<ArtMethod*>(sc->regs[0]); } else { // The method is at the top of the stack. *out_method = *reinterpret_cast<ArtMethod**>(*out_sp); } // Work out the return PC. This will be the address of the instruction // following the faulting ldr/str instruction. VLOG(signals) << "pc: " << std::hex << static_cast<void*>(reinterpret_cast<uint8_t*>(sc->pc)); *out_return_pc = sc->pc + 4; } bool NullPointerHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // The code that looks for the catch location needs to know the value of the // PC at the point of call. For Null checks we insert a GC map that is immediately after // the load/store instruction that might cause the fault. struct ucontext *uc = reinterpret_cast<struct ucontext*>(context); struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext); sc->regs[30] = sc->pc + 4; // LR needs to point to gc map location sc->pc = reinterpret_cast<uintptr_t>(art_quick_throw_null_pointer_exception); VLOG(signals) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction sequence: // 0xf7223228: f9405640 ldr x0, [x18, #168] // .. some intervening instructions // 0xf7223230: f9400000 ldr x0, [x0] // The offset from r18 is Thread::ThreadSuspendTriggerOffset(). // To check for a suspend check, we examine the instructions that caused // the fault (at PC-4 and PC). bool SuspensionHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { // These are the instructions to check for. The first one is the ldr x0,[r18,#xxx] // where xxx is the offset of the suspend trigger. uint32_t checkinst1 = 0xf9400240 | (Thread::ThreadSuspendTriggerOffset<8>().Int32Value() << 7); uint32_t checkinst2 = 0xf9400000; struct ucontext *uc = reinterpret_cast<struct ucontext *>(context); struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext); uint8_t* ptr2 = reinterpret_cast<uint8_t*>(sc->pc); uint8_t* ptr1 = ptr2 - 4; VLOG(signals) << "checking suspend"; uint32_t inst2 = *reinterpret_cast<uint32_t*>(ptr2); VLOG(signals) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2; if (inst2 != checkinst2) { // Second instruction is not good, not ours. return false; } // The first instruction can a little bit up the stream due to load hoisting // in the compiler. uint8_t* limit = ptr1 - 80; // Compiler will hoist to a max of 20 instructions. bool found = false; while (ptr1 > limit) { uint32_t inst1 = *reinterpret_cast<uint32_t*>(ptr1); VLOG(signals) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1; if (inst1 == checkinst1) { found = true; break; } ptr1 -= 4; } if (found) { VLOG(signals) << "suspend check match"; // This is a suspend check. Arrange for the signal handler to return to // art_quick_implicit_suspend. Also set LR so that after the suspend check it // will resume the instruction (current PC + 4). PC points to the // ldr x0,[x0,#0] instruction (r0 will be 0, set by the trigger). sc->regs[30] = sc->pc + 4; sc->pc = reinterpret_cast<uintptr_t>(art_quick_implicit_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); VLOG(signals) << "removed suspend trigger invoking test suspend"; return true; } return false; } bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { struct ucontext *uc = reinterpret_cast<struct ucontext *>(context); struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext); VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; VLOG(signals) << "sigcontext: " << std::hex << sc; uintptr_t sp = sc->sp; VLOG(signals) << "sp: " << std::hex << sp; uintptr_t fault_addr = sc->fault_address; VLOG(signals) << "fault_addr: " << std::hex << fault_addr; VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << ", fault_addr: " << fault_addr; uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kArm64); // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { VLOG(signals) << "Not a stack overflow"; return false; } VLOG(signals) << "Stack overflow found"; // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. // The value of LR must be the same as it was when we entered the code that // caused this fault. This will be inserted into a callee save frame by // the function to which this handler returns (art_quick_throw_stack_overflow). sc->pc = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow); // The kernel will now return to the address in sc->pc. return true; } } // namespace art