/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter.h" #include <limits> #include "common_throws.h" #include "interpreter_common.h" #include "mirror/string-inl.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "stack.h" #include "unstarted_runtime.h" #include "mterp/mterp.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" namespace art { namespace interpreter { static void InterpreterJni(Thread* self, ArtMethod* method, const StringPiece& shorty, Object* receiver, uint32_t* args, JValue* result) SHARED_REQUIRES(Locks::mutator_lock_) { // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler, // it should be removed and JNI compiled stubs used instead. ScopedObjectAccessUnchecked soa(self); if (method->IsStatic()) { if (shorty == "L") { typedef jobject (fntype)(JNIEnv*, jclass); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "V") { typedef void (fntype)(JNIEnv*, jclass); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get()); } else if (shorty == "Z") { typedef jboolean (fntype)(JNIEnv*, jclass); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get())); } else if (shorty == "BI") { typedef jbyte (fntype)(JNIEnv*, jclass, jint); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetB(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "II") { typedef jint (fntype)(JNIEnv*, jclass, jint); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "LL") { typedef jobject (fntype)(JNIEnv*, jclass, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get(), arg0.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "IIZ") { typedef jint (fntype)(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "ILI") { typedef jint (fntype)(JNIEnv*, jclass, jobject, jint); fntype* const fn = reinterpret_cast<fntype*>(const_cast<void*>( method->GetEntryPointFromJni())); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[0]))); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1])); } else if (shorty == "SIZ") { typedef jshort (fntype)(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast<fntype*>(const_cast<void*>(method->GetEntryPointFromJni())); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetS(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "VIZ") { typedef void (fntype)(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], args[1]); } else if (shorty == "ZLL") { typedef jboolean (fntype)(JNIEnv*, jclass, jobject, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[0]))); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[1]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get())); } else if (shorty == "ZILL") { typedef jboolean (fntype)(JNIEnv*, jclass, jint, jobject, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[1]))); ScopedLocalRef<jobject> arg2(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[2]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get())); } else if (shorty == "VILII") { typedef void (fntype)(JNIEnv*, jclass, jint, jobject, jint, jint); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[1]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]); } else if (shorty == "VLILII") { typedef void (fntype)(JNIEnv*, jclass, jobject, jint, jobject, jint, jint); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[0]))); ScopedLocalRef<jobject> arg2(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[2]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]); } else { LOG(FATAL) << "Do something with static native method: " << PrettyMethod(method) << " shorty: " << shorty; } } else { if (shorty == "L") { typedef jobject (fntype)(JNIEnv*, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "V") { typedef void (fntype)(JNIEnv*, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), rcvr.get()); } else if (shorty == "LL") { typedef jobject (fntype)(JNIEnv*, jobject, jobject); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>( reinterpret_cast<Object*>(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get(), arg0.get()); } result->SetL(soa.Decode<Object*>(jresult)); ScopedThreadStateChange tsc(self, kNative); } else if (shorty == "III") { typedef jint (fntype)(JNIEnv*, jobject, jint, jint); fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1])); } else { LOG(FATAL) << "Do something with native method: " << PrettyMethod(method) << " shorty: " << shorty; } } } enum InterpreterImplKind { kSwitchImplKind, // Switch-based interpreter implementation. kComputedGotoImplKind, // Computed-goto-based interpreter implementation. kMterpImplKind // Assembly interpreter }; static std::ostream& operator<<(std::ostream& os, const InterpreterImplKind& rhs) { os << ((rhs == kSwitchImplKind) ? "Switch-based interpreter" : (rhs == kComputedGotoImplKind) ? "Computed-goto-based interpreter" : "Asm interpreter"); return os; } static constexpr InterpreterImplKind kInterpreterImplKind = kMterpImplKind; #if defined(__clang__) // Clang 3.4 fails to build the goto interpreter implementation. template<bool do_access_check, bool transaction_active> JValue ExecuteGotoImpl(Thread*, const DexFile::CodeItem*, ShadowFrame&, JValue) { LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } // Explicit definitions of ExecuteGotoImpl. template<> SHARED_REQUIRES(Locks::mutator_lock_) JValue ExecuteGotoImpl<true, false>(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register); template<> SHARED_REQUIRES(Locks::mutator_lock_) JValue ExecuteGotoImpl<false, false>(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register); template<> SHARED_REQUIRES(Locks::mutator_lock_) JValue ExecuteGotoImpl<true, true>(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register); template<> SHARED_REQUIRES(Locks::mutator_lock_) JValue ExecuteGotoImpl<false, true>(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register); #endif static inline JValue Execute( Thread* self, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register, bool stay_in_interpreter = false) SHARED_REQUIRES(Locks::mutator_lock_) { DCHECK(!shadow_frame.GetMethod()->IsAbstract()); DCHECK(!shadow_frame.GetMethod()->IsNative()); if (LIKELY(shadow_frame.GetDexPC() == 0)) { // Entering the method, but not via deoptimization. if (kIsDebugBuild) { self->AssertNoPendingException(); } instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); ArtMethod *method = shadow_frame.GetMethod(); if (UNLIKELY(instrumentation->HasMethodEntryListeners())) { instrumentation->MethodEnterEvent(self, shadow_frame.GetThisObject(code_item->ins_size_), method, 0); } if (!stay_in_interpreter) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->MethodEntered(self, shadow_frame.GetMethod()); if (jit->CanInvokeCompiledCode(method)) { JValue result; // Pop the shadow frame before calling into compiled code. self->PopShadowFrame(); ArtInterpreterToCompiledCodeBridge(self, nullptr, code_item, &shadow_frame, &result); // Push the shadow frame back as the caller will expect it. self->PushShadowFrame(&shadow_frame); return result; } } } } shadow_frame.GetMethod()->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self); // Lock counting is a special version of accessibility checks, and for simplicity and // reduction of template parameters, we gate it behind access-checks mode. ArtMethod* method = shadow_frame.GetMethod(); DCHECK(!method->SkipAccessChecks() || !method->MustCountLocks()); bool transaction_active = Runtime::Current()->IsActiveTransaction(); if (LIKELY(method->SkipAccessChecks())) { // Enter the "without access check" interpreter. if (kInterpreterImplKind == kMterpImplKind) { if (transaction_active) { // No Mterp variant - just use the switch interpreter. return ExecuteSwitchImpl<false, true>(self, code_item, shadow_frame, result_register, false); } else if (UNLIKELY(!Runtime::Current()->IsStarted())) { return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, false); } else { while (true) { // Mterp does not support all instrumentation/debugging. if (MterpShouldSwitchInterpreters()) { return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, false); } bool returned = ExecuteMterpImpl(self, code_item, &shadow_frame, &result_register); if (returned) { return result_register; } else { // Mterp didn't like that instruction. Single-step it with the reference interpreter. result_register = ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, true); if (shadow_frame.GetDexPC() == DexFile::kDexNoIndex) { // Single-stepped a return or an exception not handled locally. Return to caller. return result_register; } } } } } else if (kInterpreterImplKind == kSwitchImplKind) { if (transaction_active) { return ExecuteSwitchImpl<false, true>(self, code_item, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl<false, false>(self, code_item, shadow_frame, result_register, false); } } else { DCHECK_EQ(kInterpreterImplKind, kComputedGotoImplKind); if (transaction_active) { return ExecuteGotoImpl<false, true>(self, code_item, shadow_frame, result_register); } else { return ExecuteGotoImpl<false, false>(self, code_item, shadow_frame, result_register); } } } else { // Enter the "with access check" interpreter. if (kInterpreterImplKind == kMterpImplKind) { // No access check variants for Mterp. Just use the switch version. if (transaction_active) { return ExecuteSwitchImpl<true, true>(self, code_item, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl<true, false>(self, code_item, shadow_frame, result_register, false); } } else if (kInterpreterImplKind == kSwitchImplKind) { if (transaction_active) { return ExecuteSwitchImpl<true, true>(self, code_item, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl<true, false>(self, code_item, shadow_frame, result_register, false); } } else { DCHECK_EQ(kInterpreterImplKind, kComputedGotoImplKind); if (transaction_active) { return ExecuteGotoImpl<true, true>(self, code_item, shadow_frame, result_register); } else { return ExecuteGotoImpl<true, false>(self, code_item, shadow_frame, result_register); } } } } void EnterInterpreterFromInvoke(Thread* self, ArtMethod* method, Object* receiver, uint32_t* args, JValue* result, bool stay_in_interpreter) { DCHECK_EQ(self, Thread::Current()); bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return; } const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke"); const DexFile::CodeItem* code_item = method->GetCodeItem(); uint16_t num_regs; uint16_t num_ins; if (code_item != nullptr) { num_regs = code_item->registers_size_; num_ins = code_item->ins_size_; } else if (!method->IsInvokable()) { self->EndAssertNoThreadSuspension(old_cause); method->ThrowInvocationTimeError(); return; } else { DCHECK(method->IsNative()); num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty()); if (!method->IsStatic()) { num_regs++; num_ins++; } } // Set up shadow frame with matching number of reference slots to vregs. ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame(); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, last_shadow_frame, method, /* dex pc */ 0); ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); self->PushShadowFrame(shadow_frame); size_t cur_reg = num_regs - num_ins; if (!method->IsStatic()) { CHECK(receiver != nullptr); shadow_frame->SetVRegReference(cur_reg, receiver); ++cur_reg; } uint32_t shorty_len = 0; const char* shorty = method->GetShorty(&shorty_len); for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) { DCHECK_LT(shorty_pos + 1, shorty_len); switch (shorty[shorty_pos + 1]) { case 'L': { Object* o = reinterpret_cast<StackReference<Object>*>(&args[arg_pos])->AsMirrorPtr(); shadow_frame->SetVRegReference(cur_reg, o); break; } case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos]; shadow_frame->SetVRegLong(cur_reg, wide_value); cur_reg++; arg_pos++; break; } default: shadow_frame->SetVReg(cur_reg, args[arg_pos]); break; } } self->EndAssertNoThreadSuspension(old_cause); // Do this after populating the shadow frame in case EnsureInitialized causes a GC. if (method->IsStatic() && UNLIKELY(!method->GetDeclaringClass()->IsInitialized())) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass())); if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) { CHECK(self->IsExceptionPending()); self->PopShadowFrame(); return; } } if (LIKELY(!method->IsNative())) { JValue r = Execute(self, code_item, *shadow_frame, JValue(), stay_in_interpreter); if (result != nullptr) { *result = r; } } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. // Update args to be the args in the shadow frame since the input ones could hold stale // references pointers due to moving GC. args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1); if (!Runtime::Current()->IsStarted()) { UnstartedRuntime::Jni(self, method, receiver, args, result); } else { InterpreterJni(self, method, shorty, receiver, args, result); } } self->PopShadowFrame(); } static bool IsStringInit(const Instruction* instr, ArtMethod* caller) SHARED_REQUIRES(Locks::mutator_lock_) { if (instr->Opcode() == Instruction::INVOKE_DIRECT || instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) { // Instead of calling ResolveMethod() which has suspend point and can trigger // GC, look up the callee method symbolically. uint16_t callee_method_idx = (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? instr->VRegB_3rc() : instr->VRegB_35c(); const DexFile* dex_file = caller->GetDexFile(); const DexFile::MethodId& method_id = dex_file->GetMethodId(callee_method_idx); const char* class_name = dex_file->StringByTypeIdx(method_id.class_idx_); const char* method_name = dex_file->GetMethodName(method_id); // Compare method's class name and method name against string init. // It's ok since it's not allowed to create your own java/lang/String. // TODO: verify that assumption. if ((strcmp(class_name, "Ljava/lang/String;") == 0) && (strcmp(method_name, "<init>") == 0)) { return true; } } return false; } static int16_t GetReceiverRegisterForStringInit(const Instruction* instr) { DCHECK(instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE || instr->Opcode() == Instruction::INVOKE_DIRECT); return (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? instr->VRegC_3rc() : instr->VRegC_35c(); } void EnterInterpreterFromDeoptimize(Thread* self, ShadowFrame* shadow_frame, bool from_code, JValue* ret_val) SHARED_REQUIRES(Locks::mutator_lock_) { JValue value; // Set value to last known result in case the shadow frame chain is empty. value.SetJ(ret_val->GetJ()); // Are we executing the first shadow frame? bool first = true; while (shadow_frame != nullptr) { // We do not want to recover lock state for lock counting when deoptimizing. Currently, // the compiler should not have compiled a method that failed structured-locking checks. DCHECK(!shadow_frame->GetMethod()->MustCountLocks()); self->SetTopOfShadowStack(shadow_frame); const DexFile::CodeItem* code_item = shadow_frame->GetMethod()->GetCodeItem(); const uint32_t dex_pc = shadow_frame->GetDexPC(); uint32_t new_dex_pc = dex_pc; if (UNLIKELY(self->IsExceptionPending())) { // If we deoptimize from the QuickExceptionHandler, we already reported the exception to // the instrumentation. To prevent from reporting it a second time, we simply pass a // null Instrumentation*. const instrumentation::Instrumentation* const instrumentation = first ? nullptr : Runtime::Current()->GetInstrumentation(); uint32_t found_dex_pc = FindNextInstructionFollowingException(self, *shadow_frame, dex_pc, instrumentation); new_dex_pc = found_dex_pc; // the dex pc of a matching catch handler // or DexFile::kDexNoIndex if there is none. } else if (!from_code) { // For the debugger and full deoptimization stack, we must go past the invoke // instruction, as it already executed. // TODO: should be tested more once b/17586779 is fixed. const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]); if (instr->IsInvoke()) { if (IsStringInit(instr, shadow_frame->GetMethod())) { uint16_t this_obj_vreg = GetReceiverRegisterForStringInit(instr); // Move the StringFactory.newStringFromChars() result into the register representing // "this object" when invoking the string constructor in the original dex instruction. // Also move the result into all aliases. DCHECK(value.GetL()->IsString()); SetStringInitValueToAllAliases(shadow_frame, this_obj_vreg, value); // Calling string constructor in the original dex code doesn't generate a result value. value.SetJ(0); } new_dex_pc = dex_pc + instr->SizeInCodeUnits(); } else if (instr->Opcode() == Instruction::NEW_INSTANCE) { // It's possible to deoptimize at a NEW_INSTANCE dex instruciton that's for a // java string, which is turned into a call into StringFactory.newEmptyString(); // Move the StringFactory.newEmptyString() result into the destination register. DCHECK(value.GetL()->IsString()); shadow_frame->SetVRegReference(instr->VRegA_21c(), value.GetL()); // new-instance doesn't generate a result value. value.SetJ(0); // Skip the dex instruction since we essentially come back from an invocation. new_dex_pc = dex_pc + instr->SizeInCodeUnits(); if (kIsDebugBuild) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); // This is a suspend point. But it's ok since value has been set into shadow_frame. mirror::Class* klass = class_linker->ResolveType( instr->VRegB_21c(), shadow_frame->GetMethod()); DCHECK(klass->IsStringClass()); } } else { CHECK(false) << "Unexpected instruction opcode " << instr->Opcode() << " at dex_pc " << dex_pc << " of method: " << PrettyMethod(shadow_frame->GetMethod(), false); } } else { // Nothing to do, the dex_pc is the one at which the code requested // the deoptimization. } if (new_dex_pc != DexFile::kDexNoIndex) { shadow_frame->SetDexPC(new_dex_pc); value = Execute(self, code_item, *shadow_frame, value); } ShadowFrame* old_frame = shadow_frame; shadow_frame = shadow_frame->GetLink(); ShadowFrame::DeleteDeoptimizedFrame(old_frame); // Following deoptimizations of shadow frames must pass the invoke instruction. from_code = false; first = false; } ret_val->SetJ(value.GetJ()); } JValue EnterInterpreterFromEntryPoint(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame) { DCHECK_EQ(self, Thread::Current()); bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return JValue(); } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->NotifyCompiledCodeToInterpreterTransition(self, shadow_frame->GetMethod()); } return Execute(self, code_item, *shadow_frame, JValue()); } void ArtInterpreterToInterpreterBridge(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result) { bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return; } self->PushShadowFrame(shadow_frame); ArtMethod* method = shadow_frame->GetMethod(); // Ensure static methods are initialized. const bool is_static = method->IsStatic(); if (is_static) { mirror::Class* declaring_class = method->GetDeclaringClass(); if (UNLIKELY(!declaring_class->IsInitialized())) { StackHandleScope<1> hs(self); HandleWrapper<Class> h_declaring_class(hs.NewHandleWrapper(&declaring_class)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( self, h_declaring_class, true, true))) { DCHECK(self->IsExceptionPending()); self->PopShadowFrame(); return; } CHECK(h_declaring_class->IsInitializing()); } } if (LIKELY(!shadow_frame->GetMethod()->IsNative())) { result->SetJ(Execute(self, code_item, *shadow_frame, JValue()).GetJ()); } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. CHECK(!Runtime::Current()->IsStarted()); Object* receiver = is_static ? nullptr : shadow_frame->GetVRegReference(0); uint32_t* args = shadow_frame->GetVRegArgs(is_static ? 0 : 1); UnstartedRuntime::Jni(self, shadow_frame->GetMethod(), receiver, args, result); } self->PopShadowFrame(); } void CheckInterpreterAsmConstants() { CheckMterpAsmConstants(); } void InitInterpreterTls(Thread* self) { InitMterpTls(self); } } // namespace interpreter } // namespace art