/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_STL_UTIL_H_ #define ART_RUNTIME_BASE_STL_UTIL_H_ #include <algorithm> #include <sstream> #include "base/logging.h" namespace art { // Sort and remove duplicates of an STL vector or deque. template<class T> void STLSortAndRemoveDuplicates(T* v) { std::sort(v->begin(), v->end()); v->erase(std::unique(v->begin(), v->end()), v->end()); } // STLDeleteContainerPointers() // For a range within a container of pointers, calls delete // (non-array version) on these pointers. // NOTE: for these three functions, we could just implement a DeleteObject // functor and then call for_each() on the range and functor, but this // requires us to pull in all of algorithm.h, which seems expensive. // For hash_[multi]set, it is important that this deletes behind the iterator // because the hash_set may call the hash function on the iterator when it is // advanced, which could result in the hash function trying to deference a // stale pointer. template <class ForwardIterator> void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete *temp; } } // STLDeleteElements() deletes all the elements in an STL container and clears // the container. This function is suitable for use with a vector, set, // hash_set, or any other STL container which defines sensible begin(), end(), // and clear() methods. // // If container is null, this function is a no-op. // // As an alternative to calling STLDeleteElements() directly, consider // using a container of std::unique_ptr, which ensures that your container's // elements are deleted when the container goes out of scope. template <class T> void STLDeleteElements(T *container) { if (container != nullptr) { STLDeleteContainerPointers(container->begin(), container->end()); container->clear(); } } // Given an STL container consisting of (key, value) pairs, STLDeleteValues // deletes all the "value" components and clears the container. Does nothing // in the case it's given a null pointer. template <class T> void STLDeleteValues(T *v) { if (v != nullptr) { for (typename T::iterator i = v->begin(); i != v->end(); ++i) { delete i->second; } v->clear(); } } template <class T> std::string ToString(const T& v) { std::ostringstream os; os << "["; for (size_t i = 0; i < v.size(); ++i) { os << v[i]; if (i < v.size() - 1) { os << ", "; } } os << "]"; return os.str(); } // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. struct FreeDelete { // NOTE: Deleting a const object is valid but free() takes a non-const pointer. void operator()(const void* ptr) const { free(const_cast<void*>(ptr)); } }; // Alias for std::unique_ptr<> that uses the C function free() to delete objects. template <typename T> using UniqueCPtr = std::unique_ptr<T, FreeDelete>; // C++14 from-the-future import (std::make_unique) // Invoke the constructor of 'T' with the provided args, and wrap the result in a unique ptr. template <typename T, typename ... Args> std::unique_ptr<T> MakeUnique(Args&& ... args) { return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); } // Find index of the first element with the specified value known to be in the container. template <typename Container, typename T> size_t IndexOfElement(const Container& container, const T& value) { auto it = std::find(container.begin(), container.end(), value); DCHECK(it != container.end()); // Must exist. return std::distance(container.begin(), it); } // Remove the first element with the specified value known to be in the container. template <typename Container, typename T> void RemoveElement(Container& container, const T& value) { auto it = std::find(container.begin(), container.end(), value); DCHECK(it != container.end()); // Must exist. container.erase(it); } // Replace the first element with the specified old_value known to be in the container. template <typename Container, typename T> void ReplaceElement(Container& container, const T& old_value, const T& new_value) { auto it = std::find(container.begin(), container.end(), old_value); DCHECK(it != container.end()); // Must exist. *it = new_value; } // Search for an element with the specified value and return true if it was found, false otherwise. template <typename Container, typename T> bool ContainsElement(const Container& container, const T& value, size_t start_pos = 0u) { DCHECK_LE(start_pos, container.size()); auto start = container.begin(); std::advance(start, start_pos); auto it = std::find(start, container.end(), value); return it != container.end(); } // const char* compare function suitable for std::map or std::set. struct CStringLess { bool operator()(const char* lhs, const char* rhs) const { return strcmp(lhs, rhs) < 0; } }; // 32-bit FNV-1a hash function suitable for std::unordered_map. // It can be used with any container which works with range-based for loop. // See http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function template <typename Vector> struct FNVHash { size_t operator()(const Vector& vector) const { uint32_t hash = 2166136261u; for (const auto& value : vector) { hash = (hash ^ value) * 16777619u; } return hash; } }; // Use to suppress type deduction for a function argument. // See std::identity<> for more background: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1856.html#20.2.2 - move/forward helpers // // e.g. "template <typename X> void bar(identity<X>::type foo); // bar(5); // compilation error // bar<int>(5); // ok // or "template <typename T> void foo(T* x, typename Identity<T*>::type y); // Base b; // Derived d; // foo(&b, &d); // Use implicit Derived* -> Base* conversion. // If T was deduced from both &b and &d, there would be a mismatch, i.e. deduction failure. template <typename T> struct Identity { using type = T; }; } // namespace art #endif // ART_RUNTIME_BASE_STL_UTIL_H_