/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <gtest/gtest.h> #include <fenv.h> template <typename RT, typename T1> struct data_1_1_t { RT expected; T1 input; }; template <typename T1> struct data_int_1_t { int expected; T1 input; }; template <typename T1> struct data_long_1_t { long expected; T1 input; }; template <typename T1> struct data_llong_1_t { long long expected; T1 input; }; template <typename RT, typename T1, typename T2> struct data_1_2_t { RT expected; T1 input1; T2 input2; }; template <typename RT1, typename RT2, typename T> struct data_2_1_t { RT1 expected1; RT2 expected2; T input; }; template <typename RT1, typename T> struct data_1_int_1_t { RT1 expected1; int expected2; T input; }; template <typename RT1, typename T1, typename T2> struct data_1_int_2_t { RT1 expected1; int expected2; T1 input1; T2 input2; }; template <typename RT, typename T1, typename T2, typename T3> struct data_1_3_t { RT expected; T1 input1; T2 input2; T3 input3; }; template <typename T> union fp_u; template <> union fp_u<float> { float value; struct { unsigned frac:23; unsigned exp:8; unsigned sign:1; } bits; uint32_t sign_magnitude; }; template <> union fp_u<double> { double value; struct { unsigned fracl; unsigned frach:20; unsigned exp:11; unsigned sign:1; } bits; uint64_t sign_magnitude; }; // TODO: long double. template <typename T> static inline auto SignAndMagnitudeToBiased(const T& value) -> decltype(fp_u<T>::sign_magnitude) { fp_u<T> u; u.value = value; if (u.bits.sign) { return ~u.sign_magnitude + 1; } else { u.bits.sign = 1; return u.sign_magnitude; } } // Based on the existing googletest implementation, which uses a fixed 4 ulp bound. template <typename T> size_t UlpDistance(T lhs, T rhs) { const auto biased1 = SignAndMagnitudeToBiased(lhs); const auto biased2 = SignAndMagnitudeToBiased(rhs); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } template <size_t ULP, typename T> struct FpUlpEq { ::testing::AssertionResult operator()(const char* /* expected_expression */, const char* /* actual_expression */, T expected, T actual) { if (!isnan(expected) && !isnan(actual) && UlpDistance(expected, actual) <= ULP) { return ::testing::AssertionSuccess(); } // Output the actual and expected values as hex floating point. char expected_str[64]; char actual_str[64]; snprintf(expected_str, sizeof(expected_str), "%a", expected); snprintf(actual_str, sizeof(actual_str), "%a", actual); return ::testing::AssertionFailure() << "expected (" << expected_str << ") != actual (" << actual_str << ")"; } }; // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double) -> double function like sin(3). template <size_t ULP, typename RT, typename T, size_t N> void DoMathDataTest(data_1_1_t<RT, T> (&data)[N], RT f(T)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT> predicate; for (size_t i = 0; i < N; ++i) { EXPECT_PRED_FORMAT2(predicate, data[i].expected, f(data[i].input)) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double) -> int function like ilogb(3). template <size_t ULP, typename T, size_t N> void DoMathDataTest(data_int_1_t<T> (&data)[N], int f(T)) { fesetenv(FE_DFL_ENV); for (size_t i = 0; i < N; ++i) { EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double) -> long int function like lrint(3). template <size_t ULP, typename T, size_t N> void DoMathDataTest(data_long_1_t<T> (&data)[N], long f(T)) { fesetenv(FE_DFL_ENV); for (size_t i = 0; i < N; ++i) { EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double) -> long long int function like llrint(3). template <size_t ULP, typename T, size_t N> void DoMathDataTest(data_llong_1_t<T> (&data)[N], long long f(T)) { fesetenv(FE_DFL_ENV); for (size_t i = 0; i < N; ++i) { EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the pairs of input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double, double) -> double function like pow(3). template <size_t ULP, typename RT, typename T1, typename T2, size_t N> void DoMathDataTest(data_1_2_t<RT, T1, T2> (&data)[N], RT f(T1, T2)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT> predicate; for (size_t i = 0; i < N; ++i) { EXPECT_PRED_FORMAT2(predicate, data[i].expected, f(data[i].input1, data[i].input2)) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the results are within ULP ulps of the expected values. // For testing a (double, double*, double*) -> void function like sincos(3). template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N> void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], void f(T1, RT1*, RT2*)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT1> predicate1; FpUlpEq<ULP, RT2> predicate2; for (size_t i = 0; i < N; ++i) { RT1 out1; RT2 out2; f(data[i].input, &out1, &out2); EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i; EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the results are within ULP ulps of the expected values. // For testing a (double, double*) -> double function like modf(3). template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N> void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], RT1 f(T1, RT2*)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT1> predicate1; FpUlpEq<ULP, RT2> predicate2; for (size_t i = 0; i < N; ++i) { RT1 out1; RT2 out2; out1 = f(data[i].input, &out2); EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i; EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the results are within ULP ulps of the expected values. // For testing a (double, int*) -> double function like frexp(3). template <size_t ULP, typename RT1, typename T1, size_t N> void DoMathDataTest(data_1_int_1_t<RT1, T1> (&data)[N], RT1 f(T1, int*)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT1> predicate1; for (size_t i = 0; i < N; ++i) { RT1 out1; int out2; out1 = f(data[i].input, &out2); EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i; EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the input values // and asserting that the results are within ULP ulps of the expected values. // For testing a (double, double, int*) -> double function like remquo(3). template <size_t ULP, typename RT1, typename T1, typename T2, size_t N> void DoMathDataTest(data_1_int_2_t<RT1, T1, T2> (&data)[N], RT1 f(T1, T2, int*)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT1> predicate1; for (size_t i = 0; i < N; ++i) { RT1 out1; int out2; out1 = f(data[i].input1, data[i].input2, &out2); EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i; EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i; } } // Runs through the array 'data' applying 'f' to each of the pairs of input values // and asserting that the result is within ULP ulps of the expected value. // For testing a (double, double, double) -> double function like fma(3). template <size_t ULP, typename RT, typename T1, typename T2, typename T3, size_t N> void DoMathDataTest(data_1_3_t<RT, T1, T2, T3> (&data)[N], RT f(T1, T2, T3)) { fesetenv(FE_DFL_ENV); FpUlpEq<ULP, RT> predicate; for (size_t i = 0; i < N; ++i) { EXPECT_PRED_FORMAT2(predicate, data[i].expected, f(data[i].input1, data[i].input2, data[i].input3)) << "Failed on element " << i; } }